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a b s t r a c t

The problem of designing tournament contracts under limited liability and alternative per-
formance measures is considered. Under risk neutrality, only the best-performing agent
receives an extra premium if the liability constraint becomes binding. Under risk aver-
sion, more than one prize is awarded. In both situations, performance measures can be
ranked if their likelihood ratio distribution functions differ by a mean-preserving spread.
The latter result is applied to questions of contest design and more general forms of relative
performance payment.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Tournaments and contests are widely used for compensation and incentive purposes.1 To this end, planners apply a variety
of performance indicators. In some cases, the performance measure is identical to the organizer’s objective, in others, there
seems to be only an indirect relation to what is sought to be procured by the tournament. In all cases, however, the incentive
effects of potential performance measures are at least implicitly taken into account.

From an economic perspective, incentive effects of performance measurement have been extensively discussed within
a standard agency framework. Starting with the pioneering work of Holmström (1979), numerous papers have analyzed
questions of information efficiency under the assumption of optimal contracts in a moral hazard setting. In doing so, they
established several criteria for ranking alternative information systems (see, for example, Gjesdal, 1982; Holmström, 1982;
Grossman and Hart, 1983; Amershi and Hughes, 1989; Kim, 1995, or Demougin and Fluet, 2001).

Very little work, however, has so far been carried out on information efficiency in a tournament setting in which contracts
are exogenously restricted to the order of the agents’ performance. Under such a restriction, the criteria derived in the standard
setting are not naturally valid. As Holmström (1982, p. 86) states, “if, for administrative reasons, one has restricted attention
a priori to a limited class of contracts (e.g., linear price functions or instruction-like step functions), then informativeness
may not be sufficient for improvements within this class”. In general, the same objection applies to the other criteria. Due to
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1 For example, contests are a predominant instrument in salesforce compensation. Empirical studies found that 75–90% of surveyed firms used sales
contests for remuneration of their salespeople (Kalra and Shi, 2001).
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the widespread use of tournaments, it is therefore worthwhile to reason whether the criteria derived in the standard agency
setting also apply under the specific restrictions given by a tournament contract.

The classical agency literature discusses the use of information in tournaments mainly with regard to optimal contracts.
Adapting his results on sufficient statistics from the standard agency setting, Holmström (1982, Proposition 7) proves that rel-
ative performance evaluation will be valuable if and only if the agents’ outputs are stochastically dependent. Similarly, Green
and Stokey (1983, Proposition 1) show in a more specific setting that individual contracts dominate tournaments whenever
the agents’ outputs admit only idiosyncratic risk. Conversely, if there is common uncertainty, tournaments will dominate
individual contracts when the common shock becomes diffuse (Green and Stokey, 1983, Proposition 2y). Mookherjee (1984,
Proposition 4) applies Holmström’s (1979) informativeness result to show that a tournament contract will be optimal if an
agent’s rank in output is statistically sufficient for all available information with respect to his action choice.

In all of these results, informativeness criteria are applied to distinguish between different types of contracts. I return to
this important question when applying my general results. First, however, I look for criteria to rank information systems in a
setting in which contracts are exogenously restricted to rank orders. To distinguish the analysis from the previous research on
optimal contracts, I deliberately confine myself to analyzing situations in which the agents’ performances are stochastically
independent. According to Holmström’s (1982) result mentioned above, a tournament contract will not be optimal in this
setting, and application of the general informativeness results will thus not be valid. I show that, nonetheless, the main
criteria also apply to the tournament setting. Thereafter, I use these criteria to distinguish between different types of relative
performance evaluation.

The remainder of this paper is organized as follows. In Section 2, the analytical framework is presented. Section 3 describes
the main characteristics of an information system with respect to the principal’s optimization problem. Sections 4 and 5
present results on the structure of optimal tournaments and information efficiency as well as an application to the comparison
of alternative contract types. Concluding remarks are given in Section 6.

2. Model

Consider a single-period agency setting in which a risk-neutral principal hires a number of agents i = 1, . . . , n (n ≥ 2)
to perform identical tasks. The agents who decide to participate provide a productive input ai ∈A = [a, ā] ⊂ R not observed
by the principal. The resulting outputs xi ∈X ⊆ R that accrue to the principal are independent, identically distributed (i.i.d.)
random variables. Their probability distribution function F(xi; ai) is parameterized by the agent’s action choice. Increases in
ai are assumed to shift the distribution function to the right in the sense of first-order stochastic dominance. Thus, ceteris
paribus, the principal will prefer higher effort levels.

All agents have identical preferences. These can be described by utility functions that are additively separable in monetary
income wi and effort ai, such as:

Ui(wi, ai) = u(wi) − d(ai),

where u(wi) denotes the agent’s utility of monetary income and d(ai) denotes the agent’s disutility of action ai. I assume that
the agents are effort-averse and weakly risk-averse,2 i.e. u′ > 0, u′′ ≤ 0, d′ > 0 and d′′ > 0.

Before hiring the agents, the principal chooses an information system k from a set K of feasible information systems.
Information system k consists of signals yk1, . . . , y

k
n ∈Yk = [yk, ȳk] ⊆ R that become observable to the principal and the agents

without cost after the action choices have been taken. The signals yk
i

are i.i.d. random variables with distribution function
Gk(yk

i
; ai) and probability density function gk(yk

i
; ai), which depend on the effort of the respective agent. Gk is assumed to

be twice differentiable in ai, and its support is independent of ai. Signal yk
i

can be regarded as a performance measure for
agent i. In the simplest case, performance is measured by output (yi = xi). More generally, yk

i
may be an index of all available

information on the agent’s action. I assume that higher effort can be inferred from a higher performance score, i.e. the
monotone likelihood ratio property (MLRP) is assumed to hold for any information service k.

Given the information system, the principal designs an ordinal payment scheme that determines the compensation for
agent i according to his rank ri in the order of the observed signals. Let wj denote the compensation stipulated for the
jth-lowest rank j within the order of performance measures. In the case of multiple ranking agents, the respective prize is
awarded via randomization.3 Under these assumptions, the expected utility for agent i from action choices a = (a1, . . . , an)
can be written as:

E[Ui(wi, ai)|a] =
n∑
j=1

u(wj)pkij(a) − d(ai),

2 Results are presented separately for risk-neutral and strictly risk-averse agents.
3 This will occur with zero probability because the density functions gk have no mass points.
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where pk
ij
(a) = Prob{ri = j|(a1, . . . , an)} denotes the probability that agent i will achieve rank j in the tournament based on

yk
i
.4 The principal wants all agents to participate. Hence, their expected utilities have to reach a certain reservation level

UR, which is assumed to be identical for all agents. Furthermore, I assume that agents are of restricted wealth, and thus
compensation has to exceed a liability level wmin for each agent.

3. The principal’s problem and properties of information systems

The principal seeks to maximize his expected profit net of wage payments. His problem is to select compensations
w = (w1, . . . ,wn) from a set Wn ⊂ Rn of feasible compensations such that the agents choose actions âi that maximize his
expected net profit.

Due to the principal’s risk neutrality, this problem can be split up, first considering the least-cost way of achieving a given
action profile and then turning to the question of which actions to implement. For my purpose of comparing performance
measures, the first part is the most interesting. Therefore, similar to Kim’s (1995) analysis of the standard agency model, I
focus on the question of which information system k implements a particular effort profile a at the lowest cost. In doing so, I
restrict the analysis to symmetric Nash equilibria of the tournament game. Consequently, all agents choose the same action
â, and each agent’s probability of winning is 1/n. The principal’s cost minimization problem for the symmetric equilibrium
â = (â, . . . , â), given information systems k, is given by:

min
w1,...,wn

n∑
j=1

wj (1)

such that
1
n

n∑
j=1

u(wj) − d(â) ≥ UR (2)

â ∈ argmax
ai

⎧⎨
⎩

n∑
j=1

u(wj)pkij(ai, â−i) − d(ai)

⎫⎬
⎭ (3)

wj ≥ wmin ∀j. (4)

The participation constraint (2) guarantees that all agents accept the contract. The Nash-incentive constraint (3) ensures
that, given his opponents equilibrium strategies â−i, the desired action ai is in the best interest of agent i. Finally, (4) accounts
for the agents’ limited liability.

In this optimization problem, information system k is characterized by a vector pk
i

= (pk
i1, . . . , p

k
in

) of ranking probabilities.
To compare information systems with regard to their cost of inducing a certain action a, I am interested in properties of these
probabilities, which can be written in more detail as5:

pkij(ai, â−i) = 1
n

∫
Yk

gk(y; ai)
gk(y; â)

gkj:n(y; â) dy, (5)

where gk
j:n denotes the density of the (j:n)-order statistic under distributionGk. For ai = â, the integral in (5) is 1, and pk

ij
= 1/n.

Differing from â, the agent varies his ranking probabilities. The way in which these changes work at â mainly determines
the incentive effects of information system k. Similar to the standard agency setting, further insight into the quality of a
performance measure can be gained under the first-order approach. As in the standard model, it is valid under the additional
assumption that Gk(yk; ai) is convex in a (convexity of the distribution function condition, CDFC).6 The incentive constraint
(3) can then be replaced by a first-order condition

n∑
j=1

u(wj)
∂

∂ai
pkij(âi, â−i) − d′(â) = 0 (6)

governed by the marginal probabilities

∂

∂ai
pkij(âi, â−i) = 1

n

∫
Yk

gka (y; â)
gk(y; â)

gkj:n(y; â) dy, (7)

where gka denotes the partial derivative of gk with respect to a. The integral in (7) is the expected value of the score function
ga/g for the (j:n)-order statistic of performance scores. By MLRP, this function, which for simplicity is often also referred

4 According to this definition, rank n denotes the highest outcome.
5 See Green and Stokey, 1983, p. 355.
6 A proof is in Appendix B.
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to as the likelihood ratio, is increasing in yk (see Milgrom, 1981). Therefore, the agents’ action choices â in the symmetric
equilibrium are determined by:

1
n

n∑
j=1

u(wj)E[lrk,â
j:n ] = d′(â), (8)

where lrk,â
j:n denotes the (j:n)-order statistic of likelihood ratios derived from gk at point â. Note that E[lrk,â

j−1:n]< E[lrk,â
j:n ] by

MLRP and
∑n

j=1E[lrk,â
j:n ] = nE[lrk,â] = 0 by the assumption of non-moving supports.7 Therefore, the incentive effects of some

prizes for lower ranks will be negative, whereas those of the prizes for higher ranks will be positive.
In the following sections, I exploit further properties of moments and distributions of order statistics to compare different

information services. Section 4 derives results for the risk-neutral agency, and Section 5 presents the findings for risk-averse
agents. Both sections contain applications to questions of contest design and more general forms of relative performance
payment.

4. Risk-neutral agents

4.1. Optimal reward structure

If the agents are risk-neutral, the principal’s problem under the first-order approach simplifies to:

min
w1,...,wn

n∑
j=1

wj (9)

such that
1
n

n∑
j=1

wj − d(a) ≥ UR (10)

1
n

n∑
j=1

wjE[lrk,â
j:n ] = d′(a) (11)

wj ≥ wmin ∀j. (12)

Similar to the analysis of Lazear and Rosen (1981) of a tournament with two agents, the first-best solution can be achieved
under any informative performance measure, as long as the liability constraints (12) are not binding. Starting from equal
prizes for all ranks, the principal just has to increase the prize differentialswj −wj−1 for arbitrary ranks j with positive value
of E[lrk,â

j:n ] until the Nash-incentive constraints (11) are fulfilled. By adjustment of w1, the participation constraint can be
fulfilled with equality. Implementation is without additional cost because of the agents’ risk neutrality. The resulting total
compensation cost is n(d(â) + UR).

Under limited liability, however, this procedure is generally not feasible. For low levels of UR and E[lrk,â
j:n ], the liability

constraints will become binding in the optimal solution. As a consequence, it will matter to which ranks the prize differentials
are allocated. Due to the agents’ risk neutrality and the MLRP, however, the optimal prize structure is apparently simple:

Proposition 1. If the agents’ liability constraint is binding under information system k, the cost-minimizing tournament awards
a prize only to the best-performing agent.

Proof. Suppose the claim does not hold. Let w = (w1, . . . ,wn) denote the respective compensation schedule, withwj ≥ wmin

for all j andwj > wmin for at least one j∈ {1, . . . , n− 1}. I show that this contract can be improved by one of the type described
in the proposition.

To that purpose, consider the wage schedule v′ = (v1, . . . , vn), with

vj = wmin for j = 1, . . . , n− 1

and

vn = wn +
n−1∑
j=1

(wj −wmin)
E[lrk,â

j:n ]

E[lrk,ân:n]
.

7 For the relation of order statistics, see Arnold et al. (1992, p. 110).
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According to (11), the incentive effects of v are identical to those of w:

n∑
j=1

vjE[lrk,â
j:n ] =

n−1∑
j=1

wminE[lrk,â
j:n ] + E[lrk,ân:n]

⎡
⎣wn +

n−1∑
j=1

(wj −wmin)
E[lrk,â

j:n ]

E[lrk,ân:n]

⎤
⎦ =

n∑
j=1

wjE[lrk,â
j:n ].

The total wage payment, however, is lower under v:

n∑
j=1

vj = (n− 1)wmin +wn +
n−1∑
j=1

(wj −wmin)
E[lrk,â

j:n ]

E[lrk,ân:n]
< (n− 1)wmin +wn +

n−1∑
j=1

(wj −wmin) =
n∑
j=1

wj.

The inequality follows from the fact that E[lrk,â
j:n ]< E[lrk,ân:n] for all j < n by MLRP. �

Essentially, the proof of Proposition 1 shows that the compensation cost can be lowered by shifting compensation from
the lower ranks to the highest rank of the tournament. The economics of the result are similar to those in the standard
agency setting as derived by Demougin and Fluet (1998). If the agents are risk-neutral, income smoothing only matters with
regard to the minimum wage. Incentives, however, are provided at the least cost by rewarding only the result for which the
probability is most sensitive to changes in an agent’s effort.8 In the contest setting, due to the MLRP, this is the top rank rn:n.

The proposition also complies with results of Moldovanu and Sela (2001), who find that in a symmetric equilibrium of
privately informed contestants, a total premium is most effectively allocated to only the winner of the contest.9 Similar to
the moral hazard setting analyzed here, the result is driven by the fact that a single prize provides the strongest incentive for
risk-neutral contestants. However, since under private pre-decision information, different types of agents choose different
effort levels in equilibrium, the result of Moldovanu and Sela requires linear or concave cost functions for which variations
in effort do not have cost-increasing effects. In the present setting, convexity of the cost function is not an issue because all
agents choose identical actions.

4.2. Information efficiency

Given the structure of the optimal contract, a comparison of alternative information systems is straightforward. Whenever
one of the liability constraints is binding, the optimal reward scheme takes the form w = (wmin, . . . ,wmin,wn). In this scheme,
wn has to be chosen to fulfil the agents’ Nash-incentive compatibility constraint (11), which takes the form:

1
n

(wn −wmin)E[lrk,ân:n] = d′(â). (13)

According to (13), the necessary wage spread to induce action â is given by:

(wn −wmin) = nd′(â)

E[lrk,ân:n]
.

As a consequence, the total compensation cost under information system k in a symmetric equilibrium of n contestants with
action choices â can be written as:

Ckn(â) = n · max

{
d(â) + UR,wmin + d′(â)

E[lrk,ân:n]

}
. (14)

By inspection of (14), it is obvious that the cost impact of an information system is solely determined by E[lrk,an:n]:

Proposition 2. In the symmetric equilibrium â of the tournament under information system k, the total cost is lower for higher
E[lrk,ân:n].

Proof. The proof is obvious from (14). Ckn is decreasing in E[lrk,ân:n]. �

Given the prominent role of the likelihood ratio in (14), Proposition 2, when related to the literature on informativeness
criteria, provides a direct reference to Kim’s (1995) criterion of a mean-preserving spread of likelihood ratio distribution
functions. Kim proves that in a standard agency setting with one risk-averse agent, an action â can be induced under a signal
yl at a lower cost than under another signal ym if the distribution function of the likelihood ratio gla/g

l under signal yl differs
from that under signal ym by a mean-preserving spread (MPS).10 Since, due to the assumption of a non-moving support, the

8 Related results for signals with a continuous distribution are derived by Innes (1990), Park (1995) and Kim (1997). These papers, however, mainly focus
on implementation of the first-best solution, whereas Demougin and Fluet (1998) analyze the structure of the second-best contract. All cited papers differ
from the present analysis by considering optimal contracts, whereas Proposition 1 proves that the property applies to a tournament model.

9 The same result is derived by Glazer and Hassin (1988) in a related framework, but under more restrictive assumptions.
10 For the definition of a mean-preserving spread, see Rothschild and Stiglitz (1970).
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expected value of the likelihood ratio is zero for all information systems, the MPS relation reduces to second-order stochastic
dominance. To exploit this property, Kim essentially shows that the compensation cost is a concave function of likelihood
ratios, the expectation of which is lower under second-order stochastic dominance.11 A related convexity argument can be
applied here to establish the MPS criterion as a device to rank information systems in the tournament setting.

Proposition 3. In the symmetric equilibrium â of the tournament, total compensation cost under information system yl is lower
than that under information system ym if the distribution function of the likelihood ratio lrl,â = gla/gl under signal yl differs from
that under signal ym by a mean-preserving spread.

Proof. 12 Let Lk,â denote the distribution function of the likelihood ratio lrk,â, k = l,m. If Ll,â differs from Lm,â by a MPS, it
is said to be larger than Lm,â in the convex order, which means that

ELl,â [�] ≥ ELm,â [�]

for any convex function � : R→ R, provided the expectation exists.13 The same holds for the joint distributions

Ml,â(z1, . . . , zn) =
n∏
i=1

Ll,â(zi) and Mm,â(z1, . . . , zn) =
n∏
i=1

Lm,â(zi)

of i.i.d. random variables zi ∈R, which are distributed according to Lla and Lma , respectively. The expectation of any convex
function : Rn → R is higher under distributionMl,â (this follows from Theorem 5.A.3. in Shaked and Shanthikumar (1994)).
The relation also applies to the convex function  (z1, . . . , zn) = max

i=1,...,n
zi. Thus,

E[lrl,ân:n] = EMl,â { max
i=1,...,n

zi} ≥ EMm,â { max
i=1,...,n

zi} = E[lrm,ân:n ], (15)

which establishes the proposed relation due to Proposition 2. �

The proof of Proposition 3 makes use of the fact that the well-known consequences of second-order stochastic domi-
nance between univariate distributions extend to the product distribution of i.i.d. random variables. By the convexity of the
maximum operator, it is thus obvious that an MPS relation yields a unique order of highest-order statistics. Therefore, as in
the standard agency setting, information systems can be compared by the distributions of their likelihood ratios. Similarly,
the MPS property only provides a local criterion for a specific action â. To make general predictions for arbitrary levels of a,
the relation must hold for all a∈ (a, ā]. This, again, has been proven by Kim (1995, Proposition 4) to follow from the criterion
of Blackwell informativeness (the opposite is not true). From this, the following conclusion is obvious.

Corollary 1. In any symmetric equilibrium of the tournament, the total compensation cost under information system yl is lower
than that under information system ym if yl is Blackwell-sufficient for ym with respect to a.

Proof. The claim follows from Proposition 3 by the relation of Blackwell sufficiency and the MPS criterion. �

Although a greater number of information systems will be comparable by the MPS criterion, Blackwell sufficiency is useful
for at least two reasons. First, it is a global criterion that does not focus on a particular effort level â. Therefore, information
systems can be compared by the criterion without specifying which action is sought to be induced. Second, and even more
importantly for the application, the criterion refers to the signal distributions instead of the distributions of likelihood ratios.
Usually, this will make its use much easier. In the following subsection, I apply Corollary 1 to rank different types of relative
performance payment.

4.3. Application

4.3.1. Alternative forms of relative performance evaluation
Perhaps the most important property of tournament contracts is the fact that the total compensation paid to all n agents

is constant. Malcomson (1984) uses this property to propose tournaments as a general device to overcome the unverifiability
problem, i.e. tournaments can be used for compensation even if the applied performance measures are not verifiable and the
principal could misreport these measures in order to cut wages. Obviously, this is impossible under a tournament contract
as long as contracts and payments are observable.

Tournaments, however, are not the only compensation form to fulfil the desired property of a constant total wage payment.
In particular, Japanese firms make extensive use of a special kind of relative performance payment in which a constant bonus

11 The result can also be carried forward to a standard agency model with a risk-neutral agent who is of limited wealth.
12 A related proof for risk-averse agents can be found in Budde and Gaffke (1999).
13 See Shaked and Shanthikumar (1994, p. 55), for a definition of convex orders, and Scarsini (1994, p. 357), for the (explicit) relation of convex orders and

mean-preserving spreads.
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W is distributed to workers of a group according to their relative outputs. Agent i’s wage in accordance with outputs x1, . . . , xn
is given by

wi = w0 + xi
n∑
j=1

xj

W. (16)

Due to its similarity to a tournament, this type of compensation has also been referred to as a J-type tournament after its
Japanese origin as opposed to U-type tournaments of the form described in Section 2, which are predominantly applied in
the US (Kräkel, 2003).

By inspection of (16), a similarity to the tournament type derived in Proposition 1 becomes obvious: (16) has the same
structure as the expected wage payment under a winner-takes-all tournament, where xi/

∑n
j=1xj is agent i’s winning prob-

ability. With regard to the general question of compensation cost, the two types of compensation contracts can therefore be
compared by application of the criteria derived in the previous section:

Proposition 4. In the symmetric equilibrium â of the tournament game, total compensation cost in a U-type tournament is lower
than that in a J-type tournament.

Proof. Consider performance measures yi ∈ [−∞,0] with cumulative distribution function G(yi|xi) = exp(xiyi) and proba-
bility density function g(yi|xi) = xi exp(xiyi) parameterized by the output xi. Suppose that the signals yi are used in a U-type
tournament of the form derived in Proposition 1, and only the best-performing agent receives a prize. Given x = (x1, . . . , xn),
agent i’s probability of winning this prize is

Prob{yi = max {yj}j=1,...,n|x} =
∫ 0

−∞
g(y|xi)

n∏
j = 1
j /= i

G(y|xj) dy =
∫ 0

−∞
xi exp(xiy)

n∏
j = 1
j /= i

exp(xjy) dy

=
∫ 0

−∞
xi exp

(
y

n∑
i=1

xj

)
dy = xi

n∑
j=1

xj

.

Taking into account the stochastic nature of the outputs xj , agent j’s (ex ante) expected utility is given by

EUi =
∫
X

⎡
⎢⎢⎢⎢⎣wmin + xi

n∑
j=1

xj

(wn −wmin)

⎤
⎥⎥⎥⎥⎦

n∏
j=1

f (xj; aj) dx1 . . .dxn − d(ai).

This is identical to his utility in a J-type tournament in which the shared bonus W is equal to the winner’s bonuswn −wmin and
the base salaryw0 is given bywmin. Therefore, a comparison of compensation cost in a U-type to that in a J-type tournament
is equivalent to a comparison of the costs in U-type tournaments under performance measures xi and yi.

Given the previous results, however, the latter is straightforward. Since yi depends on ai only via xi, its probability density
function, given ai, can be written as

g(yi|ai) =
∫
X

g(yi|xi)f (xi|ai) dxi.

Since the function g(yi|xi) meets the requirements of a Markov kernel, xi is Blackwell sufficient for yi. From this, the claim
immediately follows by Corollary 1. �

The proof of Proposition 4 makes use of the fact that the bonus portion in (16) is identical to a contest success function.
This contest success function, in turn, is known in a two-player contest to be identical to the winning probability under
exponentially distributed outputs (see Hirshleifer and Riley, 1992, p. 380). The proof generalizes this property to an n-player
tournament and shows that risk-neutral agents assess a J-type tournament equal to a U-type tournament with an additional
randomization based on outputs. This randomization, however, weakens the incentives of the contest, leading to a higher
compensation cost.

4.3.2. Contest design
Moldovanu and Sela (2006) analyze the question of whether a contest should be split into several sub-contests in a

situation of private pre-decision information. They prove that for linear or convex cost functions, the grand contest generates
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a higher expected output than any contest divided into subgroups of equal size (Moldovanu and Sela, 2006, Theorem 1).
Adapting this question to the present moral hazard situation, I find the following result.

Proposition 5. The total compensation cost to induce a certain action â in a symmetric equilibrium of risk-neutral contestants is
lower under a grand contest of n agents than under any split contest of subgroups with n1 ∈ {2, . . . n− 2} and n2 = n− n1 agents.

Proof. The average compensation cost per agent in each of the subgroups is:

cni (â) = Cni (â)
ni

= max

{
d(â) + UR,wmin + d′(â)

E[lrk,âni:ni ]

}
, i = 1,2. (17)

Since E[lrk,âni:ni ]< E[lrk,ân:n] for ni < n, the average compensation cost is higher in each subgroup, from which the claim follows
by the fact that n1 + n2 = n. �

The result is derived from the fact that the average cost (17) is decreasing in the number of contestants.14 Due to the
agents’ risk neutrality, the fact that each agent’s probability of winning is smaller in the grand contest does not result in
an additional cost. Due to the MLRP, however, compensation reacts most sensitively to changes in the agents’ efforts if they
compete in a grand contest.

5. Risk-averse agents

5.1. Optimal reward structure

If the competing agents are risk-averse, the proposed extreme prize schedule in which only the best-performing agent
receives an extra payment will no longer be optimal. This can be illustrated by the following counter-example.

Example. Consider a group of n = 3 risk-averse agents competing in a contest with prize structure w = (w1,w2,w3). Prizes
are allocated according to signals yi ∈R+, which follow the same family of probability distributions described by cumulative
distribution functions G(yi|ai) = 1 − exp(yi/ai). Thus, the agents’ performance measures are exponentially distributed with
mean ai. Furthermore, let the agents’ preferences be described by identical utility functions Ui(wi, ai) = √

wi − a2
i
, and let

their reservation utilities be UR = 0. Prizes have to be non-negative. Assuming a symmetric equilibrium of the contest game,
the principal wants to implement an equilibrium effort â = 1 for all agents. His cost minimization problem described in
(1)–(4) then becomes:

min
w1,w2,w3

w1 +w2 +w3 (18)

such that
1
3

√
w1 + 1

3

√
w2 + 1

3

√
w3 − 1 ≥ 0 (19)

−2
3

√
w1 − 1

6

√
w2 + 5

6

√
w3 = 2 (20)

wj ≥ 0 j = 1,2,3. (21)

The coefficients in (20) are the expected values of the likelihood ratio order statistics under the exponential distribution with
mean 1. The cost-minimizing prize structure is given byw1 = 0,w2 = (6/7)2 andw3 = (18/7)2. Obviously, it assigns positive
prizes to more than just the top ranking position.

Similar to the situation analyzed in Proposition 1, the agents’ liability constraint is binding in the example. However, the
contract proposed there would impose too much risk on the agents. Therefore, incentives also have to be provided by w2.
This is less effective than solely rewarding the best-performing agent, but under risk aversion it is also less costly.

5.2. Information efficiency

Given the counter-example, the ranking criteria derived in the previous section cannot be directly translated to the model
with risk-averse agents because they build on the extreme contract of Proposition 1. Under a more general prize structure,

the compensation will depend not only on the value of E
[

lrk,ân:n

]
, as in (14), but in general on the expectations of all likelihood

ratio order statistics. However, since
∑n

j=1E[lrk,â
j:n ] = nE[lrk,â] = 0 for all k, the relation of order statistics used in Propositions

2 and 3 cannot hold for all ranks. Nevertheless, if the distribution function of the likelihood ratio lrl,â under signal yl differs
from that under signal ym by an MPS, the same should hold for the likelihood ratio distribution functions of the ranks

14 This is in line with Proposition 2 in Moldovanu and Sela (2006).
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achieved in a contest under these measures. Intuitively, this leads to prizes that are less dispersed, which in turn yield a
lower compensation cost for risk-averse agents.

To prove this intuition, I first give a condition of less dispersed prizes under which the total compensation cost is reduced
(Lemma 1). Subsequently, I prove that this condition is fulfilled under the MPS criterion (Proposition 6).

Lemma 1. Let w = (w1, . . . ,wn) and v = (v1, . . . , vn) be incentive-compatible prize schedules fulfilling restrictions (2), (4)and
(8) in the symmetric equilibrium of the tournament. If all utility spreads resulting from these prizes under a concave utility function
u are higher under w, then the total compensation cost is less under v, i.e.:

u(wj) − u(wj−1) ≥ u(vj) − u(vj−1) forj = 2, . . . , n (22)

⇒
n∑
j=1

wj ≥
n∑
j=1

vj. (23)

Proof. The proof is in Appendix A. �

The lemma intuitively follows from the agents’ risk aversion and limited liability. Under an optimal prize structure, either
the agents’ participation constraint or their liability constraint will be binding. If the participation constraint is binding under
both schedules, the higher utility spreads under schedule w produce an MPS relation of the distribution functions of utilities.
The claim then follows from the agents’ risk aversion. If, on the other hand, the liability constraint is binding, the higher
utility spreads under w result in prizes that are higher for each rank. In this case, the claim is even more obvious.

The lemma can be used to compare different information structures. For this purpose, it is convenient to write the agents’
expected utility in a way that refers to utility spreads:

E[Ui(wi, ai)|a] = u(w1) +
n∑
j=2

[u(wj) − u(wj−1)]Pkij(a) − d(ai). (24)

The term Pk
ij
(a) = Prob{ri ≥ j} denotes the probability that agent i achieves at least rank j in the tournament under information

system yk. Given his opponents’ effort â in the symmetric equilibrium, this probability is given by:

Pkij(ai, â−i) =
∫
Yk

(1 − Gk(yk; ai))gkj−1:n−1(yk; â) dyk. (25)

After substitution of (25) in (24), the agent’s first-order condition becomes:

∂

∂ai
EUi(âi, â−i) =

n∑
j=2

([u(wj) − u(wj−1)]

∫
Yk

−Gka(yk; ai)gkj−1:n−1(yk; â) dyk) − d′(ai). (26)

This expression can be used to prove that the MPS criterion also applies to the setting with risk-averse agents. For this purpose,
I make use of a finding by Demougin and Fluet (2001) who prove that Kim’s MPS criterion is equivalent to their so-called
integral condition, which is defined for the transformed signals zl = Gl(yl; â) and zm = Gm(ym; â). Due to the assumption of
non-moving supports, zk is as informative as yk, since Gk is strictly monotonic. Thus, an optimal contract can be based on
zk, as well as on yk. I denote the cumulative distribution functions of these signals by Hl(zl, a) and Hm(zm, a), given a. The
integral condition is fulfilled if:

−Hla(z|â) ≥ −Hma (z|â) ∀z ∈ [0,1]. (27)

Condition (27) is identical to the fact that the distribution function of lrl,â differs from that of lrm,â by a mean-preserving spread
(see Demougin and Fluet, 2001, Proposition 3). The main advantage of the criterion is that, in contrast to the MPS relation,
it allows for a simple and intuitive comparison of information structures in the standard agency setting (see Demougin and
Fluet, 2001, Proposition 1). Similarly, the criterion can be applied in the contest setting to prove the following result.

Proposition 6. In the symmetric equilibrium â of the tournament of risk-averse agents, the total compensation cost under
information system yl is lower than that under information system ym if the distribution function of the likelihood ratio lrl,â under
signal yl differs from that under signal ym by a mean-preserving spread.

Proof. Let w = (w1, . . . ,wn) denote the optimal prize structure under information system ym or zm, respectively,15 fulfilling
the agents’ incentive compatibility constraint

∂

∂ai
EUi(a) =

n∑
j=2

([u(wj) − u(wj−1)]

∫ 1

0

−Hma (zm; ai)h
m
j−1:n−1(zm; â) dzm) − d′(ai). (28)

15 Optimal prizes are identical under ym and zm because of the monotonicity of the distribution function.
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By comparing this to the incentive constraint

∂

∂ai
EUi(a) =

n∑
j=2

([u(vj) − u(vj−1)]

∫ 1

0

−Hla(zl; ai)hlj−1:n−1(zl; â) dzl) − d′(ai) (29)

under information system zl derived from yl and the respective prize schedule v = (v1, . . . , vn), the integral condition can be
applied: since zl and zm are values of the cumulative distribution functions, they follow a uniform distribution on [0,1]. Thus,
hl
j−1:n−1 = hm

j−1:n−1 for all j. From this, the integral in (28) is smaller than that in (29) for each j, provided that (27) is fulfilled.

Therefore, there exists a prize schedule v such that (29) is fulfilled and u(wj) − u(wj−1) ≥ u(vj) − u(vj−1) for j = 2, . . . , n. The
claim then follows from Lemma 1. �

The intuition of the result is readily carried forward from the arguments in Demougin and Fluet (2001). Relating the
integral condition to their previous findings on bonus-type contracts in the risk-neutral agency (Demougin and Fluet, 1998),
they argue that under risk aversion, a signal is preferred in an optimal contract if it is also preferred under any bonus contract
(Demougin and Fluet 2001, p. 490). The latter is obviously fulfilled under the integral condition.

I also make use of this fact and show that if a signal is preferred under any bonus contract, it is also preferred in a
tournament. From a single agent’s perspective, a tournament in this regard can best be described as a series of bonus contracts
with randomized aspiration levels. These levels are given by the performances of the agent’s rivals in the tournament. If a
signal is more sensitive with respect to the agent’s action for any possible value of these levels, it is also more sensitive in
expected terms.

5.3. Application

Similar to the analysis of a tournament with risk-neutral agents, the information efficiency results can be applied to
compare different types of tournaments. In doing so, I again refer to the analysis of Moldovanu and Sela (2006) of contest
architecture. My aim is to reinforce their result on the efficiency of the grand contest in the moral hazard setting analyzed
here. Different to the proof in Section 4, however, I cannot simply compare total compensation cost as in (14), because now
the compensation cost depends on the agent’s risk attitude. To derive the desired result, I therefore first prove that the
average compensation cost is decreasing in the number of agents (Proposition 7), and then turn to the question of whether
to split the contest or not (Corollary 2).

Proposition 7. The average compensation cost to induce a certain action â in a symmetric equilibrium of risk-averse agents is
decreasing in the number of contestants.

Proof. In the symmetric equilibrium of n risk-neutral contestants, each player’s compensation is based on his rank
rin ∈ {1, . . . , n}, and all ranks are equally likely. In what follows, it is shown that the likelihood ratio distribution function
of the rank rk,â

in
in a tournament of n contestants, based on yk to implement â, is an MPS of that of râ,k

i,n−1, the rank in a contest
of n− 1 participants. The claim then follows from Kim’s (1995) results in the standard agency setting.

From (7) and the fact that pk,n
ij

(â) = 1/n, the likelihood ratio (∂/∂ai)p
k,n
ij

(â)/pk,n
ij

(â) is given by E[lrk,â
j:n ]. This allows to make

use of the triangle rule in order statistics (Arnold et al., 1992, Theorem 5.3.1), which states that expectations of order statistics
are related as follows:

jE[lrk,â
j+1:n] + (n− j)E[lrk,â

j:n ] = nE[lrk,â
j:n−1]. (30)

The identity can be exploited to construct the likelihood ratio distribution function of rk,â
i,n

from that of rk,â
i,n−1 by a sequence

of mean-preserving spreads sj, j = 1, . . . , n− 1, where sj is defined as follows:

sj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n− j
n

1
n− 1

forE[lrk,â
j:n ]

− 1
n− 1

forE[lrk,â
j:n−1]

j

n

1
n− 1

forE[lrk,â
j+1:n].

Thus, sj distributes the probability mass 1/(n− 1) of E[lrk,â
j:n−1] to E[lrk,â

j:n ] and E[lrk,â
j+1:n]. It is a spread (which defers probability

mass to the tails of a distribution) because E[lrk,â
j:n ] ≤ E[lrk,â

j:n−1] ≤ E[lrk,â
j+1:n], and it is mean-preserving because

E[sj] = j

n

1
n− 1

E[lrk,â
j:n ] − 1

n− 1
E[lrk,â

j:n−1] + n− j
n

1
n− 1

E[lrk,â
j+1:n] = 1

n

1
n− 1

(jE[lrk,â
j:n ] − nE[lrk,â

j:n−1] + (n− j)E[lrk,â
j+1:n]) = 0
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by the triangle rule (30). The resulting probabilities

p

(
(∂/∂ai)p

k,n
ij

(â)

pk,n
ij

(â)

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n− 1
n

1
n− 1

= 1
n

for j = 1

i

n

1
n− 1

+ n− (i+ 1)
n

1
n− 1

= 1
n

for j = 1, . . . , n− 1

n− 1
n

1
n− 1

= 1
n

for j = n

are those in the contest of n agents. �

The proof of Proposition 7 makes use of the fact that the principal’s optimization problem (1)–(4) is similar to that of a
standard single-agent model in which the agent’s performance is measured by his rank among n− 1 agents choosing the
equilibrium action â. The proof shows that this signal becomes more informative in the sense of the MPS criterion when the
number n of competitors increases. At first glance, this seems counterintuitive because each of the contestants adds noise
to the performance measure. At the same time, however, the number of ranks increases, thereby enriching the principal’s
opportunities to calibrate the contract. As Malcomson (1986) shows, for an infinite number of competitors, this results in the
equivalence of a rank-order contract and a piece-rate contract. The main contribution of Proposition 7 is therefore to prove
the monotonicity of agency costs in the number of agents.

The result can directly be applied to answer the initial question.

Corollary 2. The total compensation cost to induce a certain action â in a symmetric equilibrium of risk-averse contestants is
lower under a grand contest of n players than under any split contest of subgroups with n1 ∈ {2, . . . n− 2} and n2 = n− n1 players.

Proof. The claim is obvious because the average compensation cost is higher in both sub-contests compared to the grand
contest, which follows from Proposition 7. �

The reasoning behind Corollary 2 is similar to that of the preceding Proposition 7. Although the grand contest determines
an agent’s compensation based on the noisiest information, it dominates all other architectures because it allows for the
most precise stipulation of prizes. Since, in general, the tradeoff of these two effects is not obvious, the main contribution of
the two results is to prove that the latter effect always dominates the former. At the same time, the difference from a model
without exogenous restriction to a rank-order tournament is highlighted. Without the restriction, each agent would receive
a payment based only on his individual performance, because outputs are assumed to be independent. Since any contract
based on yk

i
can be written, any information on another agent’s output only adds noise to the compensation. In that sense,

the result contrasts with Holmström’s (1979) informativeness result.

6. Conclusion

This paper analyzed whether the informativeness criteria derived for information systems in a standard agency setting
of moral hazard, in which the principal chooses an optimal contract in the second-best solution, also apply to a tournament
setting in which the contract is exogenously restricted to be rank-dependent. As a main result, it was shown that Kim’s (1995)
MPS criterion was capable of ranking performance measures in the symmetric equilibrium of the tournament game. As a
consequence, Blackwell sufficiency also applies. The key feature connecting the standard model and the tournament setting
is that the MPS relation of likelihood ratios carries forward from the original signals to the ranks in the contest. Only from
this, does the result from second-best contracts also hold in the constrained model.

Various applications of the result are possible. I used it to compare different types of contracts. The key idea is to replace
the comparison of contracts by that of different information systems using the same type of contract. While the present paper
focussed on the comparison of specific contracts, the procedure could also be applied to more general questions of contract
design. In particular, it may be used to identify conditions under which tournaments are optimal agreements with regard
to a special class of contracts. One such class could be given by contracts that distribute a constant sum of payments among
a group of agents. This class is of particular interest with respect to unverifiable or subjective performance information, as
mentioned in Section 4.3. Therefore, the furnished results may represent a device to prove the optimality of tournaments as
a solution to the so-called unverifiability problem.
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Appendix A. Proofs

Proof of Lemma 1. The proof analyzes the possible cases regarding the agents’ liability constraints.
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1. The agents’ liability constraint is not binding under v and w.
In this case, the participation constraint is binding and E[u(w)] = E[u(v)]. Let Fw and Fv denote the cumulative distri-

bution functions of one agent’s utilities resulting from w and v in the symmetric equilibrium. From the relation of utility
spreads (22), it follows that:

(a) u(wn) ≥ u(vn) (obvious).
(b) u(w1) ≤ u(v1) (obvious).
(c) The distribution functions Fv and Fw only cross once, i.e. ∃û such that

Fw(u)

{
≤ Fv(u) ∀u < û

≥ Fv(u) ∀u > û,

because the jumps in the cumulative distribution functions are pij = 1/n for each rank j.
Since E[u(w)] = E[u(v)], it must hold that

∫ U

−∞
Fw(u) du =

∫ U

−∞
Fv(u) du

for all U such that Fv(U) = Fv(U) = 1. From this and 1a–1c above, it follows that∫ U

−∞
Fw(u) du ≥

∫ U

−∞
Fv(u) du (31)

for all U ∈R. Therefore, Fw and Fv differ by a mean-preserving spread (cf. Rothschild and Stiglitz, 1970, p. 230 ff.), and
the expectation of each convex function is lower under Fv. Since the agent’s risk aversion implies that the inverse utility
function is convex, the expected compensation of a single agent (and thus the total compensation of all agents) is lower
under v.

2. The agents’ liability constraint is binding under both w and v.
Then, v1 = w1. From this and (22), it follows that wj ≥ vj ∀j, and therefore

∑n
j=1w

j ≥
∑n

j=1v
j .

3. The agents’ liability constraint is binding under w and not binding under v.
In this case, the participation constraints will be binding under v, but not necessarily under w, and E[u(w)] ≥ E[u(v)].

From 1 above, it immediately follows that
∑n

j=1w
j ≥
∑n

j=1v
j .

4. The agents’ liability constraint is binding under v and not binding under w.
In this case, the participation constraint is binding under w and w1 ≥ v1. From this and (22), it follows that E[u(v)] ≤

E[u(w)] = UR, a contradiction. �

Appendix B. Validity of the first-order approach

This section serves to prove that similar to the standard agency model, the first-order approach to the principal’s problem in
the present tournament model is valid if the monotone likelihood ratio property (MLRP) and the convexity of the distribution
function condition (CDFC) apply.

The first-order approach here consists of substituting the agent’s incentive compatibility constraint (3) in the principal’s
optimization problem (1)–(4) by the first-order condition (6).

As in the standard agency model, proving the validity of this approach mainly consists of showing that in the optimal
solution to the problem, the agents’ expected utility is a concave function of his effort, and therefore its maximum can be
characterized by a first-order condition.

To that purpose, I follow the arguments of Rogerson (1985) who proves the validity of the first-order approach in the
standard agency, and refer to (1)–(4) as the unrelaxed problem. I then introduce the relaxed program (1), (2), (6) and (4),
as well as the doubly relaxed program (1), (2), (32) and (4), where the first-order condition (6) of the relaxed program is
substituted by the inequality

n∑
j=1

u(wj)
∂

∂ai
pkij(â) − d′(â) ≥ 0. (32)

The doubly relaxed problem mainly serves as a technical device to proof that higher ranks will be paid higher. This is shown
in the following lemma:
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Lemma 2. If w = (w1, . . .wn) is a solution to the doubly relaxed program and the MLRP holds, thenwj ≥ wj−1 for all j = 2, . . . , n.

Proof. The Lagrangian of the doubly relaxed program is

L =
n∑
j=1

wj + �

⎡
⎣1
n

n∑
j=1

u(wj) − d(â) − UR

⎤
⎦+�

⎡
⎣ n∑
j=1

u(wj)
∂

∂ai
pkij(â) − d′(â)

⎤
⎦+

n∑
j=1

�j
[
wj −wmin

]
,

where, due to the fact that the agent’s incentive compatibility constraint is replaced by an inequality, all multipliers are
nonnegative. The first-order condition with respect to wj is

∂L
∂wj

= −1 + �

n
u′(wj) +� ∂

∂ai
pkij(â)u′(wj) + �j = 0.

Now suppose that the claim does not hold andwj < wj−1 for some j. Consequently,wj−1 > wmin and therefore �j−1 = 0. Thus,
it must hold that

�

n
u′(wj−1) +� ∂

∂ai
pki,j−1(â)u′(wj−1) ≥ �

n
u′(wj) +� ∂

∂ai
pkij(â)u′(wj)

because �j ≥ 0. Since from wj < wj−1 it follows that u′(wj)> u′(wj−1), this means that (∂/∂ai)pki,j−1(â)> (∂/∂ai)pkij(â) must

hold. This, however, contradicts the monotone likelihood ratio property because (∂/∂ai)pkij(â) = E[lrk,â
j:n ] and E[lrk,â

j−1:n] ≤
E[lrk,â

j:n ]. �

Provided that an agent’s compensation is increasing in his rank, it is straight-forward to show that his expected utility is
a concave function of his effort:

Lemma 3. If w is a solution to the doubly relaxed program and the MLRP and the CDFC hold, then an agent’s expected utility
under w is a concave function of his effort.

Proof. Consider the agent’s expected utility as expressed in (24). From Lemma 2 above, the terms in brackets are all
non-negative. Since d(·) is a convex function, it therefore suffices to show that all probabilities Pk

ij
(ai,a−i) are concave in ai.

This becomes clear by inspection of (25). The term in braces is concave by the CDFC. Since gk
j−1:n−1(yk; â) is non-negative

and independent of ai, the same holds for the integral. Hence, Pk
ij
(ai,a−i) and EUi are concave in ai. �

In a last step, it must be shown that analyzing the doubly relaxed program instead of the relaxed program does not change
the results.

Lemma 4. If the MLRP holds, constraint (32) is binding in the solution to the doubly-relaxed program.

Proof. Suppose the claim does not hold. Then� = 0 and therefore −1 + (�/n)u′(wj) + �j = 0 for all j. If none of the liability
constraints (4) is binding, this implies that�j = 0 and therefore 1/u′(wj) = �andwj = const. for all j. If some liability constraint
is binding, from Lemma 2 it follows that this must be the case for w1. Thus, �1 > 0 and therefore −1 + (�/n)u′(w1)< 0.
By Lemma 2, wj ≥ w1 for j = 2, . . . , n. By the concavity of u(·), this implies that u′(wj) ≤ u′(w1) for j = 2, . . . , n. Therefore,
−1 + (�/n)u′(wj)< 0 for all j and �j > 0 for all j. Hence, wj = wmin for all j.

In both cases, the agents receive flat wages and wj −wj−1 = 0 for j = 2, . . . , n. Substituting this in the agent’s incentive
constraint as expressed in (26) yields

∂

∂ai
EUi(a) = −d′(ai)< 0,

which contradicts the initial assumption that (∂/∂ai)EUi(a)> 0. �

The three lemmata in conjunction imply that the first-order approach is valid.

Proposition 8. Let w be a solution to the relaxed program and let the MLRP and the CDFC hold. Then w is a solution to the
unrelaxed program.

Proof. By Lemma 4, the solution to the relaxed program is identical to the solution to the doubly relaxed program. Since
by Lemma 3 the agent’s utility is concave in his action under the optimal reward scheme w, ai is a global maximizer and the
solution to the doubly relaxed program is a also a solution to the unrelaxed program. �
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