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Abstract. The cost minimization problem in an agency model with imperfect
monitoring is considered. Under the ®rst order approach, this can be stated as
a convex minimization problem with linear inequality and equality constraints
in a generally in®nite dimensional function space. We apply the Fenchel
Duality Theorem, and obtain as a dual problem a concave maximization
problem of ®nite dimension. In particular, a Lagrange multiplier description
of the optimal solution to the cost minimization problem is derived, justifying
and extending thus the approach of Kim (1995). By the duality, the depen-
dence of the minimum cost value on the information system used becomes
particularly visible. The minimum cost value behaves monotonically w.r.t. the
convex ordering of certain distributions induced by the competing information
systems. Under the standard inequality constraint, one is led to the distribu-
tions of the score functions of the information systems and their convex order
relation. It is shown that also for multivariate actions, Blackwell su½ciency
implies the convex order relation of the score function distributions. A further
result refers to a multi-agents model recently considered by Budde (1997),
when the maximum of n independent and identically distributed (i.i.d.) uni-
variate output variables is focussed. If two univariate information systems
have monotone likelihood ratios, then the convex ordering between the two
score function distributions implies the weaker convex increasing ordering
between the distributions of the same score functions under the maximum
distributions.
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1. Introduction

We consider the following extremum problem. Let �M;B;P� be a probability
space, F be a convex function on �0;y� with values in �0;y� � �0;y�W fyg
and F�0� � 0, where F is neither constantly zero nor constantly in®nity on
�0;y�. Let gi, i � 1; . . . ;m, and hj, j � 1; . . . ; n, be real valued measurable
functions on M. Then, the problem is to

minimize EP�F � f � �1:1a�

over all real valued measurable functions f on M (belonging to some suitable
linear space of functions, see Section 2) which satisfy the constraints

f �x�V b for all x A M; �1:1b�
EP� f � gi�V ai for all i � 1; . . . ;m; �1:1c�
EP� f � hj� � bj for all j � 1; . . . ; n; �1:1d�

where 0U b <y, ai A R (for i � 1; . . . ;m), and bj A R (for j � 1; . . . ; n) are
given constants. By EP�d � we have denoted the expectation of a real valued
measurable function d on M w.r.t. the probability distribution P (provided
that the expectation exists), and F � f denotes the composition of f and F,
i.e., �F � f ��x� � F� f �x�� for all x A M. Note that if F is not ®nite, i.e.,
F�u� �y for all u > u, say, then the constraint f U u is implicitly present,
since for any feasible f which exceeds u with positive probability we have
EP�F � f � �y. In fact, for reasons to be discussed below, it will be useful to
admit functions F which are not ®nite. In that case we will assume that b < u
to avoid trivialities.

Problems of this type arise in agency models of moral hazard, when the
principal wishes to induce a prescribed agent's action a0 at a minimum cost by
application of a certain monitoring technology. The agent chooses an action a
from some set AHRn of possible actions, which is not directly observable
by the principal. The observable signal is some x A M, which is randomly
disturbed and follows a distribution Pa on M (more precisely, Pa is a proba-
bility distribution on some suitable sigma-®eld B of subsets of M). The mea-
surable space �M;B� together with the family �Pa�a AA is called an information
system or a statistical model. Depending on the observed signal x, the agent
receives a compensation s�x�V 0 from the principal. Cost minimization re-
¯ects the principal's objective if he/she is risk-neutral, and thus his/her prob-
lem of choosing a utility maximizing pair �a; s� can be separated into an
action choice problem and a cost minimization problem (cf. Grossman &
Hart (1983), p. 10 and Remark 3 on p. 17). Throughout we suppose that the
action choice problem has been settled, i.e. the principal has decided a par-
ticular action a0 to be most favourable. Then, the desired action a0 A A is
induced only if the principal provides a compensation function s, such that a0

maximizes the agent's expected utility, i.e.,

Ea0�U � s� ÿ V�a0� � max
a AA
fEa�U � s� ÿ V�a�g; �1:2�
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where Ea stands for taking expectation w.r.t. Pa, U�s� is the utility caused by
wealth s A �0;y�, and V�a� is the disutility caused by action a A A. Condition
(1.2) is called the incentive compatibility constraint. The principal wishes to
minimize the expected cost, i.e., to choose a compensation cost function s
which minimizes Ea0�s� subject to the constraint (1.2), and subject to some
further constraints to be discussed later. Of course, constraint (1.2) is mathe-
matically di½cult to handle. The ®rst order approach we will employ replaces
(1.2) by the condition that a0 is a stationary point of the agent's expected
utility, where we assume that a0 is an interior point of A and Ea�U � s� and
V�a� are smooth functions of a. That is, the weaker ®rst order condition is
employed,

`aEa�U � s�ja�a0 � `aV�a�ja�a0 ; �1:3�

where `a stands for taking the gradient (vector of partial derivatives) w.r.t. a.
In general, (1.3) is a relaxation of (1.2) which is used for mathematical trac-
tability. Equivalence of (1.2) and (1.3) will require additional assumptions,
which will essentially have to ensure that the expected utility on the right hand
side of (1.2) is a concave function of a, if s is the optimal solution to the
relaxed problem. For example, in the standard agency model as in Kim (1995)
this is met under the monotone likelihood ratio and the (very restrictive) con-
vexity of distribution function conditions on the information system as in
Rogerson (1985), and the monotonicity and convexity of the disutility func-
tion V (see our remark after Corollary 3.3 in Section 3). Alternative and less
restrictive conditions have been proposed by Jewitt (1988).

Assume that the family Pa of distributions is smooth at a0, in the sense that
for all f from a suitable class of real valued measurable functions on M (to be
speci®ed later) we have

`aEa� f �ja�a0 � Ea0� f � Sa0�;

with a ®xed Rn-valued measurable function Sa0 on M, which is called the
score function of the family �Pa�a AA at a0 (some authors call it the likelihood
ratio). Usually the score function is given by

Sa0�x� � 1

pa0�x� à pa�x�ja�a0 ; x A M;

where pa is a density of Pa for all a A A w.r.t. some ®xed sigma-®nite measure
L on �M;B�. Now, substituting f � U � s, the ®rst order condition (1.3)
rewrites as (1.1d), where

�h1; . . . ; hn� � Sa0 ; �1:4a�

�b1; . . . ; bn� � àV�a�ja�a0 ; and P � Pa0 : �1:4b�

Under the mild assumption that the utility function U is de®ned on �0;y�
with U�0� � 0, and as usual, that U is strictly increasing and concave, we
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consider the inverse function F � Uÿ1, where in case that U is bounded, i.e.,
u � lims!y U�s� <y, we de®ne F�u� �y for all uV u. Thus, F is a convex
function on �0;y� with values in �0;y� and F�0� � 0. The problem of mini-
mizing the expected cost subject to the ®rst order condition (1.3) now rewrites
as (1.1a) subject to (1.1d).

It may be necessary to take into account further restrictions like (1.1b)
and (1.1c). The restriction (1.1b) may express e.g. a limited liability of the
agent. Also, there might be reasons (other than boundedness of the utility
function U) for bounding f from above by some prescribed constant c > b,
e.g. due to a limitation of the principal's budget. In that case the constraint
f U c will be included implicitly by choosing F such that F�u� �y for all
u > c. In addition, the restrictions (1.1c) may express a certain reservation
level of utility causing the agent to sign the contract. In particular, for
m � 1 and g1 � 1 we have the standard inequality constraint, which gives a
guaranteed expected utility value a1 to the agent. Restrictions of this type
are usually referred to as the participation constraint or individual rationality
constraint.

In Kim (1995), Section 2, problem (1.1a)±(1.1d) has been studied for
m � n � 1, g1 � 1, and h1 being the score function (1.4a). The optimal
solution was claimed to have a description via Lagrange multipliers. How-
ever, the variable f is from some in®nite dimensional function space, and the
Lagrange multiplier approach may not be valid. In Section 2 we will embed
the general extremum problem (1.1a)±(1.1d) into an appropriate function
space. In Section 3 a duality result will be derived which is close to the
Lagrangian approach (but not identical). In fact, the Lagrangian approach is
valid only if the dual problem as well has an optimal solution. The duality
result turns out to be particularly useful to study the dependence of the mini-
mum expected cost value on the input distribution P and the input functions
gi and hj. In Section 4, we will show that the minimum expected cost value
decreases when the input is changed such that the joint distribution of
g1; . . . ; gm; h1; . . . ; hn, gets larger w.r.t. the convex order of probability
distributions on the multi-dimensional Euclidean space. A generalization of
Kim's result (Kim (1995), Proposition 1) is thereby obtained. The general
results allow to compare di¨erent possible information systems w.r.t. their
resulting minimum expected cost values. In Section 5 it is shown that Black-
well su½ciency (of one information system for another one) implies the con-
vex order relation of the corresponding score function distributions, extending
thus a result for the one-dimensional case of Kim (1995), Proposition 4. A
further result refers to a rank order tournament considered by Budde (1997),
which settles a conjecture in his paper concerning the expectation of the score
function under the distribution of the maximum of n i.i.d. real valued random
variables.

2. Preliminaries: Orlicz spaces

A linear space which appears quite natural as an embedding space for prob-
lem (1.1a)±(1.1d) is the Orlicz space given by the so-called Young's function
F. A function F is called a Young's function (cf. Krasnoselskii & Rutickii
(1961), p. 3 ¨.), if and only if
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F : �0;y� ! �0;y�;
F�0� � 0;

F is neither constantly zero nor constantly infinity on �0;y�;
F is convex;

F is left continuous at u � supfuV 0 : F�u� <yg; if u <y:

The conjugate function of the Young's function F is de®ned by

C�v� � sup
u A �0;y�

�uvÿF�u��; v A �0;y�; �2:1�

which is a Young's function as well. The conjugate function of C yields back
F, i.e.,

F�u� � sup
v A �0;y�

�vuÿC�v��; u A �0;y�: �2:2�

For the following basic facts about Orlicz spaces the reader is referred to
Krasnoselskii & Rutickii (1961). For a Young's function F and a probability
space �M;B;P�, the Orlicz space LF�P� consists of all measurable real valued
functions f on M such that EP�F � �rj f j�� <y for some positive real number
r, where j f j denotes the function j f �x�j, x A M. As it is easily seen, LF�P� is a
real vector space, and

Ly�P�HLF�P�HL1�P�;

where Ly�P� and L1�P� denote the space of all P-almost surely (P-a.s.)
bounded measurable real valued functions on M and the space of all P-
integrable real valued functions on M, respectively. Note that Ly�P� and L1�P�
are the Orlicz spaces corresponding to the Young's functions

Fy�u� �
0; if uU 1

y; if u > 1

(
; F1�u� � u; u A �0;y�;

respectively, and Fy and F1 are conjugate to each other. Moreover, for any
non-®nite Young's function F one has LF�P� � Ly�P� and LC�P� � L1�P�,
where C is the conjugate Young's function of F. Further well-known exam-
ples of Orlicz-spaces are the Lp�P�-spaces, for a given p A �1;y�, corre-
sponding to the Young's function F�u� � up. The conjugate Young's function
is given by C�v� � cvq, where q � p=�pÿ 1� and c � �pÿ 1�ÿq=pqÿq, and
hence LC�P� � Lq�P�.

Let F be an arbitrary Young's function. A norm on LF�P� is given by

k f kF � inffk > 0 : EP�F � �j f j=k��U 1g; f A LF�P�; �2:3�

where here and in the following two functions on M are viewed to be identi-
cal, if they coincide P-a.s., that is on a set of probability one. Together with
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this norm the space LF�P� is a Banach space. Consider also the conjugate
Orlicz space LC�P�, where C is the conjugate function of F. Then,

f A LF�P� and g A LC�P� imply f � g A L1�P�; and

jEP� f � g�jU k f kF � kgkC :

Hence, any f A LF�P� de®nes a linear continuous real functional f a on
LC�P� via

f a :
LC�P� ! R

g ! EP� f � g�:

(
�2:4�

Thus, the Orlicz space LF�P� is embedded into the dual space LC�P�a of
LC�P� (consisting of all linear continuous real functionals on LC�P�).

An important question is whether all elements of the dual space LC�P�a
are obtained via (2.4), i.e., LC�P�a GLF�P�. The answer depends on the
Young's functions F and C , respectively. For example, if C is not ®nite, or if

C is ®nite but increases too rapidly, then LC�P�a l LF�P�. The Young's
function C is said to satisfy the D2-condition, if and only if C is ®nite and

C�2v�U k0C�v� EvV r0; �2:5�

for some real positive constants k0 and r0.

As it is easily seen, if C satis®es (2.5), then EP�C � jgj� <y for all g A LC�P�.
The following result is due to Luxemburg & Zaanen (1956) and Rao (1968).

Theorem 2.1. If C satis®es the D2-condition, then

LC�P�a GLF�P�;

i.e., any linear continuous real functional l on LC�P� is of the form

l�g� � EP� f � g�; g A LC�P�;

for some f A LF�P�.

3. A duality result

Consider the minimization problem (1.1a)±(1.1d) in the Orlicz space LF�P�,
i.e., the variable f is restricted to this space. Let C be the conjugate Young's
function of F given by (2.1). We assume that gi (for i � 1; . . . ;m) and hj (for
j � 1; . . . ; n) are from the conjugate Orlicz space LC�P�. Denote G �
�g1; . . . ; gm� t and H � �h1; . . . ; hn� t the Rm-valued and Rn-valued functions
formed by the real valued functions gi and hj, respectively, and a �
�a1; . . . ; am� t and b � �b1; . . . ; bn� t, where the superscript t denotes transposi-
tion. Recall that the lower bound b in (1.1b) is assumed to satisfy 0U b < u,

106 J. Budde, N. Ga¨ke



where u � supfuV 0 : F�u� <yg. By Cb we denote the function

Cb�v� � sup
u A �b;y�

�uvÿF�u��; v A R; �3:1�

which is a convex function on R with values in RW fyg, and obviously,

bvÿF�b�UCb�v�UC�maxfv; 0g� Ev A R: �3:2�

Now we state as dual problem,

maximize D�l; m� � l ta� m tb ÿ EP�Cb � �l tG � m tH�� �3:3a�
s:t: l A Rm; lV 0 �componentwise�; m A Rn: �3:3b�

Note that the expectation on the right hand side of (3.3a) exists (but may be
equal to y), since for any g A LC�P� we have by (3.2), Cb � gV bgÿF�b�,
and the lower bound is a P-integrable function. Thus, the objective function D
in (3.3a) is a concave function on Rm�n with values in RW fÿyg.

We now state our ®rst weak duality result.

Lemma 3.1. Assume that gi; hj A LC�P� for all i � 1; . . . ;m and j � 1; . . . ; n. If
f A LF�P� is a feasible solution to (1.1a)±(1.1d) and �l; m� is a feasible solution
to (3.3a)±(3.3b), then

EP�F � f �VD�l; m�:

Hence, denoting by f� the in®mum of the objective function in problem (1.1a)±
(1.1d) (where the in®mum over the empty set is de®ned to be in®nity), and by d�

the supremum of the objective function in problem (3.3a)±(3.3b), we have

f�V d�:

Proof. By (1.1c), (1.1d), and (3.3b),

l ta� m tb UEP� f � �l tG � m tH��;
and hence

D�l; m�UEP� f � �l tG � m tH� ÿCb � �l tG � m tH��:
By (3.1), for all u A �b;y� and all v A R,

uvÿCb�v�UF�u�;
and thus, by (1.1b), for all x A M,

f �x� � �l tG�x� � m tH�x�� ÿCb�l tG�x� � m tH�x��UF� f �x��:

From this we obtain

D�l; m�UEP�F � f �: r
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Our strong duality result we state next requires C to satisfy the D2-condition
(2.5). Recall the notations f� and d� for the optimal values of problem (1.1a)±
(1.1d) and problem (3.3a)±(3.3b), respectively.

Theorem 3.2. Assume that C satis®es the D2-condition, and gi; hj A LC�P� for
all i � 1; . . . ;m and j � 1; . . . ; n. Then, f� � d�. If this value is ®nite, then there
exists an optimal solution to problem (1.1a)±(1.1d).

Proof. If d� �y, then f� �y by Lemma 3.1. Now let d� <y. Denote

D � fl tG � m tH : l A Rm; lV 0; m A Rng; �3:4a�

which is a convex subset of LC�P�, and for d A D let

l�d� � supfl ta� m tb : l A Rm; lV 0; m A Rn; l tG � m tH � dg: �3:4b�

Clearly, l�d� <y, since otherwise we would have d� �y, where it may be
noted that EP�Cb � d�UEP�C � jdj� <y by (3.2). Hence, (3.4b) de®nes a
real valued function l on D. We will show that l is concave. To this end let
d; d A D and g A �0; 1�. For a given e > 0 one can ®nd l; l A Rm, lV 0, lV 0,
m; m A Rn, such that

l tG � m tH � d; l ta� m tb V l�d� ÿ e;

l
t
G � m tH � d; l

t
a� m tb V l�d � ÿ e:

Hence, for l� � gl� �1ÿ g�l and m� � gm� �1ÿ g�m we have l�V 0, m� A
Rn, l� t

G � m� tH � gd � �1ÿ g�d, and thus

l�gd � �1ÿ g�d �V l� t
a� m� tb

� g�l ta� m tb� � �1ÿ g��l t
a� m tb�

V gl�d� � �1ÿ g�l�d � ÿ e:

Since e > 0 was arbitrary, this proves concavity of l.
By F we denote the function on LC�P�,

F �g� � EP�Cb � g�; g A LC�P�; �3:5�

which is a real valued convex function, since by (3.2) bgÿF�b�UCb � gU
C � jgj and hence Cb � g is P-integrable for all g A LC�P�. Now problem
(3.3a)±(3.3b) is equivalently stated as

minimize F �d� ÿ l�d� �3:6a�
s:t: d A D; �3:6b�

Note that the in®mum of (3.6a) subject to (3.6b) is equal to ÿd� which is
®nite. We will apply the Fenchel Duality Theorem from Luenberger (1969),
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Theorem 1, p. 201, which states that under certain regularity assumptions to
be checked below we have

ÿd� � maxfl�� f � ÿ F �� f � : f A C�XD�g; �3:7�

and the maximum on the right hand side of (3.7) is attained. The sets C�, D�,
and the real valued functions F � on C� and l� on D� are de®ned by

C� � f A LF�P� : sup
g ALC �P�

�EP� f � g� ÿ F�g�� <y

( )
; �3:8a�

F �� f � � sup
g ALC �P�

�EP� f � g� ÿ F�g�� Ef A C�; �3:8b�

D� � f A LF�P� : inf
d AD
�EP� f � d� ÿ l�d�� > ÿy

� �
; �3:8c�

l�� f � � inf
d AD
�EP� f � d� ÿ l�d�� E f A D�: �3:8d�

Note that we have used that by Theorem 2.1 the dual space of LC�P� coin-
cides with LF�P�. To describe the domains and functions in (3.8a)±(3.8d)
more explicitly, we ®rstly observe that for any f A LF�P�,

sup
g ALC �P�

�EP� f � g� ÿ EP�Cb � g�� �
EP�F � f �; if f V b

y; otherwise

(
; �3:9�

the proof of which will be given later. Hence, by (3.5), (3.8a), and (3.8b),

C� � f f A LF�P� : f V b;EP�F � f � <yg;
F �� f � � EP�F � f �; f A C�:

By (3.4a)±(3.4b), we have for any f A LF�P�,

inf
d AD
�EP� f � d� ÿ l�d��

� inf
Xm

i�1
li�EP� f � gi� ÿ ai� �

Xn

j�1
mj�EP� f � hj� ÿ bj� : li V 0; mj A R

( )

�
0; if EP� f � gi�V ai Ei and EP� f � hj� � bjE j;

ÿy; otherwise

(
:

We have thus obtained,

D� � f f A LF�P� : EP� f � gi�V ai Ei and EP� f � hj� � bj Ejg;

l�� f � � 0; f A D�:
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Thus, (3.7) says that

ÿd� � maxf ÿ EP�F � f � : f A LF�P�; f V b;

EP� f � gi�V ai Ei; EP� f � hj� � bj E jg;

which is obviously the same as asserted by the theorem.
We will check the regularity assumptions for the duality theorem, namely

that LC�P�XD contains points in the relative interior of LC�P� and D (which
is trivially true by DHLC�P�), and that the epigraph of F,

f�g; r� A LC�P� �R : F�g�U rg

has nonempty interior. In fact, an interior point of the epigraph is given by
g0 � 0, r0 � 2, since

F �0� � Cb�0�U 0;

and for any g A LC�P� with kgkC < 1 and any r A �1;y� we have by (3.2)

F �g� � EP�Cb � g�UEP�C � jgj�U 1U r:

It remains to prove (3.9). For a given f A LF�P� we denote by g� f � the
supremum on the left hand side of (3.9).

Case 1: f V b.
By (3.1), for any g A LC�P�, we have f � gÿCb � gUF � f , and hence

EP� f � g� ÿ EP�Cb � g�UEP�F � f �;

showing that g� f �UEP�F � f �. To prove the reverse inequality we observe
that by (3.2), Cb�v�UC�jvj� for all v A R, and hence

g� f �V sup
g ALC �P�

fEP� f � g� ÿ EP�C � jgj�g: �3:10�

Since f is nonnegative and jgj A LC�P� whenever g A LC�P�, the supremum on
the right hand side of (3.10) is not changed when we restrict to all nonnegative
g A LC�P�. As it is well known from measure theory, f can be written as a
pointwise limit of an increasing sequence fn, n A N, of nonnegative measurable
step functions. In particular, 0U fn U f for all n, and hence the right hand
side of (3.10) does not get larger when f is replaced by fn. Thus, for all n,

g� f �V sup
g ALC �P�;gV0

fEP� fn � g� ÿ EP�C � g�g: �3:11�

For any ®xed n, let u1; . . . ; uk be the distinct values of fn attained on pairwise
disjoint measurable subsets B1; . . . ;Bk of M. Of course, k, u1; . . . ; uk, and
B1; . . . ;Bk will depend on n, which is dropped for notational simplicity.
Clearly, the right hand side of (3.11) does not get larger when we restrict to
nonnegative step functions g which are constant on each Bi, i � 1; . . . ; k. We
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thus obtain

g� f �V sup
v1; ...;vkV0

Xk

i�1
uiviP�Bi� ÿ

Xk

i�1
C�vi�P�Bi�

( )

�
Xk

i�1
sup
viV0

fuivi ÿC�vi�gP�Bi� �
Xk

i�1
F�ui�P�Bi� � EP�F � fn�:

By the monotone convergence theorem, limn!y EP�F � fn� � EP�F � f �, and
hence g� f �VEP�F � f �.

Case 2: P�f f < bg� > 0.
Choose an e > 0 such that P�f f U bÿ eg� > 0. For an arbitrary v < 0

consider the step function gv which is constantly equal to v on the set B �
f f U bÿ eg and zero outside B. By (3.1), Cb�v�U bv, and we obtain

g� f �VEP� f � gv� ÿ EP�Cb � gv�V �bÿ e�vP�B� ÿ bvP�B� � ÿevP�B�;

and the last lower bound tends to in®nity when v! ÿy. Hence g� f � �y.
r

The interplay of an optimal solution f � to problem (1.1a)±(1.1d) and
an optimal solution �l�; m�� to problem (3.3a)±(3.3b) (if there exists any) is
illucidated by the following corollary. A Lagrange multiplier description of f �

is thereby obtained, as employed in Kim (1995), Section 2, for the case m �
n � 1, g1 � 1. Recall that 0U b < u � supfuV 0 : F�u� <yg.

Corollary 3.3. As in Theorem 3.2 assume that C satis®es the D2-condition, and
gi; hj A LC�P� for all i � 1; . . . ;m and j � 1; . . . ; n. Assume further that F re-
stricted to the interval �b; u� is di¨erentiable with strictly increasing derivative
j�u�, u A �b; u�, and denote j�u� � limu"u j�u�. If �l�; m�� is an optimal solution
to problem (3.3a)±(3.3b), then the optimal solution f � to problem (1.1a)±(1.1d)
is given by

f ��x� �
b; if d ��x�U j�b�
jÿ1�d ��x��; if j�b� < d ��x� < j�u�,
u; if d ��x�V j�u�

8>><>>: �x A M�;

where d � �Pm
i�1 l�i gi �

Pn
j�1 m�j hj.

Moreover, for all i A f1; . . . ;mg with l�i > 0, we have EP� f � � gi� � ai.

Proof. Clearly, d� � D�m�; l�� <y. By Theorem 3.2, an optimal solution f �

to problem (1.1a)±(1.1d) (which exists by the theorem) satis®es

EP�F � f �� � D�l�; m��:

Hence all the inequalities in the proof of Lemma 3.1 have to be equalities for
the pair f � and �l�; m��, from which we see that
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EP� f � � gi� � ai whenever l�i > 0;

and for P-almost every x A M,

f ��x� � d ��x� ÿCb�d ��x�� � F� f ��x��:

The latter implies, in view of (3.1), that for P-almost every x A M the value
u� � f ��x� attains

max
u A �b;y�

�d ��x�uÿF�u��;

from which the result is easily obtained, observing that j, as the derivative of
a convex function, is continuous. r

Remark. Consider the standard agency model with one-dimensional actions
as in Kim (1995), i.e., m � n � 1, g1 � 1, h1 the score function of the
information system at a0 from (1.4a), b � b1 given by (1.4b), P � Pa0 , and the
set A of possible actions is an interval of the real line (not necessarily
bounded). Consider the optimal solution f � given by Corollary 3.3 (under the
assumptions of that corollary). We have m�V 0, provided that b > 0 (i.e., the
derivative of the disutility function V at a0 is positive which we assume in
the following). To see this, suppose that m� < 0. Then, trivially l�a� m�b <
l�a. By EP�h1� � 0 and by Jensen's inequality we have

EP�Cb � �l� � m�h1��VCb�l��:

We thus obtain D�l�; m�� < D�l�; 0�; contradicting the optimality of �l�; m��.
Now assume that the signals x are real valued (and we choose M � R and

B the Borel sigma ®eld in R), and that the score function h1 is an increasing
function, which is met if the distribution family Pa, a A A, has the monotone
likelihood ratio (MLR) property. Then, by m�V 0, f � is an increasing
function.

Assume further that the distribution family satis®es the convexity of
distribution function (CDF) condition, i.e., the distribution functions Fa of Pa,
a A A, are such that Fa�x� is a convex function of a A A for any ®xed x A R.
This is the same as saying that the distribution family is concave in the usual
stochastic order. Recall that the usual stochastic order relation of probability
distributions on the real line is de®ned by

~QUst Q () ~F�x�VF�x� Ex A R;

where ~Q and Q are any two probability distributions on the real line, and ~F
and F denote their distribution functions, respectively. Also, ~QUst Q holds
true if and only if

E ~Q� f �UEQ� f �

for all increasing real valued functions f on R for which the expectations exist
(cf., e.g., Shaked & Shantikumar (1994), pp. 3±4). Hence, the CDF condition
says that for any a1; a2 A A and any g A �0; 1�,
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gFa1�x� � �1ÿ g�Fa2�x�VFga1��1ÿg�a2�x� Ex A R; i:e:;

gPa1 � �1ÿ g�Pa2Ust Pga1��1ÿg�a2 ;

that is, the mapping a! Pa is concave w.r.t. the stochastic order of proba-
bility distributions. The CDF condition is extremely restrictive, and is not met
by the popular distribution families, as pointed out previously by Jewitt
(1988). Anyway, since the optimal solution f � is an increasing function, the
CDF condition implies that the agent's expected utility EPa

� f �� is a concave
function of a A A, and hence, assuming convexity of the disutility function V,
we conclude that the expected utility

EPa
� f �� ÿ V�a�

is a concave function of a A A. Hence we have obtained as in Rogerson (1985),
that if the information system satis®es the MLR and the CDF conditions,
then the ®rst order approach is valid.

4. Monotonicity of the optimum value w.r.t. the convex order of distributions

Let Q and ~Q be two probability distributions on (the Borel sigma-®eld of )
RN . We say that ~Q is smaller than Q w.r.t. the convex order, abbreviated as

~QUcx Q;

if and only if

E ~Q�C�UEQ�C�

for all real valued convex functions C on RN for which the expectations w.r.t.
~Q and Q exist (cf., e.g., Shaked & Shantikumar (1994), p. 154, Eq. 5.A.4). In
the one-dimensional case N � 1, an equivalent de®nition of ~QUcx Q is that� z

ÿy
~F�u� duU

� z

ÿy
F �u� du for all z A R;

and E ~Q�IR� � EQ�IR� if the expectations exist;

where F and ~F denote the distribution functions of Q and ~Q, respectively, and
IR denotes the identity function on R, i.e., IR�u� � u for all u A R, (cf., e.g.,
Shaked & Shantikumar (1994), p. 57, Theorem 2.A.1). In this case �N � 1�,
the convex order relation ~QUcx Q is also referred to as Q being a mean pre-
serving spread of ~Q (cf. Kim (1995), p. 93, or Rothschild & Stiglitz (1970),
p. 230f.).

We will consider the dependence of the minimum value f� of problem
(1.1a)±(1.1d) on the joint distribution of the input functions g1; . . . ; gm;
h1; . . . ; hn,

Q � �g1; . . . ; gm; h1; . . . ; hn��P�; �4:1�
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which is a probability distribution on Rm�n. Note that the input constants
b; a1; . . . ; am, b1; . . . ; bn are kept ®xed (as well as the function F). We will
restrict to situations when the strong duality f� � d� holds true as it is ensured
by Theorem 3.2. Thus we are led to study the dependence of the optimum
value d� of problem (3.3a)±(3.3b) on the distribution Q from (4.1). In fact, d�

is a function of Q (we will thus write d��Q�), since

d��Q� � supfl ta� m tb ÿ EQ�Cb � ll;m� : l A Rm; lV 0; m A Rng; �4:2a�

where for any given l A Rm and m A Rn we have denoted by ll;m the linear
function on Rm�n given by

ll;m�z� � l tz�1� � m tz�2�;

for all z �
z�1�

z�2�

 !
A Rm�n; where z�1� A Rm; z�2� A Rn:

�4:2b�

Theorem 4.1. Consider two probability spaces �M;B;P� and � ~M; ~B; ~P� with
measurable real valued functions g1; . . . ; gm; h1; . . . ; hn on M and ~g1; . . . ; ~gm;
~h1; . . . ; ~hn on ~M. Let Q be given by (4.1) and let ~Q be de®ned analogously
(as the joint distribution of the functions ~gi;

~hj, 1U i Um; 1U j U n, under ~P).
Assume that C is ®nite, and gi; hj A LC�P� for all i � 1; . . . ;m, j � 1; . . . ; n. If
~QUcx Q, then ~gi;

~hj A LC� ~P� for all i � 1; . . . ;m, j � 1; . . . ; n, and

d�� ~Q�V d��Q�:

Proof. For any given l A Rm and m A Rn, consider the linear function ll;m on
Rm�n given by (4.2b). Since C � jll;mj is a real valued nonnegative convex

function on Rm�n, the assumption ~QUcx Q implies

E ~P�C � jl t ~G � m t ~Hj� � E ~Q�C � jll;mj�

UEQ�C � jll;mj� � EP�C � jl tG � m tHj�;

where we have denoted G � �g1; . . . ; gm� t, H � �h1; . . . ; hn� t, ~G � �~g1; . . . ;
~gm� t, and ~H � �~h1; . . . ; ~hn� t. By choosing suitable scalar multiples of unit
vectors for l and m, we see that ~gi;

~hj A LC� ~P� for all i � 1; . . . ;m, j � 1; . . . ; n.
Similarly, for any given l and m, the function Cb � ll;m is a real valued convex

function on Rm�n, and thus ~QUcx Q implies

E ~Q�Cb � ll;m�UEQ�Cb � ll;m�:

From (4.2a) and its analogue for d�� ~Q� we conclude that d�� ~Q�V d��Q�. r

In Kim (1995), Proposition 1, the case m � n � 1 with g1 � ~g1 � 1 was
considered, and the result f��Q�U f�� ~Q� was derived (in our notation).
However, the proof is incomplete since the existence of Lagrange multipliers is
tacitely assumed. We note that if m � 1 and g1 � ~g1 � 1, then the condition
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~QUcx Q is equivalent to

�~h1; . . . ; ~hn�� ~P�Ucx �h1; . . . ; hn��P�;

as it is easily seen.

5. Blackwell su½ciency and convex order of score function distributions

Let there be given two `information systems' (or `statistical models'),

�M;B; �Pa�a AA� and � ~M; ~B; � ~Pa�a AA�;

where Pa and ~Pa are probability distributions on the measurable spaces

�M;B� and � ~M; ~B�, respectively, and A is a nonempty subset of Rn. Consider
a ®xed a0 in the interior of A, and assume that the information systems are
smooth at a0 in the following sense. For any real valued, measurable,
bounded functions f and ~f on M and ~M, respectively, the expectations EPa

� f �
and E ~Pa

� ~f � as functions of a are di¨erentiable at a0, and

`aEPa
� f �ja�a0 � EP

a0
� f � Sa0�; `aE ~Pa

� ~f �ja�a0 � E ~P
a0
� ~f � ~Sa0�; �5:1�

where Sa0 and ~Sa0 are ®xed Pa0 - and ~Pa0 -integrable Rn-valued functions on M
amd ~M, respectively (the score functions of the information systems at a0). In

particular, choosing f � 1 and ~f � 1, (5.1) implies that the score functions Sa0

and ~Sa0 have expectations zero w.r.t. Pa0 and ~Pa0 , respectively. Usually, the
score functions are given by

Sa0�x� � 1

pa0�x�`a pa�x�ja�a0 ; x A M;

~Sa0�~x� � 1

~pa0�~x�`a~pa�~x�ja�a0 ; ~x A ~M;

where pa and ~pa are densities of Pa and ~Pa, for all a A A, w.r.t. some ®xed
sigma-®nite measures L on �M;B� and ~L on � ~M; ~B�, respectively.

The information system �M;B; �Pa�a AA� is said to be Blackwell su½cient

for the information system � ~M; ~B; � ~Pa�a AA�, if and only if there exists a tran-
sition kernel (also called a stochastic kernel or a Markov kernel) K � K�x; ~B�,
x A M, ~B A ~B, such that

~Pa � PaK for all a A A; i:e:;

~Pa� ~B� � EPa
�K� � ; ~B�� for all ~B A ~B and a A A:

�5:2�

Note that by de®nition, a transition kernel K has the properties that for any
®xed x A M the function ~B! K�x; ~B� is a probability distribution on � ~M; ~B�,
and for any ®xed ~B A ~B the function x! K�x; ~B� is a measurable function on
M (with values in the interval �0; 1�).
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Theorem 5.1. Let the information system �M;B; �Pa�a AA� be Blackwell su½-
cient for the information system � ~M; ~B; � ~Pa�a AA�. Assume the smoothness
condition (5.1) and consider the distributions of the score functions at a0 under
Pa0 and ~Pa0 , respectively, i.e.,

Qa0 � Sa0�Pa0� and ~Qa0 � ~Sa0� ~Pa0�:

Then: ~Qa0 Ucx Qa0 .

Proof. Consider the probability space �M �;B�;P��, where M � �M � ~M (the

cartesian product), B� � Bn ~B (the product sigma-®eld), and

P� � Pa0 nK ; i:e:

P��B�� �
�

M

K�x;B�2 �x�� dPa0�x�; B� A B�;

where B�2 �x� � f~x A ~M : �x; ~x� A B�g Ex A M;

�5:3�

with a transition kernel K according to (5.2). From (5.3) and (5.2) it is easily
seen that the marginal distributions of P� are Pa0 and ~Pa0 . We consider the
score functions as functions on M �, i.e., we consider

S �a0�x; ~x� � Sa0�x�; ~S �a0�x; ~x� � ~Sa0�~x�; E�x; ~x� A M �:

Obviously, we have

S �a0�P�� � Qa0 and ~S �a0�P�� � ~Qa0 :

Thus, by RuÈschendorf (1981), Theorem 6, part (c), (or by Shaked & Shanti-
kumar (1994), Theorem 5.A.1, p. 154), it su½ces to prove that

EP� �S �a0 j ~S �a0� � ~S �a0 P�-a:s:: �5:4�

To this end we ®rstly note that (5.3) extends to any P�-integrable function f �

on M �,

EP� � f �� �
�

M

�
~M

f ��x; � � dK�x; � �
� �

dPa0�x�; �5:5�

where f ��x; � � denotes the function ~x! f ��x; ~x�, and K�x; � � denotes the
probability distribution ~B! K�x; ~B�, for any ®xed x A M. By de®nition, (5.4)
means that

EP� �S �a0 � �1R � ~S �a0�� � EP � � ~S �a0 � �1R � ~S �a0�; �

for all Borel subsets R of Rn; �5:6�
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where 1R denotes the function on Rn being one on R and zero outside R. By
(5.5), the left hand side of (5.6) is equal to

EP
a0
�Sa0 � K� � ; ~B��; where ~B � f~x A ~M : ~Sa0�~x� A Rg:

Since the second marginal of P� is given by ~Pa0 , the right hand side of (5.6) is
equal to

E ~P
a0
� ~Sa0 � �1R � ~Sa0�� � E ~P

a0
� ~Sa0 � 1 ~B�;

with ~B as de®ned above (for a given Borel subset R). Hence it su½ces to show
that

EP
a0
�Sa0 � K� � ; ~B�� � E ~P

a0
� ~Sa0 � 1 ~B� for all ~B A ~B: �5:7�

Now, using the smoothness assumption (5.1) and the Blackwell condition
(5.2), we conclude

EP
a0
�Sa0 � K� � ; ~B�� � `aEPa

�K� � ; ~B��ja�a0

� `a
~Pa� ~B�ja�a0

� `aE ~Pa
�1 ~B�ja�a0

� E ~P
a0
�1 ~B � ~Sa0�;

and thus (5.7). r

In Budde (1997), the problem was studied of implementing a certain action a
as a symmetric Nash-equilibrium in a multi-agent setting of moral hazard by a
simple rank-order tournament at minimal cost. Adapting a model used by
Green & Stokey (1983), the impact of di¨erent performance measures on total
payments to the agents was analyzed. If only the best performing agent
receives a bonus, the real valued observations x1; . . . ; xn on the agents' actions
are comprised to xn:n � maxi�1; ...;n xi. Under the assumption that all agents
choose the same action a A AHR and the observations x1; . . . ; xn are inde-
pendent and identically distributed according to Pa, the distribution of xn:n is
given by

Pa;n:n �Maxn�Pnn
a �;

where Maxn denotes the function Maxn�x1; . . . ; xn� � xn:n on Rn, and Pnn
a is

the n-fold product distribution of Pa. The comparison of the e½ciencies of two
competing information systems

�R;B; �Pa�a AA� and �R;B; � ~Pa�a AA�; �5:8�

(where B denotes the Borel sigma-®eld in R) led under the ®rst order
approach to comparing
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EP
a0 ; n:n
�Sa0� and E ~P

a0 ; n:n
� ~Sa0�;

where Sa0 and ~Sa0 denote the score functions at a0 of the information systems
(5.8). It was conjectured that if the Blackwell su½ciency (5.2) holds for the
information systems (5.8) and the score functions Sa0 and ~Sa0 (satisfying (5.1))
are increasing functions on some sets of Pa0 - and ~Pa0 -probability one,
respectively, then

E ~P
a0 ; n:n
� ~Sa0�UEP

a0 ; n:n
�Sa0�; �5:9�

(cf. Budde (1997), Conjecture 1). The following result settles that conjecture
and moreover extends inequality (5.9) to

E ~P
a0 ;n:n
�C � ~Sa0�UEP

a0 ; n:n
�C � Sa0�; �5:10�

for any increasing convex real valued function C on R for which the expect-
ations in (5.10) exist. Note that (5.10) can be stated in terms of the
distributions of Sa0 and ~Sa0 under Pa0;n:n and ~Pa0;n:n, respectively, as

~Sa0� ~Pa0;n:n�U icxSa0�Pa0;n:n�; �5:11�

where Uicx abbreviates the increasing convex order of probability distributions
on R. That is, for any two probability distributions Q and ~Q on R, we write
~QUicx Q, if and only if E ~Q�C�UEQ�C� for all increasing convex real
valued functions C on R for which the expectations exist (cf., e.g., Shaked &
Shantikumar (1994), p. 83). In fact, (5.11) (or, equivalently, (5.10)) is a

consequence from ~Sa0� ~Pa0�UcxSa0�Pa0� (implied by Theorem 5.1) and the

monotonicity of Sa0 and ~Sa0 , as the following lemma shows.

Lemma 5.2. Let P and ~P be two probability distributions on the Borel sigma-
®eld of R, and let S and ~S be two real valued measurable functions on R, such
that S is increasing on some set of P-probability one, ~S is increasing on some set
of ~P-probability one, and ~S� ~P�Ucx S�P�. Denote

Pn:n �Maxn�Pnn� and ~Pn:n �Maxn� ~Pnn�;

Then:

~S� ~Pn:n�Uicx S�Pn:n�:

Proof. We abbreviate Q � S�P� and ~Q � ~S� ~P�. The assumption ~QUcx Q
carries over to the n-fold product distributions (cf., e.g., Shaked & Shantiku-
mar (1994), p. 155, Theorem 5.A.3), i.e.,

~Qn n Ucx Qnn:

Let C be any increasing convex real valued function on R. Then the compo-
sition C �Maxn is a convex real valued function on Rn, and hence (provided
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that the following expectations exist),

E ~Qnn�C �Maxn�UEQnn�C �Maxn�: �5:12a�

Now, Qnn and ~Qnn are the joint distributions of S�x1�; . . . ;S�xn� and of
~S�x1�; . . . ; ~S�xn� under Pnn and ~Pnn, respectively. Thus, (5.12a) is the same as

E ~Pnn�C � ~Sn:n�UEPn n�C � Sn:n�; �5:12b�

where we have denoted by Sn:n and ~Sn:n the functions on Rn de®ned by

Sn:n�x1; . . . ; xn� � max
i�1;...;n

S�xi�; ~Sn:n�x1; . . . ; xn� � max
i�1;...;n

~S�xi�:

By the monotonicity of S and ~S on some sets of P- and ~P-probability one, we
have

Sn:n � S �Maxn Pnn-a:s:; ~Sn:n � ~S �Maxn
~Pnn-a:s::

Thus,

Sn:n�Pn n� � S�Pn:n�; ~Sn:n�ePn n� � ~S�ePn:n�;

and (5.12b) rewrites as

E ~S� ~Pn:n��C�UES�Pn:n��C�: �5:12c�

The proof is completed by observing that the expectations in (5.12c) exist if
and only if the expectations in (5.12a) exist. r

6. Conclusions

The contribution of this paper is twofold. On the one hand, it embeds the
principal's optimization problem in an agency model with imperfect mon-
itoring into a more general cost minimization problem. Thereby the mere
structure of the problem is emphasized. It becomes obvious that the ®ndings
could be applied to a wider range of situations where a decision maker has to
determine a particular action choice depending on some observed signal.

On the other hand, regarding the standard agency setting, the paper
generalizes a previous result by Kim (1995) concerning the ranking of infor-
mation systems as monitoring devices. At this, a di¨erent characterization of
the solution to the principal's optimization problem is given. As an immediate
consequence, the relation of the minimum cost value and the applied infor-
mation system becomes visible from the dual optimization problem. Further-
more, the generalized approach enables to make prediction about the e½-
ciency of information systems even if one has to account for more constraints
than has been done in previous studies. An obvious application of
this extension is the case where the agent's action is multi-dimensional. So
far, such multi-task agency models mainly have been analyzed in a speci®c
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framework where signals are normally distributed and the agent's preferences
are described by an exponential utility function (e.g. HolmstroÈm & Milgrom
(1991) and Feltham & Xie (1994)). Under certain assumptions about the tim-
ing of the agent's provision of e¨ort, the optimal compensation s�x� is linear
and closed form solutions to the principal's problem can be obtained (cf.
HolmstroÈm & Milgrom (1987)). In contrast, the model presented in this paper
allows for predictions on the ranking of information systems in a more general
multi-task agency setting, provided the ®rst order approach is valid. Limi-
tations to these predictions can arise from the dimension of the performance
measure. If an information system provides less linearly independent signals
than the agent chooses actions, the feasible region of the cost minimization
problem presented in this paper is likely to be empty. Therefore, di¨erent in-
formation systems may not be comparable in terms of compensation costs
because they are not capable of inducing the same actions. However, global
criteria like Blackwell su½ciency are not a¨ected by this, since they hold for
all relevant actions.

Acknowledgement: The authors wish to thank Ludger RuÈschendorf for giving valuable hints to
references.
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