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Abstract

Can rational and boundedly rational agents co-exist in a competitive asset market? To answer
this question, we build a highly nonlinear asset pricing model where agents hold heterogeneous
beliefs. Our model features fully rational forward looking agents versus boundedly rational backward
looking agents whose market shares evolve endogenously. We develop a novel numerical method to
be able to solve for rational expectations equilibrium paths which are characterized by complex
bubble and crash dynamics. This method is highly efficient with negligible approximation errors by
construction and does not require an ex-ante truncation of the expectation horizon. Applying our
method, we find that trend-extrapolators amplify small deviations from fundamentals, while rational
agents anticipate market crashes after large bubbles and drive prices back to the fundamental. The
interaction of different beliefs produces complex endogenous dynamics, even without any exogenous
shocks.
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1 Introduction

“Given the uncertainty of the real world, the many actual and virtual traders will have
many, perhaps equally many, forecast [...] If any group of traders was consistently
better than average in forecasting stock prices, they would accumulate wealth and give
their forecasts greater and greater weight. In this process, they would bring the present
price closer to the true value.”

— Cootner, 1964

“. . . the rational expectations hypothesis is consistently rejected in individual forecast data.
Individual forecast errors are systematically predictable from forecast revisions. [. . . ]
overreaction to information is the norm in individual forecast data, meaning that
upward revisions are associated with realizations below forecasts.”

— Bordalo et al., 2020a

Do fully rational agents drive out boundedly rational agents and bring asset prices back to fun-
damental value? This question has a long tradition in economics. Friedman (1953) has been an
early advocate of the view that rational agents would outperform non-rational agents, who would
lose money and be driven out of the market. The above quote from Cootner (1964) is supportive
of this rational view and argues that not only will agents with more sophisticated forecasting rules
drive out other rules, but in addition they will prevent ”bubbles” and enforce prices to converge to
fundamentals.

More recently the rational view has been challenged by behavioral approaches emphasizing the
importance and empirical relevance of “irrational” extrapolative expectations in generating asset
market bubbles. For example, Barberis et al. (2018) argue that bubbles may be triggered by shocks
to fundamentals and amplified by extrapolative expectations. Bordalo et al. (2020b) show that
expectations surveys have high explanatory power on stock price dynamics. Greenwood and Shleifer
(2014) show that empirical expected returns are highly correlated with past returns and stock prices,
while rational expectations would suggest the opposite. The second quote above is taken from
Bordalo et al. (2020a), who document systematic overreaction of individual forecasters to news.
The work of Hommes et al. (2005) and Hommes (2021) shows the prevalence of coordination on
extrapolative expectations in laboratory experiments with human subjects.

This paper is an attempt to reconcile the rational and the behavioral approach. We solve and
study a heterogeneous agents model in which “irrational agents” with extrapolative expectations
and fully rational agents co-exist and their fractions co-evolve over time depending on their relative
success. The interactions between rational agents and extrapolative expectations create endogenous
fluctuations characterized by irregular bubble and crash dynamics in line with the empirical evidence
above. Such heterogeneous agents models with rational expectations are highly nonlinear and were
so-far deemed impossible to solve. Our primary contribution is thus to provide a novel numerical
method to compute rational expectations equilibria –i.e. solution paths along which rational agents
have perfect foresight– characterized by bubble and crash patterns. We find that extrapolative ex-
pectations amplify small deviations from the fundamental into growing asset bubbles, while rational
agents stabilize these bubbles when they become too large. These interactions between simple and
sophisticated traders lead to complex bubble and crash patterns in asset prices.

Our novel numerical method allows us to solve for the global dynamics of a nonlinear system
with endogenous cycles and chaotic equilibrium dynamics. Why is this necessary? As in Grandmont
(1985, 1998) we approach the question of whether or not agents with non-rational expectations
survive in a temporary equilibrium framework. The framework with competing heterogeneous beliefs
is adapted from Brock and Hommes (1997, 1998). While this model is highly stylized, it is, despite
its simplicity, already extremely challenging to solve. Additionally, the assumption of sophisticated
fully rational agents clearly represents a corner case. Nevertheless, it allows us to focus on the
most critical aspects of agents’ behavior and interaction in a financial market setup. This paper
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thus provides the methodological toolbox to study the interactions of fully rational and boundedly
rational agents in a simple, stylized framework.

Our model can be represented as a temporary equilibrium map with heterogeneous expectations,
including both forward looking and backward looking agents, of the form

xt = F (Etxt+1, Xt−1), (1)

where F is the law of motion of the equilibrium price xt of a financial asset, andXt−1 = {xt−1, xt−2, . . . }
is the history of xt.

1 Our particular interest lies in models where F is highly nonlinear and may
exhibit complex equilibrium solutions, such as boom and bust cycles or chaotic and unpredictable
bubble and crash dynamics. The law of motion (1) may, for example, represent a heterogeneous
expectations model, where one type has simple backward looking expectations (e.g., some function
of xt−1) and another type has forward looking rational expectations (perfect foresight, hence the
term Etxt+1). The dynamics of (1) is then only implicitly defined as the current state xt depends
on the past xt−1, but also on the future xt+1. When F is nonlinear such systems are hard to solve.

The methodological contribution of our paper is to develop an explicit functional representation of
the global solution to the nonlinear system (1). This representation can be understood as an iterative
procedure over the sequence space, which allows us to simulate the global dynamics of the nonlinear
system. The degree of complexity of a rational expectations solution increases tremendously when
including boundedly rational agents in a model. To our best knowledge our paper is the first to
successfully apply such techniques to detect cycles, boom-bust dynamics, and chaotic equilibrium
dynamics. Thereby, our method goes beyond the perturbation approach of Galizia (2021), which by
construction is restrained to models which display saddle cycles. In contrast, our method not only
provides examples of limit cycles of different order, but is also able to detect chaotic solutions whose
long run behavior follows complicated strange attractors. Such dynamics are of particular interest
because they may, under certain circumstances, be a feature of the data. A further advantage of our
method is that it does not rely on local perturbation techniques or other approximation tools such
as interpolation or grids, but is able to solve the model to machine precision.

Our analysis shows that the model with rational and trend-extrapolative agents can feature
multiple equilibria, that is there, may be multiple stable rational expectations equilibria. The
type of dynamics then depends crucially on whether rational expectations are anchored around
a fundamental or nonfundamental steady state. Given the anchoring of long-term expectations,
either one of these steady states can be an attractor. Prices are stationary –but larger than the
fundamental value– if rational expectations are anchored around the nonfundamental steady state.
In this equilibrium, the extrapolative drift away from the fundamental and the stabilizing effect of
rational agents are in exact balance. The exact same model features boom-burst dynamics between
the fundamental price and the nonfundamental steady state if rational expectations are anchored
at the fundamental steady state in the long run. Such multiple equilibria that do not depend on
fundamental variables are commonly referred to as sunspots.2 This finding is important because
expectations anchoring –and associated different attractors– play a central role in macroeconomics,
e.g. for the conduct of monetary economics (Woodford, 2005).

By exploring the chaotic dynamics that may result from the interaction of heterogeneous agents
including rational traders, our paper adds to the literature on the dynamics of financial crisis. A host
of studies (see e.g. Schularick and Taylor, 2012; Greenwood and Hanson, 2013; López-Salido et al.,
2017; Greenwood et al., 2020) documents that rapid asset price growth together with excessive credit
growth are a good predictor of financial crisis and financial fragility events. Their work however can
neither explain why asset prices start to rise in the first place, nor why they eventually collapse.
We close this gap by showing that extrapolative dynamics can arise endogenously even if a sizable

1F may e.g. be an Euler equation derived from intertemporal utility maximization.
2See e.g. Benhabib and Farmer (1999) for a survey on sunspots in macroeconomics.
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share of agents is fully rational. In our heterogeneous agents model such “bubbles” burst when
deviations of asset prices from fundamental value become large and more and more agents switch to
a rational forecasting rule, thereby endogenously bringing prices back close to fundamental value.
Further, to understand the complicated dynamics behind financial crisis, it is important to develop
computational tools that can deal with models that feature such high degrees of complexity. Our
paper seeks to close this gap.

The paper is organized as follows. After discussing some related literature in the rest of this
section, Section 2 presents the temporary equilibrium asset pricing framework with heterogeneous
expectations and Section 3 develops the numerical solution method. Section 4 discusses some simple
linear examples. In Section 5 we apply our numerical method to study the competition between
rational and non-rational agents and cycles that may emerge. Section 6 discusses an example with
chaotic equilibrium dynamics, while Section 7 concludes.

Related Literature

A large literature has addressed the question of whether fully rational agents drive out irra-
tional agents. Rationality involves two important aspects: utility or profit maximization (Subjective
Expected Utility, SEU) and expectations (Rational Expectations Hypothesis). Blume and Easley
(2010) provide a survey and stimulating discussion of their and others’ work on the market selec-
tion hypothesis, that is, the question: do markets redirect resources toward rational SEU decision
makers? They conclude that utility maximization puts only few restrictions on asset prices and
stress the importance to study differences in beliefs. Sandroni (2000) and Blume and Easley (2010)
investigate how rational expectations fare against traders with non-rational beliefs. They show that
if markets are dynamically complete, the economy is bounded, and traders have a common discount
factor, then the market is dominated in the long run by those with correct expectations. Hence,
if there is any trader with correct beliefs, in the long run asset prices converge to their rational
expectations values. Finally, drawing on the literature on incomplete markets Cao (2018) find that
over-optimistic agents not only survive but can even benefit from expectations other than rational,
and can increase overall price volatility. However, none of these models generate boom-bust cycles
as in our nonlinear framework, which are an important feature of financial time series.

Another branch of literature in behavioral finance – the literature on noise traders – also studies
models with rational and non-rational agents. “Noise traders”, a term due to Kyle (1985) and
Black (1986), are investors whose changes in asset demand are not driven by news about economic
fundamentals, but rather by non-fundamental considerations such as changes in expectations or
market sentiment. Early and influential papers include work of De Long et al. (1990b,a), showing
that noise traders can survive in a world with rational agents. The first paper shows that traders with
incorrect beliefs can earn higher expected returns than those earned by traders with correct beliefs,
because they take on extra risk. The second paper uses a 3-period model to show that in the presence
of positive feedback traders, rational speculation can be destabilizing. This model thus explains
overreaction to news about economic fundamentals, caused by rational informed speculators taking
into account the presence of feedback traders. None of these models use a temporary equilibrium
framework and explicit bubble and crash cycles do not arise as in our model.

In an economy with heterogeneous agents, rational expectations are a strong assumption as
rational agents must fully understand the economic environment, the behavior of all non-rational
agents and their relative share among all traders, the latter being potentially time-varying. As
mentioned above, temporary equilibrium systems with rational versus non-rational agents are hard
to study or even simulate. A less demanding assumption would be to replace the fully rational agents
by agents who would behave rationally only in a world where all other agents behave rationally too.
In a homogeneous rational world prices would be at fundamental value. Therefore, homogeneous
rational agents are often called fundamentalists. There is a large literature on fundamentalists versus
chartists models (see e.g. the survey in Hommes (2006)). These models are easier to handle as one
would replace the future value xt+1 in (1) by a fundamental equilibrium value, which then typically
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leads to backward-looking learning models that are straightforward to simulate or can even be studied
analytically. Naturally, such models do not allow to analyse the interaction of heterogeneous agents
if some of the agents are perfectly rational, which is crucial for the understanding of real-world
phenomena.

Our paper also relates to more recent heterogeneous agents models in behavioral macro eco-
nomics, see e.g. the chapters in the Handbook of Computational Economics, Vol. 4, Heterogeneous
Agent Modeling (Hommes and LeBaron, 2018), in particular the chapter of Branch and McGough
(2018) on the micro-foundations of heterogeneous agents macro models and the recent survey on
behavioral macroeconomics provided in Hommes (2021). A number of papers, most prominently
Branch and McGough (2010) in the context of a small-scale New Keynesian model, have studied
the interaction of forward and backward looking heterogeneous agents. Importantly, this literature
has so far relied on a backward-consistent representation to obtain the dynamics implied by a model
with forward looking agents. As we explain in detail in Appendix D, the backward-consistent
representation and our novel numerical method to solve for the rational expectations solution are
different representations of the dynamics with generally different dynamic properties. Boehl (2022)
studies a New Keynesian model with heterogeneous agents where rational agents are unaware of the
presence of boundedly rational agents.

The anchoring of long-term expectations is also considered as an explanation for the breakdown of
the macroeconomic relationship between inflation and real activity (“the missing Deflation/Inflation
puzzle”) by Coibion and Gorodnichenko (2015) and Ball and Mazumder (2018). Mertens and Ravn
(2014) and Aruoba et al. (2018) discuss implications of expectations driven liquidity traps. In these
models, a sunspot can trigger agents to coordinate on an (unstable) equilibrium in which the zero
lower bound on nominal interest rate (ZLB) binds, which in turn causes unfavorable macroeconomic
conditions. Lansing (2019) argues that during the US ZLB period, agent where switching between a
ZLB and non-ZLB steady state (here termed long-run endpoints). The concept of sunspot equilibria
has also been used to explain asset price bubbles (e.g. Gali, 2014). While to our best knowledge, of
the sunspot equilibria treated in the literature at least one equilibrium is indetermined and hence
dynamically unstable (e.g. the ZLB steady state or the sunspot asset price bubbles), in our model
both steady states provide a stable equilibrium. The work of Beaudry et al. (2020), which makes
use of the methodology developed in Galizia (2021), has very recently renewed interest in nonlinear
dynamics and limit cycles in the broader field of macroeconomics by studying a macroeconomic
model in which cycles are indeed limit cycles instead of stationary random walks.

Lastly, by developing a numerical iterative procedure that allows solving systems with cycles
and chaotic dynamics we also contribute to the literature on computational methods. Our method
is related to the extended path method by Fair and Taylor (1983) as well as to the policy func-
tion iteration method proposed by Coleman (1990, 1991), which has been applied successfully in
macroeconomic research.3 Instead of iterating on a numerical representation of the solution to F as
in a policy function iteration algorithm, we directly iterate on the expected future trajectory (the
“extended path” {Etxt+s}∞0 ) given Xt−1. Other than with the extended path method, we do not
ex-ante truncate this expected future trajectory and do not require any root findings methods, which
may cause numerical instability. See Judd (1998), Miranda and Fackler (2004) and Ljungqvist and
Sargent (2012) for comprehensive, general surveys of numerical methods in economics. Finally, our
approach can be seen complementary to the literature on rational inattention (Sims, 2003, 2010) as
we show that if the rational predictor is costly and alternative predictors are successful, a sizable
fraction of agents has an incentive to opt for the non-rational prediction.

3Recent examples include Gust et al. (2017); Atkinson et al. (2019); Richter and Throckmorton (2016). A modern
extension of the shooting method is Maliar et al. (2020).
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2 An asset pricing model with heterogeneous beliefs

This section develops the main dynamic equations of the asset pricing model with heterogeneous
beliefs of Brock and Hommes (1998), henceforth BH98. The model features heterogeneous boundedly
rational agents, who switch between different forecasting rules based upon their relative performance.
BH98 consider two broad classes of agents: fundamentalist who believe that the asset price is
equal to its fundamental value – the discounted sum of expected future dividends– and chartists,
who use simple forecasting strategies to extrapolate patterns in past prices. BH98 show that the
heterogeneous expectations model exhibits complex, chaotic bubble and crash dynamics, with agents
switching between stabilizing fundamentalist strategies and destabilizing trend-following strategies.

Notice that fundamentalists act as if they are rational agents in a homogeneous rational partial
equilibrium world. However, in a model that includes heterogeneous non-rational agents, the funda-
mentalists are not rational, because they do not take the behavior of non-rational agents into account
and they do not have rational expectations. A novel feature of the current paper is that we consider
fully rational agents in this heterogeneous agent setup, who have perfectly rational expectations
(perfect foresight) of the future stock price that fully take into account the behavior of all other
non-rational agents. Full rationality, however, makes the model hard to solve, even numerically.

Consider an asset market where agents can choose between a risk free asset paying a gross return
R = 1 + r, where r > 0 is the interest rate, and a risky asset that pays an uncertain dividend yt in
each period. Agents are neither constrained in borrowing nor in short-selling. There are H different
trader types with different expectations about the future price of the asset. Let the dynamics for
any traders wealth Wt in the market be given by

Wt+1 = RWt + (pt+1 + yt+1 −Rpt)zt (2)

where pt is the price of the asset in period t, yt the uncertain dividend payment, R = 1+ r the gross
return of the risk-free asset and zt the amount of shares of the risky asset purchased at date t. For
the following, denote by Et and Vt the conditional expectation and conditional variance based on
the information set available in t, and denote by Eh,t and Vh,t the beliefs or forecasts of a trader of
type h about these measures. We assume that agents are myopic mean-variance maximizers so that
the demand zh,t for the risky asset of a trader with type h must solve

max
zt

{
Eh,t[Wt+1]−

a

2
Vh,t[Wt+1]

}
, (3)

where a is a parameter governing the degree of risk aversion. Under the simplifying assumption that
the conditional variance Vh,t = σ2 is equal and constant across trader types, the demand for the
risky asset is given by

zh,t =
Eh,t[pt+1 + yt+1 −Rpt]

aVh,t[pt+1 + yt+1 −Rpt]
, (4)

=
Eh,t[pt+1 + yt+1 −Rpt]

aσ2
. (5)

Note that this assumption implies that none of the traders take the true variance of the stock price
into account which implies that, for the sake of simplicity, even rational traders are boundedly
rational in one important dimension.

Let us assume that the supply of outside risky shares per investor, zs, is constant. With fraction
nh,t of type h at time t, the equilibrium of the asset market is characterized by

H∑
h=1

nh,t
Eh,t[pt+1 + yt+1 −Rpt]

aσ2
= zs. (6)
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Under the additional assumption of zero net supply of outside shares (zs = 0) and after setting
σ2 = a = 1 for convenience, the pricing equation reads

Rpt =

H∑
h=1

nh,tEh,t[pt+1 + yt+1]. (7)

Finally, define xt = pt − p∗t as the deviation from the fundamental price. Under the assumption
that all traders share the same beliefs on dividends yt+1, that is, Eh,t[yt+1] = Et[yt+1], the pricing
equation (8) from the main body follows as

Rxt =

H∑
h=1

nh,tEh,txt+1, (8)

where we implicitly assume that dividends are constant ex-post. This equation will also be called
the law of motion (LOM) of the model. Notice that if all agents are fundamentalists, i.e., believe
that the future deviation from fundamental value is zero, then the realized market price will be
exactly at fundamental value. Hence, the fundamental value is a rational expectations equilibrium
(REE) steady state of the model.

As a simple, but typical, example exhibiting cycles, we focus on a model with three types of agents
of which two types will be symmetrical. Agents are either rational (type 1) or biased optimists (type
2) or biased pessimists (type 3). The biased forecasts are given by

E2,txt+1 = +b and E3,txt+1 = −b, (9)

where the magnitude of the bias is denoted by b > 0. Rational agents have perfect information
about the model, including the behaviour of all other agents, and the rational forecast is given by
the expectation Etxt+1 conditional on the information available at time t.4

Market clearing with rational versus biased agents is then given by

Rxt = n1,tEtxt+1 + (n2,t − n3,t)b, (10)

where nh,t, h = 1, 2, 3 denotes the fractions of rational, optimistic and pessimistic agents at time t,
with all fractions adding up to 1. In the case of a deterministic model, i.e. absent any exogenous
disturbances, rational agents have perfect foresight and we can simply set Etxt+1 = xt+1 to obtain5

Rxt = n1,txt+1 + (n2,t − n3,t)b. (11)

Following Brock and Hommes (1998), these fractions are updated according to the performance
measure Uh,t for each predictor h, given by realized profits,

Uh,t = (xt −Rxt−1)(Eh,t−1xt −Rxt−1)− 1REC, (12)

where C is the information gathering cost for obtaining the rational expectations forecast and 1RE

an indicator function that equals one if the agent is rational and zero otherwise. All other predictors
are costless. The first bracket of the first term at the RHS of (12) denotes the actual resale value
of the asset minus the opportunity costs for financing the purchase in the previous period. The

4In the rest of this work we are using the terms rational and rational expectations interchangeably. Like all agents
in our model, rational agents are mean-variance maximizers, based on rational expectations of future prices.

5Notice that in this model, due to the absence of any short selling and borrowing constraints, a boom in asset
prices is implicitly accompanied by an increase in leverage and credit growth. As mentioned earlier, this constitutes
a feature of empirical relevance that we will further discuss in Section 6.
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term in the second brackets represents agent type i’s demand, resulting from the mean-variance
maximization given the agent’s past belief about the price.

Realized profits from trading qualify as a natural choice for the fitness measure6. Notice that
the best forecaster does not necessarily earn the highest profit. In order to receive a positive profit
it is sufficient to have made a correct choice on whether to go short or long. Likewise, any trader A
that has a strong positive belief about next periods price will invest more money in the asset than
another trader B with a relatively lower positive forecast. Even if B’s forecast was perfectly correct,
trader A may still earn higher profits since he invested more. This feature, i.e. that profits are not
proportional to forecasting errors, is unique to financial markets and captured by Equation (12).
Further, note that the asset pricing model with heterogeneous beliefs is a zero-sum game, that is,
the profits averaged over all agent types add up to zero minus the information gathering costs for
rational agents.7

The fraction of agents evolves endogenously depending on the relative performance. More pre-
cisely, the fraction of type h = 1, ...,H is determined by a multinomial discrete choice model de-
pending on the past performance of the predictor:

nh,t =
eβUh,t−1∑H
j=1 e

βUj,t−1

. (13)

If a predictor has been relatively more successful than others, it is more likely to be chosen and
hence the fraction of agents using this predictor increases. β is called the intensity of choice which
governs how quickly agents switch between predictors. If β → ∞, all agents will immediately switch
to the most successful predictor. This completes the specification of the asset pricing model with
heterogeneous beliefs.

3 Numerical solution

We continue by describing our numerical solution method. Plugging the performance measure (12)
into the fractions (13) and inserting the result into the market clearing equation (10), the model’s
state xt at date t can be expressed as a (known) nonlinear function f :

xt = f(xt+1, xt−1, xt−2, xt−3). (14)

Notice again that xt is a function of the forward looking rational forecast of next periods price xt+1,
as well as of past values xt−1, xt−2, xt−3.

8

We propose a novel numerical method to solve for rational expectation equilibrium paths of a
class of highly nonlinear problems where complicated dynamics may arise, and we are particularly
interested to detect cycles or chaotic solutions. To our best knowledge we are the first in applying
iterative numerical methods to solve for cyclic and chaotic rational expectations equilibria of nonlin-

6In the heterogeneous agents literature realized profits are often chosen as the fitness measure and we follow this
convention. Another possibility consistent with the mean-variance framework would be risk-adjusted profits. One
may argue, however, that realized profits is what in the end traders may care about most and therefore this is an
important case to study; see the discussion in Hommes (2013, pp.166-167).

7More precisely, using the equilibrium pricing equation (8) a simple computation shows that
∑

h nh,tUh,t+1 =
0− nR,tC, where nR,t is the fraction of rational agents in period t and C the cost for rational expectations.

8For the 3-type example with purely biased agents introduced in the previous section, the fractions ni,t, through
the performance measure, depend only on two lagged state variables xt−1, xt−2. In Section 6 we will consider another
2-type example, where one of the forecasting rules depends on the lagged state variable xt−1, so that the time-varying
fractions, through the performance measure depend on an additional lagged variable xt−3. Therefore our notation
uses three lagged state variables to cover all examples. Note that the inclusion of unneeded lagged variables does not
affect the algorithm.
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ear temporary equilibrium mappings.9 We are looking for a state-space solution of this model, i.e.
a functional representation that only depends on known states at time t. Since f is nonlinear and
xt depends on its future value xt+1, we can not solve explicitly for a state-space solution in closed
form and must rely on numerical solution techniques.

The intuition behind our numerical method goes as follows: the current price xt depends on
xt+1, which again recursively depends on future prices. As the future is ex-ante unknown, any
representation of the law of motion that depends on future prices is not useful and we require a
solution to the system that depends only on past state variables. Assume that a steady steate to f
is known. We start by guessing that xt+1 is in the steady state and, given this guess, solve for xt. We
then update our guess on xt+1 by using our current computation for xt and assuming that in xt+2

the system will be in the steady state. Using the new guess on xt+1, we update the computation on
xt, which can then be used to re-evaluate the guess on xt+1. That means, we go back and forth in
time, thereby updating and extending guesses on the expected future trajectory of x. We stop once
new guesses on values that are far in the future do not affect our approximation of xt+1 anymore.
Such a (functional) recursive state-space representation that yields the current state of the system
as a function of the history of past state state variables is commonly referred to as a policy function.

Thus, assume the existence of a policy function g for the model described by f in (14) for a given
Xt−1 = {xt−1, xt−2, xt−3}:

xt = g(xt−1, xt−2, xt−3). (15)

If a function g exists, using (14) it must satisfy

xt = f(xt+1, xt−1, xt−2, xt−3) (16)

= g(xt−1, xt−2, xt−3). (17)

By moving time forward one period and inserting g we get

xt+1 = g(xt, xt−1, xt−2) (18)

= g(g(xt−1, xt−2, xt−3), xt−1, xt−2). (19)

Then our problem boils down to finding a function g that satisfies

g(xt−1, xt−2, xt−3) = f(g(g(xt−1, xt−2, xt−3), xt−1, xt−2), xt−1, xt−2, xt−3). (20)

If f is nonlinear we can not solve for the function g explicitly, but we can approximate it numerically.
Define the approximation error ζt (also often called Euler Equation error, EEE) at time t as

ζt = |g(Xt−1)− f(g(g(Xt−1), xt−1, xt−2), Xt−1)|, (21)

with Xt = {xt−1, xt−2, xt−3}. The following proposition is a key result of this paper and provides
an algorithm to find a function g that approximates a solution to f .

Proposition 1. An approximate state space solution g(·) to f(·) as in equations (16) and (17), with
steady-state x̄ and a given history Xt−1 is, up to a precision of ζt < ϵ, given by

xt = g(Xt−1) = f(x̂1,K , Xt−1), (22)

9Grandmont (1985) shows the existence of cycles and chaos in simpler 1-dimensional overlapping generations
models of the form xt = f(xt+1). Our method computes cycles and chaotic rational expectations equilibria model for
2- and higher dimensional temporary equilibrium mappings with forward looking expectations. In contrast, Galizia
(2021) is a generalization of perturbation solutions which they show to work well for models with limit cycles.
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with

x̂i,k =


xt+i for i < 0,

f(x̂i+1,k−1, x̂i−1,k, x̂i−2,k, x̂i−3,k) for 0 ≤ i ≤ k,

x̄ for k < i,

(23)

where it holds for K > 1 that |x̂1,K − x̂1,K−1| < ϵ. Note that x̂i,k can be interpreted as the kth guess
on xt+i.

Proof. See Appendix A. ■

In practice, Proposition 1 implies that (14) can be solved using a simple iterative scheme over
k and i, which we will descibe in detail below. To clear notation, let x̂i,k be the guess on xt+i

at iteration k and define X̂i,k = {x̂i,k, x̂i−1,k, x̂i−2,k}. Start the iteration with k = i = 0 and
set x̂0,0 = f(x̄, Xt−1).

10 Now increase k → 1 and note that since x̂1,0 = x̄ (i.e. the guess on

xt+1 for k = 0), it follows that x̂0,1 = x̂0,0. For k = i = 1 it is that x̂1,1 = f(x̄, X̂0,1), where

X̂0,1 = {x̂0,1, xt−1, xt−2}. Increment k to k = 2 and recursively calculate x̂i,2 for i ∈ {0, 1, 2}.
Continue to increase k, and for each k recursively calculate x̂i,k for i ∈ {0, 1, · · · , k} until it holds
for k = K that |x̂1,k − x̂1,k−1| < ϵ. The iterative scheme is illustrated in Table 1.

x̂0,k x̂1,k x̂2,k · · · x̂K−1,k x̂K,k

k = 0 f(x̄, Xt−1) x̄ x̄ · · · x̄ x̄

k = 1 f(x̄, Xt−1) f(x̄, X̂0,1) x̄ · · · x̄ x̄

k = 2 f(x̂1,1, Xt−1) f(x̄, X̂0,2) f(x̄, X̂1,2) · · · x̄ x̄

k = 3 f(x̂1,2, Xt−1) f(x̂2,2, X̂0,3) f(x̄, X̂1,3) · · · x̄ x̄
...

...
...

...
...

...

k = K − 1 f(x̂1,K−2, Xt−1) f(x̂2,K−2, X̂0,K−1) f(x̂3,K−2, X̂1,K−1) · · · f(x̄, X̂K−2,K−1) x̄

k = K f(x̂1,K−1, Xt−1) f(x̂2,K−1, X̂0,K) f(x̂3,K−1, X̂1,K) · · · f(x̄, X̂K−2,K) f(x̄, X̂K−1,K)

Table 1: Illustration of our numerical method. As above, X̂i,k = {x̂i,k, x̂i−1,k, x̂i−2,k} and x−s,k = xt−s for
s ∈ {1, 2, 3}.

Why does this work? By repeatedly increasing k and calculating x̂1,k, we get a better approxima-
tion of the expected future trajectory of xt with every iteration. Incrementing k implies increasing
the horizon for which this trajectory is calculated. For K, convergence of |x̂1,K − x̂1,K−1| to a value
below ϵ means that the iteration calculates expected values of this series that are far into the future
and will not have a significant impact on the value of xt.

11 Note that the definition of ζt involves
g(Xt) = g(g(Xt−1), ·) inserted in f , i.e. the value of xt+1 as implied by g given Xt−1. For this
reason we require the convergence of x̂1,K instead of x̂0,K , that is, the convergence of the guess on
xt+1 given Xt−1. This ensures that the actual error on g(Xt−1) is also below ϵ at each time step t.
The limiting function gK(Xt−1) then approximates the true state-space representation g for a given
Xt−1, and we can used g to simulate the global dynamics.

We are interested in the (long run) dynamics for the relevant domain given a vector of initial
values X0 = (x0, x−1, x−2) and aim to find the solution given these initial values. Note that the
limiting function gK(Xt−1) is, while being an ϵ-precise approximation of g, not a global solution
but holds only for Xt−1. That means we must reevaluate g for every point on the trajectory.
Computationally, this can efficiently be implemented by re-using the series of x̂i,K from gK(Xt−2)

10In theory, many other guesses may also work where x̄ is not the steady state. However, as we are considering
complicated maps with potential boom-burst dynamics, there may also be guesses for which the procedure may simply
diverge due to infinite bubble solutions. We want to ex-ante rule out such solutions.

11Note that since we start each iteration of updating with i = 0, the kth guess on xt is based on x̂1,k−1 which in
turn is based on x̂2,k−2 and so on. This means that the final guess on x̂K,K does actually not enter the evaluation of
x̂0,K .
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for the evaluation of g(Xt−1) by just dropping x̂0,K . The evaluation of a time series for the example
given in Figure 4 of length 1000 only takes about 210 milliseconds on a normal laptop. Further note
that convergence of gK for a given value of ϵ implies that the actual approximation error on g must
be below ϵ. Since our method does not require any interpolation or root finding, the evaluation of
every x̂i,k is exact (for given inputs of f) and numerical errors cannot accumulate.12

Theorem 1. Let ϵ be a small positive number. We say that our method has converged in iteration
K if it holds for a given norm | · | that |x̂1,K − x̂1,K−1| < ϵ. A sufficient condition for our method
to converge is that ∣∣∣∣ ∂f

∂xt+1

∣∣∣∣ < 1, (24)

and
|λi| < 1 (25)

for each eigenvalue λi of the Jacobian matrix JX of f w.r.t. Xt−1.

Proof. See Appendix B. ■

Theorem 1 states a sufficient condition for our method to converge. This condition implies that
the mapping f is a contraction, so that the solution converges to the steady state. Notably, this is by
no means a necessary condition for convergence – in fact, only the rather trivial linear examples with
a stable steady state from Section 4 satisfy this condition, while all the arguably more interesting
applications in the following sections do not. Yet, our method converges for these systems and
reliably detects cyclic or chaotic perfect foresight solutions. In these cases the eigenvalues of JX
do not lie inside the unit circle, but the steady state is unstable, either with complex eigenvalues
outside the unit circle or a saddle point (with one eigenvalue |λi| < 1 and one eigenvalue |λi| > 1.
We find that, given that we allow for arbitrary complexity of the function f , it is impossible to state
necessary conditions for convergence. However, in practice we asses that

∂f

∂xt+1
= R−1n1,t ∈ (0, 1) =⇒

∣∣∣∣ ∂f

∂xt+1

∣∣∣∣ < 1, (26)

together with the fact that the backward law of motion is bounded yields a weak condition on the
existence of a (bounded) rational expectations solution. In such bounded systems with an unstable
steady state our method is able to find cyclic or chaotic rational expectations solutions.

Additional to the fact that our method allows to find rational equilibria for chaotic mappings,
our method has a few significant advantages over alternative methods. First and crucially, the
absence of any grid-interpolation or root finding (as e.g. policy function iteration or the Fair-Taylor
method) renders the method extremely precise, with the final precision being the modeler’s choice.
As we document in Appendix E, an alternative fine-grained policy function iteration would for
some examples result in Euler equation errors larger than 2 and in some cases even different types of
dynamics. This is because any sort of interpolation must involve small numerical errors, which for
highly nonlinear mappings can translate into misleading results. Hence, the absence of interpolation
and/or root finding maintains a high degree of accuracy and numerical stability. Another important
advantage of our method over methods that are based on a grid is that it does not suffer from the
so called curse of dimensionality.13 E.g. we could easily apply our method to a model where Xt

contains the recent 1000 values of x. Further, compared to grid-based methods our method does not

12To be precise, x̂i,k is an ϵ-precise approximation based on an ϵ-precise assumption about the future path of prices.
Naturally, this approximation will impact proceeding approximations. However, we can chose ϵ to be arbitrarily small
which allows us to de-facto rule out error accumulation.

13The curse of dimensionality describes the problem that the computational complexity of standard grid-based
methods grows exponentially in the number of states.
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require an ex-post specification of a bounded domain. For our case in which f is highly nonlinear
this is of particular importance: for some regions in the immediate neighborhood of the trajectories
discussed further below, there may only exist explosive solutions. As for these regions no rational
expectations equilibria exist, global convergence of a grid-based policy function is hence impossible.

Our method also has a few crucial advantages over shooting methods such as the method of Fair
and Taylor (1980). First, we do not require an ex-post fixed final value at a set horizon. This is
especially important for our application: if we would fix the boundary value at a given point in the
future, this would determine the complete path until this point. Since for most of our simulations
the distant future will not be at the fundamental value, the path suggested by Fair-Taylor would
not reflect the actual equilibrium path. Another advantage of our method over shooting methods
is that we do not need any sort of high-dimensional computational root finding, which can be
computationally expensive and unreliable.14

Similar to other dynamic programming techniques, our method inherits its convergence properties
from the Banach Fixed Point Theorem (often also called “contraction mapping theorem”). It is not
strictly necessary that f is a contraction mapping as long as the contraction property holds for at
least one implicit higher order mapping of f of the form (f ◦ f ◦ · · · ◦ f). Further note that our
method can be seen as a policy function iteration solved for only one particular initial state Xt−1,
where all grid points are chosen endogenously to solve for the anticipated path given Xt−1.

We conduct two robustness exercises to confirm that our method also works in practice. First,
we apply our method to a set of models for which the policy function can be derived analytically
in section 4. Second, we also adapt an established policy function iteration algorithm to our highly
nonlinear problem, thereby building on Coleman (1990, 1991). Details and simulations for this
alternative method can be found in Appendix C. We document that approximation errors with the
policy function iteration algorithm are several magnitudes larger, but for most use-cases the method
delivers similar qualitative results. These come at considerably larger computational costs, e.g. the
chaotic simulations in Figure 9 take about a quarter second with our method compared to more
than 10 seconds with the grid-based method from Appendix C. A particular exception where the
grid-based method cannot deliver reliable results is the parameter region of the two-type model with
sunspot equilibria that we discuss in Subsection 6.2. For the model specification discussed there
approximation errors of the policy function iteration are large and simulation results misleading.
Note that, to our best knowledge, all grid-based solution methods (e.g. also the projection methods
suggested by Judd, 1992) will cause similar problems in practice as they require interpolation between
grid points. The advantage of our method is precisely that we only need to specify the required
precision for xt, and then all values on the expected trajectory will endogenously be chosen such
that this precision is achieved. Lastly, our numerical method works for univariate nonlinear systems
with various lags as in (14), but we leave application to nonlinear multivariate systems for future
research.

4 Linear examples

In this section we provide two linear examples in order to get some intuition on how rational
agents affect the dynamic of a heterogeneous agents asset pricing model. These examples also help
to illustrate the workings behind our numerical method. Rational expectations solutions to linear
systems are well understood and a solid body of literature provides robust and efficient solution
methods (see e.g. Klein, 2000; Rendahl, 2017). Hence, if the mapping f in (14) is linear, our method
can be expected to converge when the conditions of Blanchard and Kahn (1980) are satisfied. Note
also that the state-space representation g is closely related to the Minimum State Variable (MSV)

14The modern extension to the shooting method of Maliar et al. (2020) allows to solve non-stationary models, but
does not extend to models featuring limit cycles or chaos.
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solution concept for rational expectations solutions of dynamic models in the adaptive learning
literature (Evans and Honkapohja, 2001). The MSV solution technique is convenient in linear
models, where it can be computed explicitly.

The first linear example illustrates how our method works in a homogeneous asset pricing model.
Consider the simplest model

xt = R−1Etxt+1 (27)

where xt and Etxt+1 are the deviation and expected deviation from fundamental price and 0 <
R−1 < 1 is the (constant) discount factor. Under perfect foresight the model becomes xt = xt+1/R.
One can compute MSV solutions of the form xt = bxt−1. Substituting this solution in the model
gives xt = (b2/R)xt−1. This induces a so-called T-map: T (b) = b2/R, a concept extensively used in
the adaptive learning literature (Evans and Honkapohja, 2001). The fixed points of the T-map are
b = 0 and b = R, corresponding to the two perfect foresight MSV solutions. To gain understanding of
the stability properties of the system we can, similar to our iterative method from Section 3, look at
a sequence of b-values under the T-map: bk+1 = T (bk).

15 A simple graphical analysis of the T-map
shows that when the initial value b0 < R, bk converges to 0, while b0 > R leads to bk diverging to ∞.
This simple example illustrates that (i) MSV solutions with perfect foresight exist, and (ii) iteration
of the T-map shows that b = 0 is a stable MSV solutions, while b = R is an unstable MSV solution.
Iterations of the T-map are thus path-dependent on whether initial conditions are smaller or larger
than the threshold b0 = R. Iteration of the T-map is similar to the numerical approximation of the
policy function g by a the limiting function gk of the sequence g0, g1, · · · , gk, etc. In fact, when
applying our numerical algorithm with steady state function x̄ = 0, the sequence of numerical maps
gk exactly coincides with the sequence of T-maps, i.e. gk = T k.16

As a second linear example, consider a 3-type asset pricing model with rational agents versus
trend-followers versus fundamentalists. To allow for complex eigenvalues the trend-extrapolating rule
has an extra lag xt−2, and is of the form xe

2,t+1 = xt−1 + γ(xt−1 − xt−2). This generates oscillatory
behaviour in the system. The fractions of the three types are nRE , nγ and n0 = 1− nRE − nγ and
they are – for now – fixed. The linear dynamic model is given by:

Rxt = nRExt+1 + nγ

(
xt−1 + γ(xt−1 − xt−2)

)
+ n0 · 0. (28)

Assuming nγ = 0.75 and R = γ = 1.1, Figure 1 illustrates four cases:

1. For nRE = 0 there are no rational agents and trend-followers and fundamentalists share the
market. Trend-followers tend to overshoot and, as a result the price oscillates but converges
quickly to its fundamental value.

2. Replacing a small fraction of the fundamentalist by rational agents, with nRE = 0.1, leads
to stable oscillations that converge slowly to the fundamental value (orange curve). This
shows that rational agents are destabilising compared to fundamentalists, because rational
agents anticipate the oscillatory behavior caused by trend-followers, thereby amplifying their
behavior.

3. The case nRE = .16 has a larger share of rational agents and fewer fundamentalists and shows
a perfect oscillation (green plot). With the trend-extrapolating coefficient γ = R this leads
to a system with complex eigenvalues on the unit circle. Comparing with the previous case,
rational agents further amplify the persistent oscillations caused by trend-followers.

4. Any further increase of nRE > .16 (not in the figure) at the cost of fewer fundamentalists
will cause the complex eigenvalue to cross the unit circle, leading to two eigenvalues with

15In the learning literature, this concept is known as iterative E-stability.
16Note that because the model in (27) does not have any state variables, a limiting policy function g consistent

with our exposition in Section 3 would simply be a constant: gk = c and independent of the histroy Xt−1.
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Figure 1: Time series of 3-type model with rational versus trend-extrapolating rule versus fundamentalists. Stable
oscillations for nRE = 0 and nRE = 0.1 (blue and orange) and persistent oscillations for nRE = 0.16 (green). When
rational agents replace fundamentalists (nRE = 0.1) slowly converging oscillations arise (orange), because rational
agents anticipate the presence of trend-followers.

modulus larger than one. This violates the Blanchard-Kahn conditions and renders the rational
expectations system indeterminate.

This linear example provides some intuition about the effect of rational agents in a heterogeneous
(linear) world. In the presence of non-rational agents, rational agents are destabilizing compared
to fundamentalists, because they take the boundedly rational behaviour into account. In the next
section the fractions of these different types of agents become time varying, depending on the relative
success of each strategy. With agents switching between different strategies, the system becomes
highly nonlinear and to simulate the model we need to rely on our numerical solution technique.

5 Nonlinear simulations in the three-type model

In this section we apply the numerical solution method to the asset pricing model with heterogeneous
expectations and use it to study the survival of (ir)rational beliefs. We consider two typical examples
to illustrate the complex dynamical behavior in the model. The first example is the 3-type model
with rational agents versus optimistic and pessimistic biased agents, as introduced in Section 2.
This example exhibits periodic boom and bust cycles along which the fractions of rational and
non-rational agents co-evolve over time. The second example is a 2-type model with rational agents
versus trend-extrapolators, which exhibits chaotic bubble and crash dynamics as discussed in Section
6. In both examples rational agents can not drive out irrational agents, but the fractions of rational
and irrational beliefs rather co-evolve endogenously causing boom and bust cycles.

5.1 An example with biased agents and limit cycles

Consider the 3-type example with rational agents versus optimistic and pessimistic biased agents
as given in (11), with time varying fractions given by (12) and (13). Since the fitness measure of the
biased types includes two lags of x, this 3-type system is of the form

xt = f(xt+1, xt−1, xt−2). (29)

There are three behavioral parameters: the intensity of choice β, the bias b and the costs C, whose
benchmark values are given in Table 2. For our benchmark, the parameters β and b are normalized
to 1 and the costs for rational expectations are set to zero. These parameters are exemplary and, due
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to the simplistic nature of our model, not necessary aligned to empirical results from the behavioral
literature. Independent of the parametrisation, there exists a trivial fundamental steady state x =
x̄ = 0 where the steady state fractions n̄2 = n̄3 of both biased agents is equal. Througt this section,
we only consider this fundamental steady state for our solution g.

R β b C
0.99−1 1 1 0

Table 2: Benchmark parametrisation

Let us first explore the potential dynamics of the system by varying the intensity of choice
parameter β. The bifurcation diagram in Figure 2 shows the long-run dynamics of price deviations
from fundamental as a function of the intensity of choice β.17 For low values of β, the simulations
show that the fundamental steady state is stable and the solution converges to it. As β increases, the
steady state becomes unstable and a limit cycle emerges after a Hopf-Bifurcation at β ≈ 1.2. The
amplitude of these cycles increases with β; for higher values of β a stable 4-cycle arises. Figure G.27
in Appendix G illustrates the policy functions g for different values of β graphically. Phase diagrams
can be found in Appendix F.

Figure 3 shows a similar bifurcation diagram for the bias parameter b: when the bias b increases,
the system destabilizes through a Hopf-bifurcation and cycles of increasing amplitude arise as the
bias increases. For large values of the bias b a stable 4-cycle arises.

Figure 2: Bifurcations w.r.t. the intensity of choice β.
All other parameters as in Table 2. Required minimal
precision is ϵ = 1e− 14.

Figure 3: Bifurcations w.r.t. bias b. All other parameters
as in Table 2. Required minimal precision is ϵ = 1e− 14.

To understand the cycles in more detail, Figure 4 shows time series of the price deviations from
the fundamental, the fractions of the three agent types, the profits of each of the three types and the
realized profits (i.e. the profit of each type multiplied by the fraction of that type).18 The dynamics

17For each bifurcation diagram below and in Section 6 we draw a linear sequence of 1000 parameter values from
the shown interval. For each draw, we use our method to simulate a time series of 2,000 periods, of which we discard
the first 1,000 iterations as convergence period.

18The asset market is a zero sum game, that is,
∑

h nhtπh,t+1 = 0. Hence, any positive profits by one type must be
balanced by losses by another type. In case of information gathering costs for rational agents, aggregate net profits
sum to −nRC, i.e. minus the aggregate costs.
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of prices and fractions is (almost) periodic and the fractions of the three types co-evolve over time.
Moreover, the fractions of optimists and pessimists fluctuate significantly stronger than the fraction
of rational agents.19 The reason is that the realized profits of rational agents always lie between the
profits of the optimistic and the pessimistic traders: while the price forecast of rational agents is
always perfect, their profit according to (12) – and hence their fraction – depends on the squared
realized excess return (xt − Rxt−1)

2. The realized profit of optimists or pessimists is given by the
realized excess return times their asset demand. In a booming market optimistic traders will then
earn higher profits than rational agents since they have overestimated the change in price and hence
bought more of the risky asset than rational agents. During a bust, the opposite holds: pessimistic
traders buy less (or short the risky asset more) and will earn higher profits than rational agents. As
a result, the fraction of rational agents always lies between the fractions of optimists and pessimists.

For high values of the intensity of choice this effect becomes stronger, as illustrated in Figure
5 for β = 500. For such high intensity of choice, in each period the market is fully dominated by
either optimists or pessimists, with the fraction of rational agents always being (almost) 0. In the
limiting case of β = ∞ in each period the fraction of optimists or pessimists is either 0 or 1, while
the fraction of rational agents is 0. Asset prices then follow a 4-cycle subsequently dominated for
two periods by optimists and the other two periods by pessimists.

Figure 4: Time series for β = 2.0. Left: Prices and the evolution of the fraction of the different trader types over time.
Right: Profits of the different trader types. Theoretical profits are as defined in Equation (12). Realized profits are
theoretical profits multiplied by the fraction of each type respectively. All other parameters as in Table 2. Required
minimal precision is ϵ = 1e− 14.

This 3-type example illustrates that rational agents do not generally drive out boundedly rational
agents from the market. If agents tend to switch to more successful strategy quickly, there is always
a fraction of boundedly rational agents that is sufficiently successful to gather a share of the market.
Any rational agent then adjusts his belief accordingly and by doing so amplifies the boundedly
rational traders’ beliefs. In the limit of an infinite intensity of choice, in fact the rational agents are
driven out of the market and the price exhibits booms and busts in which optimistic and pessimistic
traders subsequently dominate the market. These boom and bust cycles arise even in the absence
of any information gathering costs for rational agents. Our numerical solution method easily picks
up these boom and bust cycles with endogenously fluctuating rational and non-rational beliefs.

19Note that, due to the symmetric construction of optimistic and pessimistic traders, the dynamics of optimists and
pessimists are in fact symmetric.
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Figure 5: Time series for very high β = 500. Left: Time series of prices and the evolution of the fraction of the
different trader types over time. Right: Profits of the different trader types. Theoretical profits are as defined in
Equation (12). Realized profits are theoretical profits multiplied by the fraction of each type respectively. All other
parameters as in Table 2. Required minimal precision is ϵ = 1e− 14.

5.2 Comparing rational and fundamentalist traders

Fundamentalists traders are agents who believe that the price will always return to its funda-
mental value or, stated differently, who believe that the price deviation from fundamental will be
0. In a homogeneous world, fundamentalists are fully rational and the zero steady state would
be the rational solution. In their asset pricing model with heterogeneous beliefs, BH98 focused
on backward-looking expectations rules and considered many examples with fundamentalists versus
chartists. However, BH98 did not consider the global dynamics of examples with forward-looking ra-
tional agents as we do here enabled by our numerical solution method. A natural question is whether
in a heterogeneous agents model fully rational agents are stabilizing or destabilizing compared to
fundamentalist agents.

To address the question, we compare the dynamics of two 3-type models. The first is our model
with rational agents versus optimistic and pessimistic biased agents, as before. In the second model
rational agents are replaced by fundamentalists, who always predict 0 deviation. The equilibrium
pricing equation (11) then simplifies to

Rxt = (n2,t − n3,t)b, (30)

with the modified fractions n2,t and n3,t (see BH98 for full details).
The bifurcation diagram in Figure 6 shows the long run behavior of both 3-type models as a

function of the intensity of choice β. The diagram shows that the 3-type model with rational agents
becomes unstable earlier, i.e., for lower value of the intensity of choice, than the 3-type model with
fundamentalists. Hence, rational agents are destabilizing compared to fundamentalists in this 3-type
world. The intuition is again that rational agents anticipate the presence of non-rational agents and
thus amplify the effect of a positive or negative bias. In contrast, fundamentalists always predict the
fundamental value and thus always add a stabilizing force in the presence of non-rational agents. In
summary, the fact that rational agents take into account and anticipate the behavior of non-rational
agents amplifies the destabilizing effect of these non-rational agents.

We have studied a 3-type example with rational agents versus optimists and pessimists, applying
our numerical method to (29). The numerical approximation method works very well in this 3-type
example and allows for solutions with a minimal required precision of ϵ = 1e−14. We cross-check our
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Figure 6: Bifurcations w.r.t. β. In cyan the same simulation with fundamentalists instead of rational agents. All
other parameters as in Table 2. Required minimal precision is ϵ = 1e− 14.

results with an alternative policy function iteration method in Appendix E. The alternative method
provides quantitatively and qualitatively very similar results where average and maximum EEE are
both very small. An likely reason for this is that the map f in (29) is bounded to the interval of
biases, that is, xt ∈ [−b, b]. Another reason for why the alternative method works well in the 3-type
world is, that the trajectory does not describe any sudden jumps but is – over the respective domain
– relatively smooth. In the next section we will consider a 2-type example with rational versus
a trend-extrapolating rule. This environment poses more challenges to both numerical methods,
because of the existence of explosive bubble solutions.

6 Chaotic solutions in a two-type model

We now consider another example with two trader types: rational agents vs. trend followers. Agents
can choose between the rational, perfect foresight forecast at positive information gathering costs
and a freely available trend-extrapolating forecast. Our numerical method detects chaotic bubble
and crash dynamics. During the bubble phase trend-extrapolators dominate the market, thereby
fueling the bubble. When the forecasting errors of the trend-extrapolators increase, the fraction
of rational agents increases and eventually drives prices back close to its fundamental value, after
which the story repeats and a new bubble forms.

The beliefs of trend followers are given by

EBR,txt+1 = γxt−1, (31)

where γ denotes the degree of trend extrapolation. For γ > 1 trend-followers believe that the price
deviation from the fundamental value will increase in the next period. The 2-type model with
rational versus trend-following agents is given by
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Rxt =(1− nt)xt+1 + ntγxt−1 (32)

πRE,t =(xt −Rxt−1)
2 − C (33)

πBR,t =(xt −Rxt−1)(γxt−2 −Rxt−1) (34)

nt =
eβπBR,t−1

eβπBR,t−1 + eβπRE,t−1
. (35)

Here nt is the fraction of trend-followers and 1 − nt the fraction of rational agents, who incur
information gathering costs C > 0.

Note that, since the last periods prediction of trend-followers now enters the profit equation,
there is an extra time-lag and the function f is of the form (14) and the state-space from is xt =
g(xt−1, xt−2, xt−3) as in (15), which poses additional computational challenges.

The following Lemma summarizes our theoretical result about the fundamental steady state
xt = 0 and two additional non-fundamental steady states.

Lemma 1 (Existence of a steady state for the 2-type model). Let m∗ = 1 − 2R−1
γ−1 and x∗ be the

positive solution (if any) of
x∗ =

√
z (36)

for

z =
2arctanh (m∗) /β + C

(γ − 1)(R− 1)
. (37)

Let E1 = (0, tanh(−βC/2)), E2 = (x∗,m∗) and E3 = (−x∗,m∗).

1. For γ < R, E1 is the unique steady state.

2. For γ > 2R− 1, there exist the three steady states E1, E2 and E3.

3. For R < γ < 2R− 1, there are two possibilities:

(a) if m∗ < tanh(−βC/2) then E1 is the unique steady state.
(b) if m∗ > tanh(−βC/2) then E1, E2, and E3 are the steady states

Note that for the baseline simulations below, we initialize our policy function with the positive
nonfundamental steady state whenever it exists, i.e. x̄ ≡ max{0, x∗}. Throughout this section we
use the parameters from Table 3. To eliminate approximation errors as much as possible, we set the
required precision to ϵ = 1e− 14.

R β γ C
1.1 1.5 1.15 0.5

Table 3: Parametrisation for the two-type model.

6.1 Chaotic boom and bust cycles with rational traders

Figure 7 shows the bifurcation diagrams for the parameters C and γ, with R = 1.1, γ = 1.15
and C = 0.5. For low values of γ < 1.15 the solution converges to the fundamental steady state.
As γ increases, a positive stable non-fundamental steady state arises, which becomes unstable for
γ ≈ 1.172. Cycles and chaos arise for higher values of the trend-extrapolation coefficient. Figure 8
shows the respective bifurcation diagram with respect to β. The figure suggests chaotic bubble and
crash dynamics for values of β larger than 2.490., while Figure 7 (left) shows a similar bifurcation
route to chaos as the cost parameter C increases.

The respective time series of prices, fractions and profits are displayed in Figure 9. The solution
starts close to the fundamental value 0, with the fraction of trend followers larger than the fraction
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Figure 7: Bifurcation diagrams w.r.t. cost parameter C (left) and γ (right). All other parameters as given in Table
3. Required minimal precision is ϵ = 1e− 14.

of rational agents because of the information gathering costs. With trend-followers dominating and
sufficiently aggressive, prices increase exponentially. At some tipping point, however, the fraction of
trend extrapolators drops to almost zero and all agents switch to the rational strategy. The asset
bubble bursts and prices drop back close to the fundamental steady state 0, from where the process
repeats. Phase diagrams are provided in Appendix F.

A graphical illustration of the policy function underlying the dynamics displayed in Figure 9 is
shown in Figure 10. The mapping has three regions, independently of the value of xt−3: for low
values of xt−1 and high values of xx2 the function maps to a low xt (region 1). Likewise, high values
of xt−1 and low values of xt−2 also map to low values of xt (region 2). Along the diagonal of the
(xt−1, xt−2) plane, the function maps to increasing values of xt (region 3). In the bubble phase, the
trajectory of Figure 9 travels along this diagonal. When xt−3 increases (as xt rises), region 1 shrinks
as region 2 grows and moves towards the diagonal (illustrated in the plane in the middle). When
the trajectory is approaching its peaking point (right plane in Figure 10), region 1 disappeared and
region 2 takes almost half of the image, thereby mapping xt back close to the fundamental steady
state. The figure also illustrates the complexity of the underlying problem, which our method is
able to capture very well.

Intuitively it is clear that the fundamental steady state with xt = 0 for all t, is unstable once
γ > R and C > 0 and β large enough. If this is the case, any increase of C > 0 or β will shrink the
fraction of rational agents at the steady state and the extrapolative forces will therefore dominate
around xt = 0. This finding is confirmed by the time series and bifurcation diagrams.

To get some understanding of the complicated dynamics it is useful to consider the case β = ∞,
that is, the case where all agents switching immediately to the better performing forecasting rule.
At the fundamental steady state all agents are trend-followers, because of the costs for rational
expectations. When γ > R, C > 0 and β = ∞ the fundamental steady state is locally unstable, but
globally stable, that is, after an unstable bubble phase solutions converge to the fundamental steady
state. This implies existence of homocinic orbits, that is, numerical solutions that converge to the
fundamental steady state both forward and backwards in time. As stressed by Brock and Hommes
(1997) the existence of homoclinic orbits implies complex, chaotic dynamics. The following theorem
substantiates our numerical findings.

Theorem 2 (Homoclinic Orbit). Let the intensity of choice β = ∞, costs C > 0, the trend-coefficient
γ > R and γ ̸= R2. Then the 2-type system has a homoclinic orbit.
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Figure 8: Bifurcations w.r.t. β. All other parameters as given in Table 3. Required minimal precision is ϵ = 1e− 14.

Proof. The profits of rational agents and trend-followers are given by

π1,t =(xt −Rxt−1)
2 − C (38)

π2,t =(xt −Rxt−1)(γxt−2 −Rxt−1) (39)

The switching depends on the sign of the profit difference:

∆πt = π1,t − π2,t = (xt −Rxt−1)(xt − γxt−2)− C. (40)

Since β = ∞, close to the fundamental steady state all agents will be trend-followers, because the
first term of the RHS is close to zero and the information gathering costs for rationality dominate.
When all agents are trend-followers the pricing equation simplifies to xt = (γ/R)xt−1. The funda-
mental steady state is unstable when γ > R, with the unstable eigenvector given by

(
(γ/R)2, γ/R, 1

)
.

Take an initial state close to the fundamental steady state along the unstable eigenvector:

x−2 = ε, x−1 = ε(γ/R), xt = ε(γ/R)2. (41)

As long as the fraction nt,2 = 1, the solution follows the unstable eigenvector and at time t, xt =
ε(γ/R)t+2. To determine the point in time when agents switch to rational expectations, we need to
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Figure 9: Time series for β = 2.5, b = 0.0, γ = 1.15, R = 1.1 and C = 0.5. Left: Time series of prices and the
evolution of the fraction of the different trader types over time. Right: Profits of the different trader types. Theoretical
profits are as defined in Equation (12). Realized profits are theoretical profits multiplied by the fraction of each type
respectively. Required minimal precision is ϵ = 1e− 14.

Figure 10: Heatmap for slices of the policy function g for the chaotic time series in Figure 9. The mapping of f
is nontrivial and not smooth on the relevant domain. For this figure we use the policy function iteration method
outlined in Appendix C with a grid of 300× 300× 300 points to obtain a high resolution of the image. Note that for
the dynamics of the time series this increase in precision is not relevant.

look at the profit difference between rational expectations and the trend-following rule at date t:
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For γ ̸= R2 it holds that
(

γ−R2

R

)2

> 0 while
(
γ
R

)2t+2
increases exponentially in t whenever γ > R.

This means that eventually ∆πt > 0 and, given β = ∞, all agents will then switch to rational
expectations and the price will jump to the fundamental steady state. ■

Keeping Theorem 2 in mind, let us summarize the economic intuition behind the dynamics in
Figures 8 - 9, thereby explicitly referring to the empirical findings of Greenwood and Shleifer (2014);
Greenwood et al. (2020) and others. If price deviations from the fundamental are small, profits
are low and the cost for the rational predictor is high relative to profits. This supports the rise
of extrapolating forces, which are reinforced by the small fraction of rational agents. As prices
are expected to rise, agents are willing to further indebt to finance asset purchases and credit will
grow alongside with asset prices. As prices rise, the information costs (the costs of rationality)
become negligible relative to profits. Rational agents however know that prices cannot continue to
grow forever. Their foresight of the burst of the bubble in the future causes a small deviation of
prices from the explosive trajectory. This however constitutes a relatively large loss in profits for
extrapolating agents, which triggers a large fraction of agents to be willing to pay the costs of the
rational predictor. An increase of the fraction of rational agents finally leads to the burst of the
bubble.

6.2 Multiple attractors and the role of expectations anchoring

Let us have a closer look at values of β between 1.6 and 2.3, leaving all other parameters as
before. For this range of parameters we detect multiple valid rational expectations equilibria with
fundamentally different price dynamics. Equilibrium selection depends on whether long-term ratio-
nal expectations are anchored around the fundamental steady state (x = 0) or the non-fundamental
steady state at x∗: if rational expectations are anchored around the fundamental steady state, we
get similar dynamics as in subsection 6.1 with boom-burst dynamics in the intermediate region
between 0 and x∗. When expectations are anchored at the nonfundamental steady state x∗, the
nonfundamental steady state is stable and stationary.

In what follows we understand an anchor to long-term expectations as being the expected finite
value of x when time goes to infinity. Technically, for our method x̄ is the initial guess at time t
for every future state xt+1, xt+2, . . . , xt+∞. These guesses are alternated and corrected during the
iterative procedure, and the iteration halts once adding xt+K = x̄ does not significantly change
the evaluation of xt (through xt+1). That means the anchor x̄ is also the finitely final value of x
when time approaches infinity, and all xt+s, s < K are chosen such that the trajectory leads in the
neighborhood of x̄.

Consider a value of β = 2.14 and note that for the given parameters it holds that R < γ < (2R−1)
andm∗ > tanh(−βC/2). This implies that E2 and E3 are the two additional non-fundamental steady
states with x∗ ≈ ±3.426. In Figure 11 (left) we plot the time series of xt for the chosen value of
β = 2.14. The blue line depicts the dynamics from the bifurcation diagrams (Figures 7 and 8),
for which the guesses on future expectations are initialized in the fundamental steady state, i.e.
x̄ = 0. The price first approaches a value slightly below 2.4 and then shows erratic local boom-
bust dynamics that are hard to predict. The orange line shows the same simulation exercise but
initializing future expectations in the non-fundamental steady state x∗, i.e. x̄ ≡ x∗. Although this
simulation is started from the same initial state X0, the trajectory converges to x∗, which is a locally
stable steady state. Hence, the system is sensitive to the path of future expectations, which may
not be unique but exhibit multiple attractors. Anchoring future expectations around x̄ is a device
of equilibrium selection which can heavily affect the global dynamics of f .

To understand this feature, first note that both trajectories indeed constitute valid rational
expectations equilibria. For both setups, the convergence criterion of the iterative procedure is
reached and agents predict the future trajectory of prices with very high precision. After the time
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Figure 11: Left: time series for β = 2.14, all other parameters as in Table 3. Right: corresponding fractions of
trend followers. For the blue line, the policy function is initialized in the unstable fundamental steady state. The
policy function of the orange line is initialized at the locally stable non-fundamental steady state and exhibits no
approximation errors. Both trajectories origin from the same initial conditions X0. Required minimal precision is
ϵ = 1e− 8.

series is initialized with X0, prices grow with a growth rate ϕ = xt/xt−1 ∈ (1, γ/R).20 At time
t = T̄ , similarly to the chaotic example from the last subsection, rational agents believe that prices
will not continue to rise beyond the threshold value around 2.4. This belief is self-fulfilling through
the expectations feedback and prices drop. As a consequence, more agents will adapt the rational
expectations forecast and prices will collapse further in period t = T̄ + 1, confirming the rational
forecast in period t = T̄ . So far the dynamics were similar as in Subsection 6.1. The arising
oscillating patterns are self-sustained and driven by the fact that the beliefs of rational agents are
anchored below the threshold value close to 2.4.

Consider now the case in which prices converge to x∗. As above, following X0 the belief of
rational agents that prices will continue to rise is also self-fulfilling. As rational expectations are
anchored at x∗, the price will not collapse at t = T̄ but increase further, finally converging to x∗.
This non-fundamental steady state is locally stable because in x∗ the weight nt on the belief of
trend-followers exactly chancels out extrapolating forces γ. It must hold that

1− n∗

R
+

n∗γ

R
= 1 ⇐⇒ n∗ =

R− 1

γ − 1
. (42)

In summary, we find that not only are price beliefs self-fulfilling, but also the belief of the respec-
tive steady state is an important feature of a rational expectations equilibrium, and the anchoring of
beliefs can have essential impact on the long-run dynamics of a system, if such system features mul-
tiple attractors. Our exercise adds an important policy implication to the literature on expectation
anchoring and multiple equilibria (see Section 1): if expectations are anchored around an unstable
steady state, complicated dynamics can arise. If policy institutions can influence expectations, e.g.
through forward guidance policies as conducted by the US Federal Reserve between 2008 and 2015,
a successful re-anchoring of expectations to an alternative steady state has the power to stabilize
the price dynamics.

7 Conclusion

In this work, we study the dynamics of a simple financial market model that is characterized
by the coexistence of perfectly rational forward-looking and boundedly rational backward-looking

20Note that it can be shown that for finite β > 0 and Xt, the growth rate of the boom-path (i.e., the growth rate
of the trajectory that leads away from the fundamental steady-state) is not constant.
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agents. The relative share of each type of agent varies depending on their market performance,
which gives rise to complicated endogenous bubble and crash dynamics. To find solutions to such a
highly nonlinear heterogeneous agents model we develop and employ a novel and efficient iterative
numerical method.Once the fundamental steady state is unstable, our numerical method is able to
find (unstable) periodic and chaotic rational expectations equilibria.

Rational agents anticipate the trend-extrapolating behavior of non-rational agents and therefore
amplify instabilities caused by boundedly rational agents. Trend-extrapolators magnify small devi-
ations from the fundamental price. The nontrivial interaction between rational forward-looking and
non-rational backward-looking agents leads to bubble and crash dynamics with time-varying impact
of rational and irrational behavior. As prices increase, rational agents anticipate and stabilize large
bubbles, driving prices back to fundamental value.

Our heterogeneous agents model exhibits multiple equilibria which depend on the expected finite
value when time goes to infinity. When future expectations are anchored on fundamental value
asset price fluctuations exhibit bubble and crash patterns. In contrast, when finite expectations are
anchored at a high non-fundamental steady state, this belief becomes self-fulfilling and prices are
larger than the fundamental price in the long run.

Our iterative method for numerically solving rational expectations equilibria in highly nonlinear
heterogeneous agents models with rational and non-rational agents can be applied in univariate
settings with many lags. Applying our new method to solve for complex rational expectations
equilibria in multi-variate stochastic models in macroeconomics and finance is an important topic
for future research. .

References

Aruoba, S.B., Cuba-Borda, P., Schorfheide, F., 2018. Macroeconomic dynamics near the zlb: A tale
of two countries. The Review of Economic Studies 85, 87–118.

Atkinson, T., Richter, A.W., Throckmorton, N.A., 2019. The zero lower bound and estimation
accuracy. Journal of Monetary Economics .

Ball, L., Mazumder, S., 2018. A Phillips Curve with Anchored Expectations and Short-Term Un-
employment. Journal of Money, Credit and Banking 51, 111–137. doi:10.1111/jmcb.12502,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jmcb.12502.

Barberis, N., Greenwood, R., Jin, L., Shleifer, A., 2018. Extrapolation and bubbles. Journal of
Financial Economics 129, 203–227.

Beaudry, P., Galizia, D., Portier, F., 2020. Putting the cycle back into business cycle analysis.
American Economic Review 110, 1–47.

Benhabib, J., Farmer, R.E., 1999. Indeterminacy and sunspots in macroeconomics. Handbook of
macroeconomics 1, 387–448.

Black, F., 1986. Noise. The journal of finance 41, 528–543.

Blanchard, O.J., Kahn, C.M., 1980. The solution of linear difference models under rational expec-
tations. Econometrica: Journal of the Econometric Society , 1305–1311.

Blume, L., Easley, D., 2010. Heterogeneity, selection, and wealth dynamics. Annu. Rev. Econ. 2,
425–450.

Boehl, G., 2022. Monetary policy and speculative asset markets. European Economic Review 148,
104250.

25

http://dx.doi.org/10.1111/jmcb.12502
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/jmcb.12502


Bordalo, P., Gennaioli, N., Ma, Y., Shleifer, A., 2020a. Overreaction in macroeconomic expectations.
American Economic Review 110, 2748–82.

Bordalo, P., Gennaioli, N., Porta, R.L., Shleifer, A., 2020b. Expectations of fundamentals and stock
market puzzles. Technical Report. National Bureau of Economic Research.

Branch, W.A., McGough, B., 2010. Dynamic predictor selection in a new keynesian model with
heterogeneous expectations. Journal of Economic Dynamics and Control 34, 1492–1508.

Branch, W.A., McGough, B., 2018. Heterogeneous expectations and micro-foundations in macroe-
conomics, in: Handbook of computational economics. Elsevier. volume 4, pp. 3–62.

Brock, W.A., Hommes, C.H., 1997. A rational route to randomness. Econometrica , 1059–1095.

Brock, W.A., Hommes, C.H., 1998. Heterogeneous beliefs and routes to chaos in a simple asset
pricing model. Journal of Economic dynamics and Control 22, 1235–1274.

Cao, D., 2018. Speculation and financial wealth distribution under belief heterogeneity. The Eco-
nomic Journal 128, 2258–2281.

Carroll, C.D., 2006. The method of endogenous gridpoints for solving dynamic stochastic optimiza-
tion problems. Economics letters 91, 312–320.

Coibion, O., Gorodnichenko, Y., 2015. Is the Phillips Curve Alive and Well after All? Inflation
Expectations and the Missing Disinflation. American Economic Journal: Macroeconomics 7, 197–
232. URL: https://ideas.repec.org/a/aea/aejmac/v7y2015i1p197-232.html.

Coleman, W.J., 1990. Solving the stochastic growth model by policy-function iteration. Journal of
Business & Economic Statistics 8, 27–29.

Coleman, W.J., 1991. Equilibrium in a production economy with an income tax. Econometrica:
Journal of the Econometric Society , 1091–1104.

Cootner, P.H., 1964. The random character of stock market prices .

De Long, J.B., Shleifer, A., Summers, L.H., Waldmann, R.J., 1990a. Noise trader risk in financial
markets. Journal of political Economy 98, 703–738.

De Long, J.B., Shleifer, A., Summers, L.H., Waldmann, R.J., 1990b. Positive feedback investment
strategies and destabilizing rational speculation. the Journal of Finance 45, 379–395.

Evans, G.W., Honkapohja, S., 2001. Learning and expectations in macroeconomics. Princeton
University Press.

Fair, R.C., Taylor, J.B., 1980. Solution and Maximum Likelihood Estimation of Dynamic Nonlinear
RationalExpectations Models. Technical Report. National Bureau of Economic Research.

Fair, R.C., Taylor, J.B., 1983. Solution and maximum likelihood estimation of dynamic nonlinear
rational expectations models. Econometrica: Journal of the Econometric Society , 1169–1185.

Friedman, M., 1953. Essays in positive economics. University of Chicago Press, Chicago. URL:
http://www.worldcat.org/oclc/38499088.

Gali, J., 2014. Monetary policy and rational asset price bubbles. American Economic Review 104,
721–52.

Galizia, D., 2021. Saddle cycles: Solving rational expectations models featuring limit cycles (or
chaos) using perturbation methods. Quantitative Economics 12, 869–901.

26

https://ideas.repec.org/a/aea/aejmac/v7y2015i1p197-232.html
http://www.worldcat.org/oclc/38499088


Gerstner, T., Griebel, M., 1998. Numerical integration using sparse grids. Numerical algorithms 18,
209.

Grandmont, J.M., 1985. On endogenous competitive business cycles. Econometrica: Journal of the
Econometric Society , 995–1045.

Grandmont, J.M., 1998. Expectations formation and stability of large socioeconomic systems. Econo-
metrica , 741–781.

Greenwood, R., Hanson, S.G., 2013. Issuer quality and corporate bond returns. The Review of
Financial Studies 26, 1483–1525.

Greenwood, R., Hanson, S.G., Shleifer, A., Sørensen, J.A., 2020. Predictable Financial Crises.
Technical Report. Harvard Business School Working Paper.

Greenwood, R., Shleifer, A., 2014. Expectations of returns and expected returns. Review of Financial
Studies 27, 714–746.
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Appendix A Proof of Proposition 1

The proof follows directly from the structure of the problem. At the perfect foresight path{
xt+s

}∞
s=0

it must be that
xt+s = f(xt+s+1, xt+s−1) (A.1)

for all s ≥ 0. Define the n-th iterate of the law-of-motion f as

fn : (xu−1, xu+n+1) → xu+n. (A.2)

We can always use implicit functions to find a function fn that satisfies this definition. E.g., we can
construct f2 via:

xu+1 = f2(xu+2, xu−1), (A.3)

= {xu+1 : f(xu+2, f(xu+1, xu−1))− xu+1 = 0} , (A.4)

and then continue to define f3 recursively using the same principle.
Now assume that there is a K such that

∂xt

∂xt+K
= µ, (A.5)

where µ is very small and goes to zero as K goes to infinity. This is clearly equivalent with

∂fK−1

∂xt+K
= µ, (A.6)

which in turn implies that not only xt+K , but also the infinite time path after xt+K−1 is irrelevant

up to a very small µ for time t. This finally implies that any
{
xt+s

}K−1

s=0
is a perfect foresight path

if (A.1) and (A.6) are satisfied.
Regarding our Proposition 1, it is apparent by construction that any x̂i,k for k < K satisfies

(A.1). If adding x̂K−1,K ̸= x̄ does not change x̂1,K relative to x̂1,K−1, it must be that (A.6) is
satisfied and x̂0,K lies on the perfect foresight path.
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Appendix B Proof of Theorem 1

For this proof, we first focus on a simplified iterative scheme and start out with a purely linear
mapping. We then use the conjectures from the linear mapping to find sufficient conditions for
nonlinear mappings.

Let us generalize the implicit law of motion from (14) to allow for multivariate systems. Assume

zt = f(zt+1, zt−1, . . . zt−l), (B.1)

where zt is a n× 1 vector. Assume for now the function f to be linear

zt = Bzt+1 + A1zt−1 + · · ·+ Amzt−m (B.2)

where B,A1,A2, . . . are n× n matrices. Let the steady state be z̄ = 0 and the initial state be given
by z0. For linear models it is easy to express this as

xt = Axt−1 +Bxt+1, (B.3)

where xt is now a (n+ l− 1)× 1 vector and A,B are (n+m− 1)× (n+m− 1) matrices. Let us first
study the case where we assume the system to be back in steady state in period t = 2, implying that
we will only iterate over xt and xt+1. It is easy to show that when limiting k ≤ 2 but continuing to
iterate until K we have that

x̂t,1 =Ax0, (B.4)

x̂t,2 =(A+BA2)x0, (B.5)

x̂t,3 =(A+BA2 +BABA2)x0, (B.6)

... (B.7)

x̂t,K =

K∑
i=0

(BA)iAx0, (B.8)

where (BA)i denotes the matrix power. The fact that the term
∑K

i=0(BA)i is a geometric series of
matrices can be used to simplify the above to

x̂t,K = (1−BA)−1
(
1− (BA)K+1

)
Ax0, (B.9)

and further to state that
lim

K→∞
x̂t,K = (1−BA)−1Ax0, (B.10)

which requires that |BA| < 1, where, for convinience, we denote the spectral radius of a matrix by
| · |. This means all the eigenvalues of the matrix BA must lie inside the unit circle.

Relaxing the restriction that k ≤ 2 will lead to a far more complex expression than (B.9), with
terms involving higher-order powers (up to the power of K) of either A or B and various matrix
products of both. Each of these terms of BkAl (for any k, l ∈ 0, . . . ,K) must converge if K → ∞.
Since |BA| < 1 ⇏ |BkAl| < 1 for any (k, l) ∈ N2

+, but {|A| < 1 ∧ |B| < 1} ⇒ |BkAl| < 1, this leaves
us to state

|A| < 1 ∧ |B| < 1 (B.11)

as the only tractable sufficient conditions for convergence of our method for linear systems.
For nonlinear mappings this can be abstracted to the condition that f must be a contraction

mapping with regard to xt+1 and xt−1,xt−2, . . . , i.e. the eigenvalues of the Jacobians must lie inside
the unit circle. Denote the forward looking Jacobian matrix at time t as JA

t and its backward looking
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pendant as JB
t . The nonlinear generalization of (B.11) then requires that

|JA
s | < 1 ∧ |JB

s | < 1 ∀s ≥ t. (B.12)

For the case in which the forward looking system is univariate it is that JA
t ≡ ∂f

∂xt+1
and the Lemma

follows.
Let us emphasize that this is a sufficient condition for convergence, but by no means necessary.

In particular, it rules out any non-stationary mapping with chaos or cycles, which is exactly what
we are interested in. For these, it must clearly be the case that the eigenvalues of the Jacobians at
some point in time are larger than unity.

For the complex univariate processes discussed in the main body, it is easy to see that ∂f
∂xt+1

∈
(0, 1/R) always, and hence f is a contraction mapping with respect to xt+1. Convergence of our
method for the examples presented in this paper hence depend on whether the state transition in
f is explosive or not, which we show computationally by presenting the Euler equation errors (see
Appendix E).

Appendix C Alternative solution method: policy function iteration

Additionally to the method outline in Section 3 we use a computational procedure that is based
on the method of policy function iteration (Coleman, 1990, 1991) to solve for the rational expectation
equilibrium.

Recall from Section 3 that our problem is to find a function g that satisfies

g(xt−1, xt−2, xt−3) = f(g(g(xt−1, xt−2, xt−3), xt−1, xt−2), xt−1, xt−2, xt−3). (C.1)

Define Y = (y1, y2, . . . , ym) the vector of m grid points for each dimension of f and let Y = Y ×Y ×Y
be the grid on which g is defined. Hence, g resides on a cube in R{m×m×m}. Initialize the procedure
with g0. Then, given the kth iterate gk we can use (20) to find the (k + 1)-iterate gk+1:{

gk+1(z1, z2, z3) = f(gk(gk(z1, z2, z3), z1, z2), z1, z2, z3)|zi ∈ Y for every i ∈ {1, 2, 3}
}
. (C.2)

If f is well behaved, i.e. f is continuous with bounded derivative on its domain, a reasonably
chosen norm of (gk+1 − gk) converges to zero when k goes to infinity. Halt the iteration once
∥gk+1 − gk∥ < ε for some sufficiently small ε. The limiting function gK then approximates the true
state-space representation g and can be used to simulate the global dynamics. However, in this
paper we consider highly nonlinear maps and the dynamics of f may be unstable for some regions
in its domain Y. E.g. for some vectors of initial states, f may exhibit only explosive solutions and
the iterative procedure will diverge for these vectors. Such instabilities are indeed quite common
for the functions we consider due to the possible existence of infinite bubble solutions. Divergence
for some regions of the state space does however not rule out the existence of bounded solutions for
other regions.

Given that an overall measure of convergence of the complete policy function may fail to display
local convergence for some regions of the grid, we require a convergence measure that is insensitive
to this problem. We are interested in the (long run) dynamics for the relevant domain given a vector
of initial values X0 = (x0, x−1, x−2) and aim to find the solution given these initial values. Given
(20), a solution for x1 = g(X0) also implies finding a solution for x2 = g(X1) as g(X0) = f(x2, X0).
Recursively, finding a solution for x1 = g(X0) hence implies solving for the complete relevant future
path of x, given the initial state X0. That means that a sufficient local convergence criterion is

|gk+1(X0)− gk(X0)| ≤ ε, (C.3)
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for a very small ε.21 We provide an assessment of accuracy and numerical stability based on average
and maximum Euler equation errors.

A second important practical matter is the choice of grid points. A growing literature treats
sophisticated methods for the choice of an appropriate grid (see e.g. Gerstner and Griebel, 1998;
Judd et al., 2014). However, these methods are not particularly useful for our case as sometimes,
some variables are highly cross-dependent, and sometimes they are not. This makes it hard to assign
a higher density of grid points to some regions of the grid. It is also hard to ex-ante identify the
necessary support of the grid because the amplitude of potential cycles may depend on the parameter
choice. Endogenous grid methods (e.g. Carroll, 2006) are not particularly useful because the strong
nonlinearities in our model impose a challenge on the convergence of the optimal choice of grid points
themselves. Lastly, we can not use grids that put more weight to some regions of the state space
than others for two reasons. First, because we can not identify these regions ex-ante.22 Second, even
if we can ex-ante identify regions that are in particular relevant for the trajectory following X0, it
might still be necessary to have a sufficiently dense grid in regions that are not actually close to this
trajectory, as these regions may be important for convergence of the iterative procedure.

As a result, we only consider Cartesian grids. We initialize the grid with a comfortable support
(y0, ym), iterate on it for a small number of times and use the last iteration to simulate the model.
We then shrink the grid to fit the bounds of the simulated time series plus some leeway.23 We repeat
this procedure until (min{gk(X0)}T0 ,max{gk(X0)}T0 ) ≈ (y0, ym). For the bifurcation diagrams in
the following section we chose m = 100. This means for every parameter value considered in the
bifurcation diagram we must find g which is represented on a grid of one million vectors. As all the
examples we consider have a steady state at zero, we initialize the map g0 ≡ 0 with zeroes. As we
will discuss in Section 6, the choice to initialize g0 at a certain steady state focal point can have
implications for convergence and steady state selection.

Appendix D Rational expectations vs. the backward-consistent representation

This section briefly discusses why the mapping implied by implicitly solving (1) for xt+1 does
generally lead to a different rational expectations solution than our numerical method. To fix
concepts, consider the dynamic forward looking model F : Rk+1 → R that represents the state at
time t as

xt = F (Et[xt+1], xt−1, · · · , xt−k) . (D.1)

Section 3 characterizes a generic method to find a bounded rational expectation solution to this
system.

However, some papers use a simple trick to obtain a representation of such systems that we call
the backward-consistent representation of a rational expectations system. This backward-consistent
representation simply iterates D.1 backwards by setting zt−i = xt+1−i for all i = 0, 1, 2, . . . . Doing
so results in a functional representation F̃ by means of

zt = {xt+1 : xt = F (xt+1, xt−1, · · · , xt−k)} , (D.2)

= F̃ (zt−1, · · · , zt−k−1). (D.3)

Note that the dimensionality of this representation exceeds the dimensionality of the representation
(20) of our solution method by one (k vs. k + 1 dimensions), illustrating clearly that both solution

21For all numerical experiments in this paper we chose ε = 1e− 10 and X0 = (0.1, 0.2, 0).
22For example, the grid that represents a limit cycle would need much detail close to the bounds of the limit cycle,

less detail in the center.
23Leeway is necessary because when approximated on a more fine-grained grid, g may again map beyond the bounds

of the previous simulated series. This in fact happens quite frequently.
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concepts can not be the same thing. Such representation may seem appealing because it is relatively
straightforward to obtain and, in some cases, even allows to represent the actual law of motion
in closed form. It has been argued that such backward-consistent representation is ex-post model
consistent and thus a rational expectations solution. However, the bacward-consistent method only
works in special cases and comprise fundamentally different stability properties.

In more technical language, the rational expectations solution is indeterminate if many choices
of xt would lead to the stable manifold (that is, the steady state or a stable, bounded trajectory). In
this case, the backward-consistent representation presents one of these infinitely many solutions. In
these cases it remains unclear why this particular solution should be chosen from the continuum of
solutions. The rational expectations solution is locally determinate if locally, only one xt would lead
to the stable manifold and all others would diverge to ∞. In these cases the backward-consistent
representation diverges unless an (unknown) initial state is chosen such that it exactly coincides
with a bounded rational expectations solution.

To illustrate, let us take a basic linear example of a forward looking dynamic system of the form

yt = αEtyt+1 + vt, (D.4)

vt = ρvt−1, (D.5)

Iterate (D.4) forward to Etyt+1 = αEtyt+2+Etvt+1 and use this to substitute out Etyt+1. Repeating
this step infinitely many times results in

yt = Et

∞∑
i=0

αivt+i. (D.6)

Plugging in (D.5) for vt+i = ρivt yields

yt =

∞∑
i=0

(αρ)ivt, (D.7)

=
1

1− αρ
vt, (D.8)

where the last step follows from the rule for infinite geometric series when assuming |αρ| < 1.
Plugging (D.8) into (D.5) results in the state space representation

yt = ρyt−1, (D.9)

which is the rational expectations solution. For linear systems, this procedure can be generalized and
has been treated rigorously in the literature, see e.g. Blanchard and Kahn (1980) of Klein (2000).

Turn now to the backward-consistent representation. The argument for the backward-consistent
representation goes that at time t − 1 the value yt must have been known to solve for yt−1. By
assumption, this value must have also been correct since agents have perfect foresight, which suggests
that deterministically Etyt+1 = yt+1. It follows that one can solve for yt by just iterating the law of
motion back one period. So if yt = αEtyt+1 + vt, then, so the argument, it must also hold that

yt = α−1yt−1 − α−1vt−1, (D.10)

because yt−1 was already chosen in anticipation of yt. Using (D.5) to back-out vt then yields

yt = (α−1 + ρ)yt−1 − ρα−1yt−2. (D.11)

This conclusion can unfortunately only be true if, in fact, yt−1 and yt−2 were already determinate
rationally. This can easily be seen when plugging (D.9) into (D.11) to eliminate yt−2. Otherwise the
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two systems (D.9) and (D.11) do not only differ in dimensionality but also in their eigenvalues and
stability properties: for |αρ| < 1 any combination of (yt−1, yt−2) that does not satisfy yt−1 = ρyt−2

will explode. The rational expectations solution hence is the one trajectory implied by (D.11) that
does not explode. Figure D.12 illustrates this graphically.

Figure D.12: Trajectories of the backward-consistent representation of (D.5) for different values of yt−2 between 0
and 1 (orange) and the rational expectations solution (blue). The backward-consistent representation is explosive
unless yt−2 is chosen to lie on the rational expectations path. In the simulation α = .9 and ρ = .7.

In fact, for all examples used in the paper – i.e. the two-type and three-type asset pricing
model with the given parameters – all paths implied by the backward-consistent representation are
explosive. For our asset pricing model with rational versus boundedly rational agents we conjecture
that there is a stable manifold and a non-trivial unstable manifold of the steady state with the
complex dynamics occurring only on the stable manifold. Once the fundamental steady state is
unstable, the system implied by the backwards-consistent representation explodes to infinity along
the unstable manifold of the steady state. Once the fundamental steady state is unstable, our
numerical method is able to detect (unstable) bounded periodic or chaotic perfect foresight solutions
that lie on the stable manifold of the steady state.

Appendix E Comparison of the method from section 3 with policy function iteration

To check the accuracy of the policy function iteration algorithm, we use the average and maximum
absolute Euler equation errors of the time series. Absolute Euler equation errors (EEE) are defined
as the absolute value of the difference between the functional approximation g and the function
f , where g is used to solve for the expectations xe

t+1. This is equivalent to the calculation of
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approximation errors ζt in the main body. Hence:

EEEaverage =
1

T

T∑
t=0

|g(xt−1, xt−2, xt−3 − f(g(·), xt−1, xt−2, xt−3)| (E.1)

and
EEEmax = max

{
{|g(xt−1, xt−2, xt−3 − f(g(·), xt−1, xt−2, xt−3)|}Tt=0

}
(E.2)

where T is the lenght of the simulated series after the convergence period.
For Figures 2 to 6 from the 3-type model with cycles, the average and maximum EEE are both

very small. The time series presented in Figure 4 come with an average EEE of the magnitude of
1e − 5 and a maximum EEE of 1e − 4. This is documented in Figures E.13-E.15. The bifurcation
maps and associated time series are qualitatively and quantitatively very similar to those presented
in Section 5, where we use the method we describe in Section 3.

Figure E.13: Average and maximum absolute Euler equation errors for the simulations in Figure 2 when using policy
function iteration.

Figure E.14: Average and maximum absolute Euler equation errors for the simulations in Figure 3 when using policy
function iteration.

For the two-type example in (6), with more complex dynamics, non-negligible errors occur, which
are documented in Figures E.17 and E.18. In fact, the policy function iteration method is unable to
correctly solve for the dynamics of the intermediate region of β that we discuss in Subsection 6.2.
Figure E.16 shows the same bifurcation diagram as Figure 8 from the main body, but using the
policy function iteration algorithm.

Figure E.20 shows the errors over time for the time series from Figure 9, but using the policy
function iteration method. Although the dynamics display complicated bubble-crash dynamics,
errors are at a very small level and the time series match those from the main body. In contrast,
Figure E.21 shows the simulations for β = 2.14 using policy function iteration to solve for the
dynamics. Large errors occur and the policy function iteration algorithm is unable to solve for the
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Figure E.15: Average and maximum absolute Euler equation errors for the simulations in Figure 6 when using policy
function iteration.

Figure E.16: Bifurcations w.r.t. β solved using policy function iteration. All other parameters as given in Table 3.

boom-burst dynamics displayed in Figure E.21. The dashed red line draws f(g(·), Xt−1), i.e the
value of xt as implied by f while using the policy function to approximate xt+1. Indeed, while the
policy function predicts the erratic waves quite well, the prices that are implied by using f directly
is at times slightly lagging behind. The policy function iteration method correctly solves for the
timing of a collapse, but the relatively large approximation error stems from the failure to predict
the exact value of x during the course of the collapse. We explain this by the fact that, compared to
the limit cycles in Section 5, the cycles only span over a relatively small domain of the whole grid.

Overall, in terms of approximation errors our method introduced in Section 3 performs several
magnitudes better than policy function iteration.
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Figure E.17: Average and maximum absolute Euler equation errors for the simulations in Figure 8 when using policy
function iteration. This plot shows that the numerical method is working well for the chaotic bubble and crash
solutions. However, our numerical method is unable to well-approximate the policy function in the intermediate
parameter region, where the system is close to the bifurcations of (stable) non-fundamental steady states.

Figure E.18: Average and maximum absolute Euler equation errors for the bifurcation w.r.t. the cost parameter C
as in Figure 7 but when using policy function iteration.

Figure E.19: Average and maximum absolute Euler equation errors for the bifurcation w.r.t. the trend-following
parameter γ as in Figure 7 but when using policy function iteration.
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Figure E.20: Top: time series for β = 2.5 solved using policy function iteration, all other parameters as in Table 3.
The policy function is initialized with the unstable fundamental steady state g0 = 0. Bottom: corresponding absolute
Euler equation errors, which are the absolute value of the difference between the blue and the dashed red line.

Figure E.21: Top: time series for β = 2.14 solved using policy function iteration, all other parameters as in Table 3.
The policy function is initialized with the unstable fundamental steady state g0 = 0. Bottom: corresponding absolute
Euler equation errors, which are the absolute value of the difference between the blue and the dashed red line.
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Appendix F Phase plots

Figure F.22: Phase plot in (xt, n1,t)-space for different values of β corresponding to the bifurcation diagram with
limit cycles in Figure 3 (based on policy function iteration).
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Figure F.23: Phase plot in (xt, n2,t)-space for different values of β corresponding to the bifurcation diagram with
limit cycles in Figure 3 (based on policy function iteration).

Figure F.24: Phase plot in (xt−1, xt)-space for different values of β corresponding to the bifurcation diagram with
limit cycles in Figure 3 (based on policy function iteration).
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Figure F.25: Phase plot in (xt, nt)-space for different values of β corresponding to the bifurcation diagram with
chaotic dynamics in Figure 8 (based on policy function iteration).

Figure F.26: Phase plot in (xt−1, xt)-space for different values of β corresponding to the bifurcation diagram with
chaotic dynamics in Figure 8 (based on policy function iteration).
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Appendix G Grapical illustrations of the policy functions

Figure G.27 represents slices of the policy function g. from the 3-type example in Figure 3. The
function is smooth for β = 1.1 (upper left panel) and, as reflected by an increase in contrast in the
figure, becomes steeper as β increases. For β = 7 in the last diagram the function is very steep, in
particular in the center. This coincides with the region for β in which the dynamics display a stable
4-cycle with values only in the periphery.

Figure G.27: Heatmap for the policy function g for β = 1.1 (ul), β = 2.5 (ur), β = 4 (ll) and β = 7 (lr), all other
parameters as in Table 2. When β increases the function becomes steeper. At the diagonal a small change in xt−1 or
xt−2 leads to a large change in xt = g(xt−1, xt−2). The illustration is based on policy function iteration.

Figure 10 shows slices of the policy function for the chaotic example in Figure 9. The Figures
G.28 and G.29 show the policy functions for Figure 11, initialized with different steady states.
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Figure G.28: Heatmap for the policy function g for the time series in Figure 11 initialized in the unstable fundamental
steady state (g0 = 0). The illustration is based on policy function iteration.

Figure G.29: Heatmap for the policy function g for the time series in Figure 11 initialized in the locally stable non-
fundamental steady state (g0 = x∗). The illustration is based on policy function iteration.
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