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Abstract

We introduce ex post participation constraints in the standard sequential screen-

ing model. This captures the presence of consumer withdrawal rights as, for in-

stance, mandated by EU regulation of “distance sales contracts”. With such ad-

ditional constraints, the optimal contract is static and, unlike with only ex ante

participation constraints, does not elicit the agent’s information sequentially. With

ex post participation constraints it is insufficient to consider only local incentive

constraints. We develop a novel technique to identify the relevant global constraints.
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1 Introduction

On the 12th of December 2011 the European directive 2011/83/EU was adopted, harmo-

nizing earlier legislation on ”distance sales contracts”. These contracts govern internet

and mail order sales to consumers in the EU, a market which in 2011 represented about

10% of all retail business.1 As the share of internet sales is expected to rise steadily in

the coming years, the economic impact of the legislation increases further.2

Governing distance sales contracts, the directive mandates a withdrawal right for

consumers of two weeks. Section 37 clarifies that the goal behind this withdrawal right

is to establish a level playing field between internet shops and traditional mortar and

bricks stores by ensuring that consumers can make their final buying decision on the

same informational basis: ”Since in the case of distance sales, the consumer is not able to

see the goods before concluding the contract, he should have a right of withdrawal. For the

same reason, the consumer should be allowed to test and inspect the goods he has bought

to the extent necessary to establish the nature, characteristics and the functioning of the

goods” (Section 37 of 2011/83/EU).

Hence, legislators view internet consumers at the following disadvantage: While a

consumer who buys on the internet, signs the sales contract before being able to ascertain

the nature and functioning of a good, a similar consumer who buys at a traditional store,

signs his or her sales contract after obtaining this information.3 The intention of the

directive is to rectify this difference by giving the consumer a withdrawal right.

We investigate the economic effects of withdrawal rights on optimal sales contracts.

In particular, we ask whether the EU regulation achieves its objective to level the playing

field between traditional and internet sales. To compare the optimal selling contracts

under the two different selling modes, we model the selling problem of a traditional store

1Figures taken from http://www.retailresearch.org/onlineretailing.php (last retrieved 19.04.2013).
2According to The Economist (edition of July 13th 2013), referring to a study of AXA Real Estate,

a property management firm, 90% of growth in retail sales expected until 2016 in Britain, Germany and

France will be online.
3Section 31 of the directive makes this point even more explicitly: ”In order to ascertain the nature

and functioning of a good, the consumer should only handle or try it in the same manner as he would

be allowed to do in a shop. For example, the consumer should only try on a garment and should not be

allowed to wear it.”
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as a static screening problem in the tradition of Baron and Myerson (1986), where the

buyer, before signing the contract, has received all relevant private information. It is

well known that in the static screening problem, a posted price contract is the optimal

selling contract. In line with the view of EU regulators, we interpret internet sales as a

sequential screening problem in the sense of Courty and Li (2000), where the consumer

learns additional private information about his valuation after signing the contract.

For the standard sequential screening model, the optimal selling contract is dynamic

in that it screens the buyer over time.4 In this model the buyer has only an ex ante outside

option and is bound by the contract even if ex post, after new information has arrived, this

imposes losses on him. We argue that the inclusion of withdrawal rights, as mandated

by the EU regulation, is equivalent to introducing ex post participation constraints in

the sequential screening model, implying that the buyer can sustain no (or only limited)

losses ex post. The main result of our paper is that, even though sequential screening is

still feasible with ex post participation constraints, the seller no longer benefits from it.

Instead, the optimal selling contract is static and coincides with the optimal posted price

contract in the static screening model. In this sense, the EU regulation achieves its goal

of leveling the playing fields between traditional and internet shops.5

We emphasize that our results extend beyond the context of distance sales contracts to

other dynamic principal agent relationships where, possibly weaker, ex post participation

constraints matter.6 In particular, we show that our results remain valid in applications

where the difference between ex ante and ex post outside option is not too large, or where

the agent can sustain some losses ex post allowing him to post a limited, non–refundable

bond ex ante.7

4 The (strict) optimality of sequential screening in the absence of ex post participation constraints

figures most prominently in Courty and Li (2000), but also features in Baron and Besanko (1984),

Battaglini (2005), Boleslavsky and Said (2013), Dai et al. (2006), Esö and Szentes (2007a, b), Inderst

and Peitz (2012), Hoffmann and Inderst (2011), Krähmer and Strausz (2011), Nocke et al. (2011) and

Pavan et al. (2014).
5As we discuss in Subsection 3.2.2, the welfare effects of the regulation are, however, ambiguous.
6See also Sappington (1983) or Gresik (1991), who stress the importance of ex post participation

constraints in static adverse selection models.
7We also show that our result remains true in the context of distance sales when the buyer has to bear

small costs for returning an order he does not like.
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One such application is the employment relation. Employees typically learn impor-

tant private information about the disutility of the job only ex post after having joined

the firm, and in most countries, employees have the legal right to resign from the con-

tract at any time. Moreover, outside options in the form of alternative job opportunities

tend to be comparable ex ante and ex post. Importantly, “non-slavery” laws prohibit

the employer from demanding, either ex- or implicitly, a non–refundable signing bond by

the employee that would restrain the worker’s withdrawal decision.8 Another application

is the procurement relationship. Unfavorable private ex post information, such as cost

overruns, may force the supplier to file for bankruptcy before completing the contract.

Limited liability on the supplier’s side and bankruptcy law restrict the procurer’s ability

to extract payments or seize assets from an insolvent supplier. From the procurer’s per-

spective, bankruptcy thus constitutes an ex post outside option of the contractor. The

procurement industry is well aware of this problem, and it is common to require “perfor-

mance bonds” which are paid up–front and returned to the supplier only upon contract

completion. Cash-constraints and imperfect capital markets, however, place limits on

such bonds.9

To shed light on our result, it is easiest to consider the case that the seller’s costs are

zero, so that trade is always efficient, and the seller offers the buyer a menu of option

contracts. An option contract consists of an up–front payment by the buyer, and gives

the buyer the option to purchase the good at a pre–specified exercise price after having

observed his true valuation. Our result that with ex post participation constraints the

seller does not benefit from screening the buyer sequentially means that offering a menu

containing different option contracts is not optimal.

8E.g., the California Labor Code Section 402 explicitly states “No employer shall demand, exact, or

accept any cash bond from any employee or applicant”. Likewise, employment bonds are prohibited

under German law, including the retainment of unpaid wages after a worker’s resignation (see ruling

BAG 06.09.1989 - 5 AZR 586/88). Some context specific exceptions exist such as deposits when the

employee is entrusted with the employer’s property, or “training bonds”, where the employer makes a

costly, non-specific human capital investment in the employee.
9In addition, for the case that a supplier breaches the contract and quits, the law often explicitly

allows courts to reduce penalties that are considered as out of proportion. See, e.g., the US Uniform

Civil Code §2-718: “A term fixing unreasonably large liquidated damages is void as a penalty”; or the

German Civil Code §343: “If a payable penalty is disproportionately high, it may on the application of

the obligor be reduced to a reasonable amount by judicial decision.”
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To gain intuition for this, assume to the contrary that, at the optimum, different ex

ante buyer types select different option contracts. Observe first that when the buyer’s

true valuation happens to equal the exercise price, the buyer obtains a net payoff of zero

from consumption. Therefore, with ex post participation constraints, the seller cannot

demand a positive up–front fee, because this would cause an ex post loss if the buyer’s

true valuation equals the exercise price. This then means that any option contract from

the menu is individually rational for any ex ante type.

Now consider the contract in the menu with the highest exercise price. This contract

generates less surplus than any other contract and, by incentive compatibility, yields any

type who picks it, a weakly higher rent than any of the more efficient contracts. But

this implies that the seller is better off excluding this contract from the menu so that the

buyer must pick one that generates more surplus, while paying him lower rents (but, as

argued, is also individually rational). By this argument it is optimal to delete any but the

most efficient contract from the menu. Therefore, with ex post participation constraints,

it is optimal not to screen ex ante types.10

The above reasoning only applies to option contracts. Our main conceptual contribu-

tion is to derive sufficient conditions under which option contracts are indeed optimal. As

we will argue, this is equivalent to showing that the optimal contract is deterministic. In

the absence of ex post participation constraints, the optimality of deterministic contracts

can be established by considering a relaxed problem in the spirit of Mirrlees, which only

considers the “local” ex ante incentive constraints. Under appropriate regularity con-

ditions, the solution to the relaxed problem is automatically deterministic and globally

incentive compatible.11 We show that in our case, such a local approach does not work,

because one cannot find a regularity condition so that the solution to the corresponding

relaxed problem is automatically deterministic.12 Instead, we develop a novel technique

10This argument fails if there are only ex ante participation constraints. In this case, the seller charges

a high (strictly positive) up–front fee for the contract with the lowest exercise price so that it is acceptable

only for the buyer who is most optimistic about his future valuation. The more pessimistic buyers would

make an expected loss from this contract. Hence, only offering the most efficient contract in the menu

would violate ex ante participation constraints of all but the most optimistic type.
11For sequential screening models, this regularity condition was first identified by Courty and Li (2000).

Most of the literature mentioned in footnote 4 adopts these or closely related conditions.
12Battaglini and Lamba (2014) argue that the failure of the local approach is typical for dynamic
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to identify a different relaxed problem, which involves global constraints, whose solution

solves the original problem under an appropriate regularity condition.13 In addition to

the familiar monotone hazard rate which requires the ratio of an ex ante type’s cumu-

lative distribution and the same ex ante type’s density to be monotone, this condition

requires that also the “cross-hazard rate”, i.e., the ratio of an ex ante type’s cumulative

distribution and any other ex ante type’s density is monotone.

The rest of this paper is organized as follows. The next section introduces the setup

and derives the principal’s problem. In Section 3, we solve the principal’s problem for the

case that she offers a menu of option contracts. Moreover, we discuss welfare effects of

withdrawal rights and extend our result to settings with less stringent ex post participation

constraints and costly returns. In Section 4, we allow for general, including stochastic,

contracts. Section 5 concludes. All proofs that do not appear in the main text are

relegated to the appendix.

2 The setup

Consider a potential buyer (he) and a seller (she), who has a single unit of a good for

sale. The buyer’s valuation of the good is θ ∈ [0, 1] and the seller’s opportunity costs are

commonly known to be c ∈ [0, 1). Trade is therefore efficient for at least the valuation

θ = 1. The terms of trade specify whether the good is exchanged and payments from the

buyer to the seller. The parties are risk neutral and have quasi-linear utility functions.

That is, the seller’s profit is payments minus her opportunity costs, and the buyer’s utility

is valuation minus payments.

At the time of contracting about the terms of trade, no party knows the buyer’s true

valuation, θ, but the buyer has private information about its distribution. After the seller

offers the contract, the buyer privately learns his true valuation θ.14 Formally, there

are two periods. In period 1, the buyer knows his valuation is distributed according to

distribution function Gi with non–shifting support [0,1], where i is drawn from the set

mechanism design problems.
13Our technique requires to consider sequential screening with finite ex ante types. However, as our

result holds for any number of ex ante types, we can regard the continuous types case as a limiting case.
14In the context of distance sales, the good is shipped to the buyer who learns θ upon inspecting and

trying out the good.
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I ≡ {1, . . . , n} with probability pi > 0. We refer to i as the buyer’s ex ante type. In

period 2, the buyer observes his ex post type θ which is drawn according to Gi. While the

buyer’s ex ante and ex post types are his private information, the distributions of ex ante

and ex post types are common knowledge.15

2.1 Seller’s problem

The seller’s problem is to design a contract that maximizes her expected profits. By the

revelation principle for sequential games (e.g., Myerson 1986), the optimal contract can be

found in the class of direct and incentive compatible contracts which, on the equilibrium

path, induce the buyer to report his type truthfully. Formally, a direct contract

(x, t) = (xj(θ
′), tj(θ

′))j∈I,θ′∈[0,1]

requires the buyer to report an ex ante type j in period 1, and an ex post type θ′ in period

2. A contract commits the seller to a selling schedule xj(θ
′) and a transfer schedule tj(θ

′).

If the buyer’s true ex post type is θ and his period 1 report was j, then his utility

from reporting θ′ in period 2 is

vj(θ
′; θ) ≡ θxj(θ

′)− tj(θ
′).

With slight abuse of notation, we denote the buyer’s period 2 utility from truth–telling

by

vj(θ) ≡ vj(θ; θ). (1)

The contract is incentive compatible in period 2 if it gives the buyer an incentive to

announce his ex post type truthfully:

vj(θ) ≥ vj(θ
′; θ) for all j ∈ I, θ, θ′ ∈ [0, 1]. (2)

If the contract is incentive compatible in period 2, the buyer announces his ex post type

truthfully no matter what his report in the first period.16 Hence, if the buyer’s true ex

15Our assumption that ex post types are continuous and ex ante types are discrete is for technical

convenience only. Note that we allow for an arbitrary number of ex ante types.
16Because the buyer’s period 2 utility is independent of his ex ante type, a contract which is incentive

compatible in period 2 automatically induces truth–telling in period 2 also off the equilibrium path, that

is, if the buyer has misreported his ex ante type in period 1.
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ante type is i, then his period 1 utility from reporting j is

uji ≡

∫ 1

0

vj(θ) dGi(θ).

The contract is incentive compatible in period 1 if it induces the buyer to announce his ex

ante type truthfully:

uii ≥ uji for all i, j ∈ I. (3)

Our main objective is to analyze the case in which the buyer has a withdrawal right.

This means that, after having observed his valuation θ, the buyer has the choice between

continuing with the trade as specified in the contract, or withdrawing from it and obtaining

his outside option of 0. The withdrawal right effectively guarantees the buyer a utility of

0 for any realization of his ex post valuation. Accordingly, with withdrawal rights, the

contract needs to satisfy the ex post individual rationality constraints:17

vi(θ) ≥ 0 for all i ∈ I, θ ∈ [0, 1]. (4)

In contrast, an incentive compatible contract is ex ante individually rational if

uii ≥ 0 for all i ∈ I. (5)

Clearly, ex post individual rationality implies ex ante individual rationality.18

We say a contract is feasible (with withdrawal rights) if it is incentive compatible in

both periods and both ex post and ex ante individually rational.

The seller’s payoff from a feasible contract is the difference between transfer and costs,

or equivalently the difference between aggregate surplus and the buyer’s utility. That is,

if the buyer’s ex ante type is i, the seller’s conditional expected payoff is

wi =

∫ 1

0

ti(θ)− cxi(θ) dGi(θ) =

∫ 1

0

[θ − c]xi(θ)− vi(θ) dGi(θ). (6)

17Put differently, if the seller offered a contract for which the buyer would make an ex post loss for

some θ, then the buyer would withdraw from the contract for such a θ, and effectively enforce the terms

of trade xi(θ) = ti(θ) = 0.
18In Section 3.3, we consider the case in which the ex post and ex ante outside options differ and show

that our results are robust if the difference is not too large.
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The seller’s problem is therefore to find a direct contract (x∗, t∗) that solves the following

maximization problem:

P : max
(x,t)

∑

i∈I

piwi s.t. (2), (3), (4),

where we disregard (5) because it is implied by (4).

Our main result is that with withdrawal rights, the seller does not benefit from se-

quential screening but optimally offers a static contract that does not condition on the

buyer’s ex ante type. That is, P exhibits a solution with xi = x̄ and ti = t̄ for all i ∈ I.

We refer to a feasible contract that is independent of the ex ante type as static. A static

contract (x̄, t̄) = ((x̄, t̄), . . . , (x̄, t̄)) yields the seller a payoff

w̄ =
∑

i

pi

∫ 1

0

t̄(θ)− cx̄(θ) dGi(θ) =

∫ 1

0

t̄(θ)− cx̄(θ) dḠ(θ),

where Ḡ(θ) ≡
∑

i piGi(θ) is the average ex ante distribution over types.

Because a static contract is trivially incentive compatible in period 1, the optimal

static contract (x̄, t̄) maximizes w̄ subject to the incentive constraints (2) and the ex post

individual rationality constraint (4). This is a standard unit good screening problem, and

it is well known from, for example, Riley and Zeckhauser (1983), that the seller’s optimal

selling policy is to offer the good at a take-it-or-leave-it price R̄ that solves

max
R

(1− Ḡ(R))(R− c). (7)

We assume that an optimal static contract exists, which means a maximizer R̄ exists.

We will show that offering the good at the price R̄ remains the optimal policy for the

sequential screening problem P. In the next section, we first show this result for the case

that the seller can only offer deterministic contracts. We point out that our result for

deterministic contracts does not require any stronger assumptions on the distributions p

and Gi than those stated in the second paragraph of this section (and that an optimal

static contract exists). In particular, we do not need to impose any of the regularity

conditions on the distributions p or Gi that are commonly used in the literature. In fact,

we could, at the cost of some additional notation, even dispense with the assumption that

all distributions Gi have a common support and ex ante types are discrete. In Section 4,

we then derive conditions on the distributions so that deterministic contracts are indeed

optimal.
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3 Deterministic contracts and option contracts

In this section, we consider the case that the seller is restricted to choose a deterministic

contract which exhibits deterministic selling schedules

xi(θ) ∈ {0, 1} for all i ∈ I, θ ∈ Θ.

Our result can be best understood by exploiting an insight of the sequential screening

literature that an incentive compatible, deterministic contract can be indirectly imple-

mented by a menu of option contracts. Under an option contract (F,R), the buyer pays

the seller the up–front fee F ∈ R in period 1 and receives the option to buy the good at

the exercise price R ∈ [0, 1] in period 2 after having learned θ. We say that a menu of n

option contracts,

(F,R) = ((F1, R1), . . . , (Fi, Ri), . . . , (Fn, Rn))

is incentive compatible if choosing option contract (Fi, Ri) from the menu is optimal for

buyer type i.

When buyer type i has chosen contract (Fj , Rj) and observed his valuation θ, he

exercises the option only if θ exceeds the exercise price. Hence, the contract yields him

the ex post utility19

Vj(θ) =











−Fj + (θ − Rj) if θ ≥ Rj

−Fj otherwise.
(8)

Buyer type i’s ex ante utility from the contract (Fj , Rj) is

Uji = −Fj +

∫ 1

Rj

θ − Rj dGi(θ).

Thus, the menu is incentive compatible if for all i, j ∈ I:

Uii ≥ Uji. (ICij)

The next lemma establishes an equivalence between incentive compatible, deterministic

contracts and menus of option contracts in terms of implementable outcomes.

19We denote the utilities associated with option contracts with capital letters and utilities associated

with direct contracts with small letters.
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Lemma 1 For any direct, incentive compatible, deterministic contract (x, t), there is an

equivalent incentive compatible menu (F,R) which implements the same outcome as the

direct contract and vice versa.

The equivalence is a direct consequence of the well–known fact that incentive compat-

ibility in period 2 requires the selling schedule to be monotone. For deterministic selling

schedules, this implies that there exists a cutoff Ri in the unit interval where the schedule

xi jumps from 0 to 1. This cutoff corresponds to the exercise price of the option contract,

and the utility of the lowest valuation type, taken negatively, −vi(0), corresponds to the

up–front fee Fi.

When the buyer has a withdrawal right, feasible contracts must respect the ex post

individual rationality constraints, which, in terms of option contracts, means Vi(θ) ≥ 0 for

i and θ. Because the minimum of Vi(θ) is −Fi, an option contract is ex post individually

rational if and only if −Fi ≥ 0 for all i. Consequently, we say that an incentive compatible

menu of option contracts (F,R) is ex post individually rational if and only if for all i ∈ I:

Fi ≤ 0. (IRxp
i )

Effectively, the presence of a withdrawal right prevents the seller from using option con-

tracts with a positive up–front fee.

3.1 Optimal option contracts with withdrawal rights

The seller’s payoff from an option contract is the expected payment minus the cost of the

sale, or, equivalently, the difference between the option contract’s aggregate surplus and

the buyer’s utility. Hence, if the buyer’s ex ante type is i, the seller’s conditional expected

payoff is

Wi = Fi − (1−Gi(Ri))(Ri − c) =

∫ 1

Ri

θ − c dGi(θ)− Uii. (9)

By Lemma 1, we can represent the optimal deterministic contract as a menu of option

contracts (Fxp,Rxp) that solves the problem

Po : max
(F,R)

∑

i

piWi s.t. (ICij), (IR
xp
i ) for all i, j ∈ I.
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In comparison to problem P, the problem Po does not specify an explicit constraint

for incentive compatibility in period 2, because option contracts satisfy this incentive

constraint by construction.

Recalling that R̄ represents the optimal take-it-or-leave-it price characterizing the

optimal static contract, we obtain the following result.

Proposition 1 If the buyer has a withdrawal right so that the seller has to respect the

ex post individual rationality constraints (IRxp
i ) for all i ∈ I, then an optimal menu

(Fxp,Rxp) of option contracts consists of a single contract only: (F xp
i , Rxp

i ) = (0, R̄) for

all i ∈ I.

To demonstrate the result, we first consider an arbitrary feasible menu (F,R) and

argue that the seller is at least as well off by offering to each type only the option contract

in the menu with the smallest exercise price larger than costs but with an up–front fee of

zero.

More specifically, let k = argmini{Ri | Ri ≥ c} indicate the option contract in the

menu (F,R) with the smallest exercise price larger than costs.20 Define the static menu

(F̃, R̃) with (F̃i, R̃i) = (0, Rk) for all i ∈ I. Note first that the static menu (F̃, R̃) is

evidently feasible with withdrawal rights. We now show that, conditional on any ex ante

type i, the seller obtains a (weakly) larger profit under the static menu (F̃, R̃) than under

the original one (F,R).

First consider buyer types i who, under the sequential menu, choose a contract that

exhibits an exercise price below costs: Ri < c. By (9) the seller’s profit from such a buyer

type is

Wi = Fi + (1−Gi(Ri))(Ri − c),

which is negative since Fi is negative and costs exceed the exercise price. In contrast, the

seller’s profit from buyer type i under the static menu is non–negative.

Next, consider the other buyer types i who, under the sequential menu, choose a

contract that displays an exercise price above costs: Ri ≥ c. Since the original menu is

incentive compatible by assumption, buyer type i’s ex ante utility from contract (Fi, Ri)

20If such a k does not exist, then the menu (F,R) yields the seller a loss, because she sells her good

below cost, and a static contract with (F,R) = (0, c) does better.
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exceeds his utility from contract (Fk, Rk), that is, Uii ≥ Uki. Observe further that the

buyer’s utility from the contract (F̃i, R̃i) = (0, Rk) is smaller than from the contract

(Fk, Rk) because they display the same exercise prices, but, since Fk ≤ 0 by (IRxp
k ), the

latter has a (weakly) smaller up–front fee. Hence,

Uii ≥ Uki ≥ Ũii,

where Ũii denotes buyer type i’s ex ante utility from the contract (F̃i, R̃i) = (0, Rk).

Moreover, since Rk is the menu’s smallest exercise price exceeding costs, the contract

(Fi, Ri) yields a smaller surplus than the contract (F̃i, R̃i) = (0, Rk):

∫ 1

Ri

θ − c dGi(θ) ≤

∫ 1

Rk

θ − c dGi(θ).

The two previous inequalities imply that the seller’s profit from the option contract

(Fi, Ri) is smaller than from (F̃i, R̃i) :

Wi(Fi, Ri) =

∫ 1

Ri

θ − c dGi(θ)− Uii ≤

∫ 1

Rk

θ − c dGi(θ)− Ũii = Wi(F̃i, R̃i).

Intuitively, the option contract (F̃i, R̃i) yields the seller a larger profit, because it yields

both a higher surplus and requires a smaller rent to be paid to the buyer.

We conclude that the static menu (F̃, R̃) yields the seller a (weakly) larger profit than

any feasible menu (F,R). As a result, a static menu consisting of a single option contract

with a zero up–front fee must be optimal. Since the seller’s profit from such a menu is

(1 − Ḡ(R))(R − c), the optimal menu exhibits Fi = 0 and Ri = R̄ as given by (7). This

establishes Proposition 1.

3.2 Effects of withdrawal rights

To better understand the role of withdrawal rights, we compare our optimal menu of

option contracts to the optimal menu when the buyer does not have withdrawal rights.

This will also allow us to discuss the possible welfare effects of the EU withdrawal rights

regulation outlined in the introduction.
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3.2.1 Optimal option contracts without withdrawal rights

When the buyer does not have a withdrawal right, the seller has to respect only the ex

ante individual rationality constraint (5), which in terms of option contracts becomes

Uii = −Fi +

∫ 1

Ri

θ − Ri dGi(θ) ≥ 0. (IRxa
i )

Courty and Li (2000) study the problem without withdrawal rights for the case with a

continuum of ex ante types and identify natural conditions so that the seller’s problem

can be solved by the “local Mirrlees” approach. Translated into our setting with discrete

ex ante types, this means that the optimal menu of option contracts obtains from solving

a relaxed problem where only the (ex ante) individual rationality constraint for the type

i = n, and the local incentive constraints ICi,i+1 are considered. One of the identified

conditions is that the distributions Gi are ordered in the sense of first order stochastic

dominance. In this case, the solution to the relaxed problem represents also a solution

to the original problem if the obtained exercise prices are monotonically increasing in the

buyer’s ex ante type i.

Applying the local Mirrlees approach to our setup yields exercise prices Rxa
i for buyer

types i that are implicitly given by the equations

Rxa
1 − c ≡ 0, and Rxa

i − c ≡ hxa
i (Rxa

i ) ∀i = 2, . . . , n, (10)

where

hxa
i (θ) ≡

p1 + . . .+ pi−1

pi
·
Gi(θ)−Gi−1(θ)

gi(θ)
(11)

is a modified hazard rate that measures the degree of the price distortion due to asym-

metric information.21

A sufficient condition that ensures the existence and uniqueness of a solution to (10)

is that hxa
i (θ) is non-negative (which obtains when Gi−1 dominates Gi in the sense of first

order stochastic dominance) and concave in θ. Hence, the remaining question is under

21Courty and Li (2000) present a continuous version of this modified hazard rate, while Dai et al. (2006)

present it for the case with two ex ante types. Baron and Besanko (1984) were the first to interpret the

second factor as an informativeness measure of the ex ante information. Pavan et al. (2014) refer to this

measure as an impulse response function and show that it plays a crucial role for dynamic settings in

general.
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which conditions the exercise prices Rxa
i are increasing in i. A sufficient condition to

obtain this ordering is that hxa
i (θ) is increasing in i.

Given the exercise prices, the optimal up–front fees are then pinned down by the

binding individual rationality constraints for type n,

F xa
n ≡

∫ 1

Rxa
n

θ −Rxa
n dGn(θ), (12)

and by the binding incentive constraints ICi,i+1 for the other types i < n:

F xa
i ≡ F xa

i+1 +

∫ 1

Rxa
i

θ −Rxa
i dGi(θ)−

∫ 1

Rxa
i+1

θ − Rxa
i+1 dGi(θ). (13)

We summarize these considerations in the next lemma which is a restatement of the

result of Courty and Li (2000) with discrete ex ante types.

Lemma 2 (Courty and Li (2000)) Suppose Gi−1 dominates Gi in the sense of first

order stochastic dominance for all i = 2, . . . , n, that hxa
i (θ) is concave in θ and in-

creasing in i. Then, if the seller has to respect only the ex ante individual rational-

ity constraints (IRxa
i ), the optimal menu of option contracts is given by (Fxa,Rxa) ≡

((F xa
1 , Rxa

1 ), . . . , (F xa
n , Rxa

n )).

Hence, in contrast to the case with withdrawal rights, the optimal menu without

withdrawal rights screens sequentially in that it offers different option contracts to different

ex ante types. Moreover, it violates all ex post individual rationality constraints (IRxp
i )

because the fact that Rxa
i < Rxa

i+1 implies that:

0 < F xa
n ≤ . . . ≤ F xa

1 . (14)

This ordering also reveals the intuition why, in the absence of withdrawal rights,

offering the optimal static menu from Proposition 1 is not optimal. Observe that a

reduction of the exercise price increases the buyer’s “ex post information rent” which

amounts to his total utility net of the up–front payment. The reduction raises, moreover,

the surplus as long as the price still remains above costs. Therefore, if all buyer types

were offered the option contract (0, R̄) from the optimal static menu, the seller could

reduce the exercise price for type 1, thereby increasing his ex post information rent, and

at the same time impose an appropriate up–front fee that exactly extracts type 1’s gain
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in ex post information rent. Under first order stochastic dominance, such a modification

is incentive compatible because any other type is less optimistic about his valuation than

type 1 so that such a type’s gain in ex post information rent in response to a price decrease

is smaller than type 1’s.

Conversely, one may ask why, with withdrawal rights, it is not optimal to screen

sequentially. First note that the seller can, in principle, induce the same buying behavior

as under the sequential menu (Fxa,Rxa), but to satisfy ex post individual rationality, this

requires her to decrease all up–front fees Fi by the fixed amount F xa
1 . Therefore, it is

feasible to sequentially screen the buyer also in the presence of withdrawal rights, but as

we have shown, it is not optimal to do so. In this sense, Proposition 1 is an optimality

result rather than an implementation result. The reason why sequential screening is not

optimal is implicit in the previous paragraph. Withdrawal rights prevent the seller from

using the up–front fee to extract the additional surplus created by sequential screening.

3.2.2 Welfare effects

In this section, we explore the welfare effects of introducing withdrawal rights. Our

approach compares the parties’ utilities and aggregate surplus under the optimal contracts

with and without such rights.

We begin with the straightforward observation that the seller is (weakly) worse off

when withdrawal rights are introduced. This follows simply from the fact that with

withdrawal rights she faces more constraints. Even though straightforward, this obser-

vation clarifies that, in a sequential screening setup, the seller has no incentive to offer

a withdrawal right voluntarily. Hence, if, as in the context of the EU regulation, society

considers withdrawal rights desirable, then the incentives of the seller are misaligned with

society so that these rights have to be imposed upon the seller in the form of explicit

regulation.

In contrast, the effect on the aggregate surplus and on the buyer’s expected utility

is, in general, ambiguous. Both with and without withdrawal rights, exercise prices are

inefficiently distorted away from marginal costs and the overall welfare effect depends on

the magnitude of these distortions. To see this more formally, the difference in aggregate
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Figure 1: Dead weight loss and welfare effects of withdrawal rights with two types.

surplus conditional on an ex ante type i is

∆i ≡

∫ 1

R̄

θ − c dGi(θ)−

∫ 1

Rxa
i

θ − c dGi(θ) =

∫ Rxa
i

R̄

θ − c dGi(θ)

so that the regulation changes the aggregate surplus by ∆ =
∑

i pi∆i. The sign of ∆i

depends on the ordering of Rxa
i and R̄. Only for type 1 this ordering is unambiguous,

since Rxa
1 = c < R̄. But for i > 1, it depends on the details of the model whether Rxa

i is

smaller or larger than R̄.

The left panel in Figure 1 illustrates the welfare effects with two ex ante types. We

may interpret the downward sloping curve Ri(q) = G−1
i (1−q) as a usual (inverse) demand

function where q denotes the ex ante probability of trade under Gi. When G1 first order

stochastically dominates G2, the curve R1(q) lies above the curve R2(q). Conditional on

type 1, withdrawal rights cause the deadweight loss given by area |∆1| due to the price

increase from Rxa
1 = c to R̄ > c. The graph depicts the case in which Rxa

2 > R̄ so

that, conditional on ex ante type 2, withdrawal rights induce a welfare gain of ∆2. The

regulation is welfare enhancing whenever p2∆2 ≥ p1|∆1|.

The welfare comparison is clear-cut for the extreme case that there is no private ex

ante information. Absent ex ante private information, it is well–known that without

withdrawal rights, the seller can extract all gains of trade, despite the buyer’s ex post

private information (see Harris and Raviv, 1979). Consequently, allocations are efficient.
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In contrast, Sappington (1983) shows that if the seller has to respect the ex post individ-

ual rationality constraints implied by withdrawal rights, then full rent extraction is not

possible. As a result, allocations are distorted. Hence, when there is little ex ante private

information, withdrawal rights are welfare reducing.

To shed light on less extreme cases, the right panel in Figure 1 illustrates the change

in welfare (∆), profits (∆W ), and buyer rents (∆U) for the specification

p1 = p2 = 1/2, c = 1/4, G2(θ) = θ, G1(θ) = θ1+α, α ≥ 0.

For α = 0, we have G1 = G2 so that there is no relevant ex ante private information.

Hence, the previous paragraph explains why the graph starts with ∆ and ∆W negative

and ∆U positive. For α ≈ ∞, ex ante type 1 is virtually ensured to have valuation θ = 1

so that for any price R̄ < 1 he always buys. As a result, withdrawal rights do not affect

the surplus from type 1 too negatively (∆1 ≈ 0). In this case, the buyer’s gain from the

regulation outweighs the seller’s loss, and it is therefore socially beneficial (∆ > 0). The

non-monotone comparative statics with respect to the buyer’s rents, ∆U , and aggregate

surplus, ∆, demonstrate that already with two ex ante types the welfare effects depend

in a non-trivial way on the details of the model.

3.3 Bonds and differences in outside options

In the analysis so far, we assumed that, by withdrawing from the contract, the buyer

can obtain his outside option of zero and therefore avoid any losses ex post. In other

words, withdrawal allows the buyer to reclaim any payment he might have made ex ante.

As a result, the seller cannot require the buyer to post a non–refundable bond when the

contract is signed. This assumption is in line with Section 49 of the EU directive, which

states: “In the event that the consumer withdraws from the contract, the trader should

reimburse all payments received from the consumer, including those covering the expenses

borne by the trader to deliver goods to the consumer”.

In this subsection, we extend our results to sequential screening environments in which

the agent has an ex post withdrawal right but can post positive bonds. We first show

that such environments are equivalent to a setting in which the agent’s ex ante outside

option exceeds his ex post outside option. Subsequently, we show that our main result
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remains true as long as the bond the agent can post is below a certain, strictly positive

bound. As argued in the introduction, in practice, such bounds exist for legal reasons or

because the agent is cash–constrained.

We start by assuming that the buyer has a (normalized) ex ante outside option of zero

and an ex post outside option equal to −B < 0. Thus, a menu of option contracts is ex

post individually rational if and only if Vi(θ) ≥ −B for all i, θ, which by (8) is equivalent

to

Fi ≤ B for all i ∈ I. (15)

In contrast, the ex ante individual rationality constraint (IRxa
i ) remains unaffected.

Alternatively, we can interpret the constraint (15) as representing a situation in which

the buyer does have an ex post outside option of zero, but in period 1 the seller can

demand an up–front payment up to the amount B, which she retains when the buyer

withdraws in period 2. Effectively, it is as if the buyer pays a non–refundable bond Fi in

period 1 and decides in period 2 whether to consume at the exercise price or not, knowing

that the payment Fi is sunk.

We now argue that our result that the static contract is optimal still holds when B is

strictly positive but not too large:

Proposition 2 Let

Bxp ≡ min
i

∫ 1

R̄

1−Gi(θ) dθ.

If the maximal bond B is smaller than Bxp, or, equivalently, if the buyer’s ex post outside

option is larger than −Bxp, then the static menu (Fxp,Rxp) with (F xp
i , Rxp

i ) = (B, R̄) for

all i ∈ I is optimal.

Because Bxp > 0, our result that sequential screening is not beneficial with ex post

individual rationality constraints is robust.22 It extends to cases in which posting a limited

bond is possible, or in which the seller’s ex post outside option is not too small.

To see Proposition 2, note first that if we continue to disregard the ex ante individual

rationality constraint (IRxa
i ) and solve problem Po but with the adapted ex post individual

rationality constraint (15) instead of (IRxp
i ), then the arguments leading to Proposition

22Note that the bound Bxp does not converge to zero as the number of ex ante types n increases.

19



1 imply that the solution corresponds again to a static contract with the single price R̄ ,

but now with the up–front fee Fi = B. For this solution, it follows that the ex ante utility

of type i is

Uii = −B +

∫ 1

R̄

1−Gi(θ) dθ.

Hence, for B ≤ Bxp , the solution satisfies automatically the ex ante individual rationality

constraint (IRxa
i ) for any i, implying Proposition 2.

Taking the opposite approach and solving the model with the ex ante individual ratio-

nality constraint (IRxa
i ) while disregarding the ex post individual rationality constraint

(15) yields the solution of Lemma 2 (under the appropriate distributional assumptions of

the lemma). Recall from (14) that the ex ante type 1 pays the largest up–front fee, and

with (12) and (13), we obtain

F xa
1 =

n
∑

i=1

∫ θxai+i

θxai

1−Gi(θ) dθ ≡ Bxa,

where θxan+1 ≡ 1. Since F xa
1 ≥ F xa

i for all i ∈ I, the solution satisfies the neglected ex post

individual rationality constraint (15) whenever B ≥ Bxa.

It follows that as we vary the maximal bond B, we obtain the sequential screening

models with ex ante and ex post individual rationality constraints as two extremes: the

model with ex ante constraints for B ≥ Bxa and the model with ex post constraints for

B ≤ Bxp.

3.4 Costly returns

Until now we abstracted from any costs of returning the good. In practice, however,

returning goods involves at least some transportation costs. The EU directive allows

these costs to be borne by the buyer.23 In this subsection, we show that costly returns

have a similar effect as introducing differences between the buyer’s ex ante and ex post

outside option as discussed in the previous subsection. In particular, the optimal contract

23Article 6(i) of the directive states ”the consumer will have to bear the cost of returning the goods in

case of withdrawal”. The implementation of the earlier directive 97/7/EC differed among member states.

Most member states allowed that consumers pay for returning the good, but, for instance, Germany

required that the seller pays for returns for any goods that were sold in excess of 40 Euros.
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remains static if the return costs are small relative to the expected surplus generated

under the optimal static contract.

More specifically, suppose the agent incurs some cost k ≥ 0 when he returns the

good to the seller. With return costs, there are now three options concerning the good’s

allocation, each leading to a different aggregate surplus:

1. The good is sent to the buyer with some ex post valuation θ, who keeps it and

thereby generates the aggregate surplus θ − c.

2. The good is sent to the buyer, but he returns it and thereby generates the surplus

−k.

3. The good is not sent to the buyer at all, which generates a surplus of 0.

We start by deriving the optimal option menu under the assumption that the seller

always sends the good to the buyer for inspection. Let

R̄k ≡ argmax
R

(1− Ḡ(R− k))(R− c),

K ≡ min
i∈I

∫ 1

R̄k−k

1−Gi(θ) dθ.

The next lemma states that if return costs are smaller than K, then it is optimal for the

seller to simply offer the good at the price R̄k:

Lemma 3 Suppose return costs k are smaller than K, and that it is optimal for the seller

to send the good to all ex ante buyer types. Then an optimal menu of option contracts

consists of a single contract only: (Fi, Ri) = (0, R̄k) for all i ∈ I.

To see the result, consider a buyer, who after learning his ex post type θ contemplates

exercising his option to buy the good. If he decides not to exercise his option, he now has

to incur the return cost k. Hence, under an option contract (Fj , Rj), buyer type i keeps

the good if θ ≥ Rj − k, implying the ex post utility

V k
i (θ) =











−Fj + (θ −Rj) if θ ≥ Rj − k

−Fj − k otherwise,

and the ex ante utility

Uk
ji = −Fj +

∫ 1

Rj−k

θ − Rj dGi(θ)−Gi(Rj − k)k.
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Because the buyer incurs the return cost k when returning the good, the ex post individ-

ual rationality constraints now only guarantee that the buyer’s ex post utility does not

fall below −k: V k
i (θ) ≥ −k for all i, θ. As before, this is equivalent to Fi ≤ 0 for all i.

Hence, the constraint (IRxp
i ) remains unchanged. Moreover, the definitions of incentive

compatibility (ICij) and ex ante individual rationality (IRxa
i ) also remain the same. How-

ever, in contrast to the model without return costs, ex post individual rationality does

no longer imply ex ante individual rationality because the buyer may end up with the

negative utility −k associated with returning the good ex post. Hence, as in the previous

subsection, return costs create a wedge between the ex post and ex ante individual ratio-

nality constraints. For this reason, also with costly returns, we have to consider explicitly

the ex ante individual rationality constraint (IRxa
i ).

Given a buyer type i, an incentive compatible menu (F,R) generates the surplus

Sk
i =

∫ 1

Ri−k

θ − c dGi(θ)−Gi(Ri − k)k

so that the seller’s conditional expected payoff from a buyer type i is W k
i = Sk

i − Uk
ii.

Consequently, for the case that the good is always sent to the buyer, we obtain the

optimal menu of option contracts with return costs as a solution to problem Po but with

the adjusted payoff functions V k
i , U

k
ji, W

k
i and the explicit inclusion of the additional

constraint (IRxa
i ). Yet, if we ignore (IRxa

i ), then Proposition 1 directly implies that the

solution is given by the static menu (Fi, Ri) = (0, R̄k). We now show that if k ≤ K, then

this solution automatically satisfies (IRxa
i ) so that the static menu is indeed also optimal

with return costs.

To see this observe that the option contract (Fi, Ri) = (0, R̄k) yields buyer type i a

utility of

Uii =

∫ 1

R̄k−k

θ − R̄k dGi(θ)−Gi(R̄
k − k)k =

∫ 1

R̄k−k

1−Gi(θ) dθ − k,

where the second equality follows from integration by parts. Hence, if k ≤ K, then Uii ≥ 0

so that the static menu is ex ante individually rational. This establishes Lemma 3.

Lemma 3 derives the optimal contract under the assumption that the seller sends the

good to the buyer for each ex ante type. Because returning the good is costly, the seller

may, however, find it suboptimal to send the good to ex ante types who are likely to

22



return the good. Instead, she may prefer to “screen ex ante types by participation” and

not send the good to all ex ante types.

To study this possibility, we introduce the following notation. Given a subset J ⊆ I

of ex ante buyer types, denote by ḠJ ≡
∑

j∈J pjGj the average distribution over types in

J . Moreover, let

R̄J = argmax
R

(1− ḠJ(R − k))(R− c).

We now state the problem of the seller who wants to send the good only to ex ante

types j in some set J ⊂ I. In this case, the seller needs to induce the types i ∈ I \ J not

to participate. Hence, the seller must ensure that these types do not obtain a positive

utility from choosing the contract (Fj , Rj) of some ex ante type j ∈ J who does receive

the good. This yields the additional “screening by participation” constraint

Uk
ji ≤ 0 for all i ∈ I\J, j ∈ J. (ICJ)

An optimal menu of option contracts under which the good is sent only to the ex ante

types in J is a solution to the following program:

PJ : max
(F,R)

∑

j∈J

pjW
k
j s.t. (ICij), (IRxp

i ), (IRxa
i ), (ICJ).

We finally show that when costs satisfy an analogous condition as the one in Lemma

3, then an optimal menu of option contracts that screens by participation is still static in

the sense that it does not screen between the ex ante types who do receive the good.

Proposition 3 Let

KJ ≡ min
j∈J∗

∫ 1

R̄J∗−k

1−Gj(θ) dθ.

If return costs k are smaller than KJ , and it is optimal for the seller to send the good to

ex ante types in J∗, then the static menu (Fk,Rk) with (F k
j , R

k
j ) = (0, R̄J∗) for all j ∈ J∗

is optimal.

4 General contracts

In the previous sections, we considered deterministic selling schedules. We now allow the

seller to choose stochastic schedules

xi(θ) ∈ [0, 1].
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The main question of this section is when the optimal contract, within the set of all con-

tracts, is deterministic. In standard screening problems, the optimality of deterministic

contracts is typically ensured by regularity conditions. It should therefore not be too sur-

prising that also in our setting we need to impose additional distributional assumptions.

In what follows, we first of all impose the usual smoothness assumptions that the proba-

bility density gi(θ) = G′

i(θ) exists, is differentiable and strictly positive for all θ ∈ [0, 1].

Our key regularity condition is:

Condition R The cross hazard rate between the types i and j and the hazard rate of

type i, defined as

hi,j(θ) ≡
1−Gi(θ)

gj(θ)
, and hi(θ) ≡ hi,i(θ),

are decreasing in θ for all i, j.24,25

Before stating the main result of this section, recall from the end of Subsection 2.1

that the optimal static contract displays the selling schedule

x̄ ≡ (x1(θ), . . . , xn(θ)), xi(θ) ≡ x̄(θ) = 1[R̄,1](θ) for all i ∈ I,

where 1 denotes the indicator function.

Theorem 1 If condition R holds, the seller’s problem P has a deterministic solution.

Moreover, the optimal selling schedule is given by x̄.

The second part of the theorem simply re-states Proposition 1 that the optimal de-

terministic contract corresponds to the optimal static contract and does not depend on

the ex ante type. Therefore, the interesting question in this section is why the optimal

deterministic contract is indeed a solution to P.

24As can be seen from (11), cross-hazard rates are an essential part of the modified hazard rate,

informativeness measure, or impulse response function and, hence, play a prominent role in the literature

on dynamic mechanism design. We are however not aware that their role has been noted before.
25Because hij(θ) > 0 for all θ < 1 and hij(1) = 0, a cross hazard rate is always decreasing close to

θ = 1. Condition R, therefore, requires it to be decreasing on the entire interval θ ∈ [0, 1). A sufficient

condition to obtain Condition R is that densities gi are increasing, or, equivalently, that the cumulative

distributions Gi are convex. Condition R is therefore satisfied for large families of distributions. A

concrete example is Gi(θ) = θai with 1 ≥ a1 > . . . > an.
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In standard screening problems, the optimality of deterministic contracts obtains when

the so-called “local Mirlees” or “first order” approach is valid (see Strausz 2006). This

approach considers a relaxed problem where only the local incentive compatibility con-

straints are imposed but all global constraints are ignored. Regularity conditions then

guarantee that the solution to the relaxed problem is a solution to the original problem

and, moreover, that the solution is deterministic. Even though our regularity condition R

displays some similarity to those of standard screening problems, the first order approach

turns out to fail in our setting.26 The main challenge is, therefore, to identify a set of

(global) incentive constraints, different from the local ones, which does allow us to derive

the optimal contract.

In the first step, we follow the familiar procedure and make the seller’s problem more

amenable by eliminating transfers from the problem. As is standard, incentive compati-

bility in the second period is equivalent to (i) monotonicity of the selling schedule,

xi(θ) is increasing in θ for all i ∈ I; (MONi)

and (ii) “revenue equivalence”, which means that the buyer’s utility is determined by

the selling schedule up to his utility at the lowest valuation, vi(0). We can use “revenue

equivalence” to eliminate transfers and obtain the seller’s problem as a choice problem over

the selling schedule x and the vector v = (vi(0))i∈I . Formally, the first period incentive

compatibility and the ex post participation constraints can respectively be re-written as
∫ 1

0

[xi(θ)− xj(θ)][1−Gi(θ)] dθ + vi(0)− vj(0) ≥ 0, (ICv
ij)

vi(0) ≥ 0, (IRi)

and the seller’s objective becomes

w(x,v) =
∑

i∈I

pi

∫ 1

0

[θ − c− hi(θ)]xi(θ) dGi(θ)− pivi(0).

The following lemma summarizes.

Lemma 4 The seller’s problem can be equivalently written as follows:

P : max
x,v

w(x,v) s.t. (MONi), (IC
v
ij), (IRi) for all i, j ∈ I.

26Battaglini and Lamba (2014) argue that the first order approach “often” fails in dynamic screening

problems.
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Our approach to solving problem P is to first solve an auxiliary problem where we set

vi(0) exogenously equal to zero. We refer to this auxiliary problem as P0.27

P0 : max
x

w(x, 0) s.t. (MONi), (IC
0
ij) for all i, j ∈ I, i 6= j.

We next show that the optimal deterministic selling schedule x̄ is a solution to P0. In a

second step, we then verify that it is indeed optimal to set vi(0) equal to zero.

To solve P0, we consider a relaxed problem where we ignore the monotonicity con-

straints (MONi) and consider only a subset of incentive constraints. We identify an incen-

tive constraint ICij with its respective index (i, j). For a subset C ⊆ {(i, j) ∈ I2 | i 6= j},

we denote by R0(C) the relaxed problem where only the constraints in C are considered:

R0(C) : max
x

w(x, 0) s.t. (IC0
ij) for all (i, j) ∈ C.

The next lemma shows that in order to verify that the static solution x̄ solves problem

P0, it is sufficient to find a set C so that x̄ solves R0(C).

Lemma 5 If there is a set C so that x̄ is a solution to R0(C), then x̄ is a solution to

P0.

The lemma holds simply, because x̄ trivially satisfies the monotonicity and the remaining

incentive constraints in P0 that were neglected in R0(C).

To find a set C so that x̄ solves R0(C),we will work with the Kuhn–Tucker theorem

for function spaces. Following Luenberger (1969, p.220), a selling schedule x solves R0(C)

if and only if

(i) there are multipliers λij ≤ 0 associated to constraint IC0
ij, and

(ii) x maximizes the Lagrangian

L0(C) =
∑

k∈I

∫ 1

0

pk[θ −c−hk(θ)]xk(θ)gk(θ)dθ −
∑

(i,j)∈C

λij

∫ 1

0

[xi(θ)−xj(θ)][1−Gi(θ)]dθ

=
∑

k∈I

∫ 1

0







pk[θ − c− hk(θ)]−
∑

j:(k,j)∈C

λkjhk(θ) +
∑

i:(i,k)∈C

λikhi,k(θ)







xk(θ)gk(θ) dθ,

(iii) and, moreover, λij = 0 only if the inequality in IC0
ij is strict.

27Notice that because vi(0) = 0 for all i ∈ I, (IRi) is redundant in P0. Moreover, we denote by IC0
ij

the constraint ICv

ij for vi(0) = 0 for all i ∈ I.
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For a given set C, let us spell out when the optimal deterministic schedule x̄ satisfies

the three conditions. Since x̄ trivially satisfies IC0
ij with equality, the third condition

is redundant. Moreover, by point–wise maximization, a selling schedule maximizes the

Lagrangian L0(C) if xk(θ) is set to 1 whenever the expression in curly brackets under the

integral,

Ψk(θ, C, λ) ≡ pk[θ − c− hk(θ)]−
∑

j:(k,j)∈C

λkjhk(θ) +
∑

i:(i,k)∈C

λikhi,k(θ),

is positive, and xk(θ) is set to 0 otherwise.28 Therefore, a sufficient condition for x̄ to

maximize the Lagrangian is that Ψk(R̄, C, λ) = 0 and Ψk(θ, C, λ) is increasing in θ for all

k ∈ I. We summarize this observation in the following lemma.

Lemma 6 The optimal deterministic schedule x̄ is a solution to R0(C) if for all (i, j) ∈ C

there is a λij so that

λij ≤ 0, (KT1)

Ψk(R̄, C, λ) = 0, Ψk(θ, C, λ) is increasing in θ ∀k ∈ I. (KT2)

We are now looking for a set C so that (KT1) and (KT2) are satisfied. We begin by

introducing notation. For each i, let θi be implicitly given by

θi = c+ hi(θi). (16)

Because, by condition R, the hazard rate is decreasing, hi(1) = 0, and c ∈ [0, 1), θi is

unique, exists, and lies in between c and 1. Observe that θi corresponds to the optimal

monopoly price the seller would charge if he knew the buyer’s ex ante type is i. In other

words, if the buyer’s ex ante type is publicly known, the seller optimally offers the schedule

xi(θ) = 1[θi,1] to the buyer.

We now label the ex ante types according to the order of monopoly prices.

c < θn ≤ . . . ≤ θi ≤ . . . ≤ θ1 < 1.

We choose this ordering because it corresponds to the usual ordering of types in a

static screening problem with single crossing. To see this note that if the seller offered

the selling schedule that is optimal with publicly known ex ante types, then types with

28The argument λ in Ψk represents the vector {λij}(i,j)∈C .
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higher prices, and hence lower indices i, “envy” the allocations of types with lower prices

and hence higher indices j > i.

With this ordering, the familiar Mirrlees approach suggests to consider the set of local

constraints IC0
i,i+1 which ensure that no type has incentives to mimic a neighbouring

type. We will now argue that for the set of Mirrleesian constraints, the monotonicity

requirement in (KT2) cannot be established straightforwardly. Indeed, consider the case

with three types n = 3. When we only consider the local constraints IC0
12 and IC0

23 so

that C = {(1, 2), (2, 3)}, then we obtain for type k = 2:

Ψ2(θ, C, λ) = p2[θ − c]− [p2 + λ23]h2(θ) + λ12h12(θ).

To satisfy (KT2), Ψ2(θ, C, λ) needs to be increasing in θ. Because condition R states that

the (cross) hazard rates are decreasing, p2 + λ23 ≥ 0 and λ12 ≤ 0 is a sufficient condition

for concluding that Ψ2(θ, C, λ) is indeed increasing in θ. Whereas the latter inequality

is in line with (KT1), the former holds only if λ23 is not too negative, but it is not clear

whether this is the case, especially since (KT1) requires λ23 to be negative.

In general, we encounter this problem whenever the set of constraints contains IC0
kj

and IC0
ik at the same time, or, in other words, whenever type k is both an “envying” and

an “envied” type. This suggests to consider sets of constraints in which an “envying”

type is not an “envied” type. We call such a set directed :

Definition 1 A set C is called directed if for all i:

(i, j) ∈ C for some j ⇒ (k, i) 6∈ C for all k. (17)

The next lemma shows that for a directed set, the functions Ψk are strictly increasing

provided they have a root in the interval [c, 1].

Lemma 7 Let C be directed and λij ≤ 0 for all (i, j) ∈ C. If there is a solution θ̂ ∈ [c, 1]

to Ψk(θ̂, C, λ) = 0, then Ψk(θ, C, λ) is strictly increasing in θ.

Now observe that R̄ ∈ [c, 1]. Hence, Lemma 6 and 7 combined imply

Lemma 8 If C is directed, then x̄ is a solution to R0(C) if there exist λij so that

λij ≤ 0 ∀(i, j) ∈ C, and Ψk(R̄, C, λ) = 0 ∀k ∈ I. (18)
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We now show that, for any problem P0, a directed set of constraints which satisfies

(18) exists.29 As it turns out, the relevant set of constraints depends on how R̄ is ordered

relative to the values θk defined in (16).

To understand this, consider a set of directed constraints C which contains a constraint

(i, j) ∈ C that involves an “envying” type i with θi < R̄. We now argue that in this case,

C violates (18), and x̄ is not a solution to R0(C), because rather than offering type i the

schedule x̄(θ) = 1[R̄,1](θ), the seller would improve by offering x̃i(θ) = 1[θi,1](θ) instead.

In fact, by definition of θi, this would improve the objective; further, it would relax all

incentive constraints IC0
ij since θi < R̄; finally, because C is directed and type i is envying,

the modification would leave all other incentive constraints unaffected. Therefore, in order

not to be able to improve upon the optimal deterministic schedule x̄, any type i with

θi < R̄ should be an “envied” type. By a similar argument, any type i with θi ≥ R̄ should

be an “envying” type.

The previous discussion suggests to consider a set which contains any constraint IC0
ij

if θi ≥ R̄ and θj < R̄:

C∗ ≡ I− × I+,

where

I− ≡ {i ∈ I | θi ≥ R̄}, I+ ≡ {j ∈ I | θj < R̄}.

Clearly, C∗ is directed. Moreover, we show in the appendix that R̄ ∈ [θn, θ1], and,

therefore, C∗ is non–empty.

Now, let L = |I−| · |I+| be the number of constraints in C∗. Then the condition in the

right part of (18),

Ψk(R̄, C∗, λ) = 0 for all k ∈ I,

corresponds to a system of n linear equations in the L unknowns λij. Hence, C
∗ satisfies

(18) if this system has a non–positive solution. Using Farkas’ lemma, we now prove that

this is always the case. This is the central step towards establishing our result.

29In our working paper version (Krähmer and Strausz 2012) we present a constructive but lengthy

procedure by which to identify the exact relevant constraints. Here we provide instead a much shorter

albeit indirect proof.
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Lemma 9 C∗ satisfies (18).

According to Lemma 8, Lemma 9 implies that the optimal deterministic schedule x̄

solves problem R0(C∗), and thus, by Lemma 5, it also solves problem P0. In problem

P0, we set vi(0) exogenously to zero. We now consider the original problem P, in which

vi(0) is a choice variable of the seller. To do so, we consider the relaxed problem where

we ignore the monotonicity constraints and consider only the incentive constraints in the

set C∗ = I− × I+:

R : max
x,v

w(x,v) s.t. (ICv
ij), (IRk) for all (i, j) ∈ C∗, k ∈ I.

We have:

Proposition 4 Let condition R hold. Then the optimal deterministic contract (x̄, v̄),

where v̄i(0) = 0 for all i ∈ I, is a solution to problem R.

Because the optimal deterministic contract satisfies all neglected constraints, it is also

a solution to the original problem P, and this establishes Theorem 1.

Remark: If condition R does not hold, Theorem 1 may fail, and a stochastic contract

which does condition on the buyer’s ex ante type may be optimal. An example is pre-

sented in Heumann (2013) who considers a setup where the seller controls both the design

of the contract and the sequential revelation of the buyer’s private information, and has

to respect ex post participation constraints. This yields an optimal, multi–period infor-

mation structure in which the analog to our regularity condition R is violated and for

which stochastic non-static contracts are optimal.30 Finally, we note that Theorem 1 may

also fail when the seller, instead of a single unit, may sell an arbitrary quantity of the

good and costs or benefits are non-linear in quantity.

5 Conclusion

This paper shows that introducing ex post individual rationality constraints in a frame-

work with dynamic private information eliminates the value of eliciting the agent’s infor-

30Bergemann and Wambach (2013) also construct a sequential disclosure policy and a mechanism

which does sequentially screen the buyer, and which does respect stronger than ex ante participation

constraints. Compared with us, these authors use a weaker concept of ex post individual rationality

which only requires ex post individual rationality conditional on the information disclosed.
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mation sequentially. Instead, a simple contract that conditions only on the agent’s final

information is optimal.31

In the context of distance sales contracts, our analysis confirms that withdrawal rights

are an effective regulatory tool for achieving a level playing field between internet shops

and traditional brick and mortar stores. The welfare effects of withdrawal rights are

however ambiguous and crucially depend on the details of the distributions of ex ante

and ex post types. In line with the rationale behind the EU-regulation discussed in the

introduction, we consider a setting in which the buyer rather than the seller has private

information. As a result, the seller does not have an incentive to offer a withdrawal right

voluntarily. It is however well-known that such incentives arise when the seller has private

information, because return rights may signal high quality to uninformed consumers.32

When the seller possesses private information about quality and the buyer about his

tastes, the interesting question arises to what extent legally mandated withdrawal rights

interfere with the incentives to signal quality by return policies. Moreover, by focusing on

a bilateral relationship, we also abstract from the natural possibility that the private in-

formation of a buyer may be informative about the willingness to pay of other consumers.

Such interdependencies between buyers may give rise to an endogenous common value

effect that the seller’s outside option depends on the buyer’s private information. Ad-

dressing these extensions is beyond the scope of the current paper, but their exploration

are worthwhile avenues for future research.

Our techniques and results extend readily to settings with multiple buyers. For the unit

good auction model in which the buyers’ private information about their valuation arrives

sequentially, Esö and Szentes (2007b) show that, when there are only ex ante individual

rationality constraints, the optimal mechanism is a sequential auction where the winner’s

31In a similar vein, Kovac and Krähmer (2013) show that a static mechanism can be optimal in

a sequential optimal delegation environment in which, unlike in the current work, monetary transfers

between the principal and the agent are not feasible.
32In the context of adverse selection see Grossman (1981) for formalizing this argument for warrantees

in general and Inderst and Ottaviani (2013) for a recent application to return rights in particular. Mann

and Wissink (1990) explicitly compare money-back guarantees to replacement warrantees when the seller

has superior information due to moral hazard. See also Moorthy and Srinivasan (1995), who argue

that performance warrantees, in contrast to money-back guarantees, are not particularly good signals of

product quality.
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price depends not only on the final bid but also on information provided by bidders in

an initial round. In contrast, it follows from our result that the optimal mechanism

with ex post individual rationality constraints is equivalent to the static Myerson (1981)

auction that is optimal for the seller when he faces the buyers after they received all their

private information. Hence, with ex post individual rationality constraints, the optimal

mechanism is simpler, and the seller does not benefit from a sequential mechanism.

A Appendix

Proof of Lemma 1 Since the “vice versa” statement follows directly from the revelation

principle, we prove the lemma only in one direction. We use the following lemma which

characterizes incentive compatibility in period 2. (The proof is standard and therefore

omitted.)

Lemma A.1 A direct contract (x, t) is incentive compatible in period 2, i.e. satisfies (2),

if and only if for all i ∈ I, the functions vi as given by (1) are absolutely continuous and

xi(θ) is increasing in θ, (MONi)

vi(θ) =

∫ θ

0

xi(z) dz + vi(0). (RE)

In light of the lemma, consider an incentive compatible, deterministic contract (x, t).

Because the contract is deterministic, condition (MONi) implies the existence of a cutoff

Ri ∈ [0, 1] so that xi(θ) = 1[Ri,1](θ) a.e., where 1 denotes the indicator function. Moreover,

let Fi = −vi(0), and define (F,R) = ((F1, R1), . . . , (Fi, Ri), . . . , (Fn, Rn)). By (RE) and

(8), the buyer’s utility from submitting report j in period 1 under the direct contract

is the same as choosing (Fj, Rj) from the menu of option contracts. Therefore, because

(x, t) is incentive compatible in period 1, the menu (F,R) is incentive compatible and

implements the same outcome as the direct contract. Q.E.D.

Proof of Lemma 2: Follows directly from Courty and Li (2000).

Proof of Proposition 1: Follows from the discussion in the main text.

Proof of Proposition 2: Follows from the discussion in the main text.

Proof of Lemma 3: Follows from the discussion in the main text.
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Proof of Proposition 3: Lemma 3 implies that the static menu with (Fi, Ri) = (0, R̄J∗)

for all i ∈ I solves the relaxed version of problem PJ∗

, where we ignore the constraint

(ICJ). LetW
J∗

represent the objective of PJ∗

evaluated at the static menu with (Fi, Ri) =

(0, R̄J∗) for all i ∈ I. Now suppose, in contradiction to our claim, that the static menu is

not a solution to the original problem PJ∗

. Then there is a non–empty set Ī ⊂ I \J∗ of ex

ante types for which the static menu violates constraint (ICJ). Also the value of program

PJ∗

must be less than W J∗

, because W J∗

is the value of the relaxed program. But the

static menu with (Fi, Ri) = (0, R̄J∗) for all i ∈ I satisfies all constraints of program PJ∗
∪Ī .

It yields the seller strictly more than W J∗

, because she now also receives a positive payoff

from ex ante types i ∈ Ī. Hence, it is not optimal for the seller to send the good only to

ex ante types in J∗, a contradiction. Q.E.D.

Proof of Lemma 4: Recall that problem P is given as

P : max
(x,t)

∑

i∈I

piwi s.t. (2), (3), (4).

We first show that the constraints (2), (3), (4) are equivalent to the constraints (MONi),

(ICv
ij), (IRi) as stated in Lemma 4 and (RE) as stated in Lemma A.1. Indeed, by Lemma

A.1, (2) is equivalent to (MONi) and (RE). By (RE), we obtain

∫ 1

0

vj(θ) dGi(θ) =

∫ 1

0

∫ θ

0

xj(z) dz gi(θ) dθ + vj(0) (19)

= −

[
∫ θ

0

xj(z) dz · [1−Gi(θ)]

]1

0

(20)

+

∫ 1

0

xj(θ)[1−Gi(θ)] dθ + vj(0) (21)

=

∫ 1

0

xj(θ)[1−Gi(θ)] dθ + vj(0), (22)

where we have used integration by parts in the second line. Thus, since uji =
∫ 1

0
vj(θ) dGi(θ),

(22) implies that (3) is equivalent to (ICv
ij). Moreover, because xi is non–negative, (RE)

implies that vi(θ) is increasing in θ, and hence (4) is equivalent to (IRi). In sum, this

shows that (2), (3), (4) are equivalent to (MONi), (IC
v
ij), (IRi), and (RE).

Finally, we can eliminate constraint (RE) by inserting it in the objective: (22) for

j = i yields

∫ 1

0

vi(θ) dGi(θ) =

∫ 1

0

xi(θ)hi(θ) dGi(θ) + vi(0). (23)
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Plugging this in (6) yields

wi =

∫ 1

0

[θ − c− hi(θ)]xi(θ) dGi(θ)− vi(0), (24)

and hence, we obtain the objective as stated in Lemma 4. Q.E.D.

Proof of Lemma 5: Follows from the discussion in the main text.

Proof of Lemma 6: Follows from the discussion in the main text.

Proof of Lemma 7: For a directed set C ⊆ {(i, j) ∈ I2 | i 6= j} of constraints, we define

the sets

I−C = {i ∈ I | (i, j) ∈ C} and I+C = {j ∈ I | (i, j) ∈ C}. (25)

Observe that I−C ∩ I+C = ∅, because C is directed. If C is directed, Ψk boils down to

Ψk(θ, C, λ) =



















pk[θ − c− hk(θ)] if k 6∈ I−C ∪ I+C

pk[θ − c− hk(θ)]−
∑

j:(k,j)∈C λkjhk(θ) if k ∈ I−C

pk[v − θ − hk(θ)] +
∑

i:(i,k)∈C λikhik(θ) if k ∈ I+C .

(26)

Because the hazard rate hk(θ) is decreasing and pk[θ − c] is strictly increasing, it

follows that pk[θ − c − hk(θ)] is strictly increasing. This establishes that Ψk(θ, C, λ) is

strictly increasing in θ for k 6∈ I−C ∪ I+C . In addition, λkj ≤ 0 and decreasing cross hazard

rates hkj(θ) imply that
∑

i:(i,k)∈C λikhik(θ) is increasing in θ. Hence, Ψk(θ, C, λ) is strictly

increasing in θ also for k ∈ I+C . Finally, to see that Ψk(θ, C, λ) is strictly increasing in θ

also for k ∈ I−C , first re–write Ψk(θ, C, λ) for k ∈ I−C as

Ψk(θ, C, λ) = pk[θ − c]−



pk +
∑

j:(k,j)∈C

λkj



 hk(θ). (27)

By assumption, Ψk(θ̂, C, λ) = 0 for some θ̂ ∈ [c, 1]. For k ∈ I−C , this implies that

pk +
∑

j:(k,j)∈C

λkj =
pk[θ̂ − c]

hk(θ̂)
≥ 0. (28)

The decreasing hazard rate hk(·) therefore implies that (pk +
∑

j:(k,j)∈C λkj)hk(θ) is de-

creasing. Due to the term pk[θ − c], it then follows that (27) is strictly increasing in θ.

Q.E.D.

Proof of Lemma 8: The statement that if C is directed and permits a static solution,

then the optimal static contract is a solution toR0(C) follows from the main text. Because
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the optimal static contract exhibits increasing selling schedules and trivially satisfies (IC0
ij)

for all i, j ∈ I, it is also a solution to the more constrained problem P0. Q.E.D.

Proof of Lemma 9: We begin by proving the auxiliary claim

R̄ ∈ [θn, θ1]. (29)

Since densities gi(θ) = G′

i(θ) exist, R̄ as a solution to (7) satisfies the first order condition

1−
∑

i∈I

piGi(R̄)− (R̄− c)
∑

i∈I

pigi(R̄) = 0. (30)

Now suppose that, contrary to the claim, R̄ < θn. (Similar arguments apply to the claim

R̄ > θ1.) Then, because the hazard rate is decreasing and since R̄ < θn ≤ θi for all i ∈ I,

(16) implies that R̄ < θi = c+hi(θi) < c+hi(R̄) so that (R̄−c)gi(R̄) < 1−Gi(R̄). Multiply

this inequality with pi and sum over i ∈ I to get (R̄− c)
∑

i∈I pigi(R̄) < 1−
∑

i∈I piGi(R̄),

a contradiction to (30). This establishes (29) and directly implies that C∗ is non–empty.

We now turn to the core of the proof and show (18) for the set C∗. We begin by writing

the system of equations Ψk(R̄, C∗, λ) = 0, k ∈ I, in the L unknowns λij , (i, j) ∈ C∗, in

matrix notation. Let λ = (λ1, . . . , λL) ∈ R
L be the (column) vector consisting of the

multipliers λij, (i, j) ∈ C∗. Moreover, define the (column) vector b = (b1, . . . , bn) by

bk = pkgk(R̄)(R̄− c)− pk[1−Gk(R̄)]. (31)

Observe that by (25) and the definition of C∗, we have I−C∗ = I− and I+C∗ = I+. To

simplify notation, we omit the arguments R̄ and C∗ in what follows. Therefore, by (26),

after multiplying Ψk(λ) = 0 by gk, we obtain that

k ∈ I− : Ψk(λ) = 0 ⇔
∑

j:(k,j)∈C∗

[1−Gk]λkj = bk, (32)

k ∈ I+ : Ψk(λ) = 0 ⇔
∑

i:(i,k)∈C∗

−[1−Gi]λik = bk. (33)

Because I− ∪ I+ = I, (32) and (33) for k = 1, . . . , n writes

Aλ = b, (34)

for the following n×L matrix A: Let aℓ be the ℓth column vector of A ∈ R
n×L. Consider

an index ℓ with λℓ = λij . Then, by inspection of (32) and (33), the ith row of aℓ is equal
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to 1−Gi and the jth row of aℓ is equal to −(1−Gi) and all other rows of aℓ are equal to

0:

aℓ =

































0
...

1−Gi

...

−(1−Gi)
...

0

































← i

← j

(35)

Therefore, C∗ satisfies (18) if and only if there is a λ ≤ 0 (componentwise) so that Aλ = b.

By Farkas’ lemma this is equivalent to:

for all y ∈ R
n there is an ℓ ∈ {1, . . . , L} so that aℓ · y > 0 or b · y ≥ 0, (36)

where “·” indicates the scalar product. To prove (36), it is sufficient to show that aℓ ·y ≤ 0

for all ℓ ∈ {1, . . . , L} implies

b · y ≥ 0. (37)

To this aim, suppose aℓ · y ≤ 0 for all ℓ ∈ {1, . . . , L}. Because each (i, j) ∈ C∗ is

associated with some ℓ, it follows that for each (i, j) ∈ C∗ there exists an ℓ such that

aℓ · y = Gi(yi − yj) ≤ 0. Consequently, yi ≤ yj for all (i, j) ∈ C∗. Since C∗ = I− × I+, it

follows:

max
i∈I−

yi ≤ min
j∈I+

yj. (38)

Now observe that bk S 0 if and only if R̄ S θk.
33 By definition of I− and I+, this implies

that bi ≤ 0 if i ∈ I−, and bj > 0 if j ∈ I+. Hence,

b · y =
∑

i∈I−

biyi +
∑

j∈I+

bjyj ≥ max
i∈I−

yi ·
∑

i∈I−

bi +min
j∈I+

yj ·
∑

j∈I+

bj ≥ max
i∈I−

yi ·
∑

k∈I

bk, (39)

where the last inequality follows by (38). Finally observe that the final term is zero,

because
∑

k∈I bk = 0 by (30). This establishes (37). Q.E.D.

33To see this, recall that θk is given as the root of the function pk[θ−c−hk(θ)]. Because of the monotone

hazard rate, this function is increasing, and so we have that R̄ ≤ θk if and only if pk[R̄ − c − hk(R̄)] ≤

0⇔ bk ≤ 0.
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Proof of Proposition 4: By the Kuhn–Tucker theorem, we have to show that there

are multipliers λij ≤ 0, (i, j) ∈ C∗, and µk ≤ 0, k ∈ I, so that (x̄, v̄) maximizes the

Lagrangian

L =
∑

k∈I

[∫ 1

0

pk[θ − c− hk(θ)]xk(θ)gk(θ) dθ − pkvk(0)

]

(40)

−
∑

(i,j)∈C∗

λij

[∫ 1

0

[xi(θ)− xj(θ)][1−Gi(θ)] dθ + vi(0)− vj(0)

]

−
∑

k∈I

µkvk(0)

=
∑

k∈I

∫ 1

0



pk[θ − c− hk(θ)]−
∑

j:(k,j)∈C∗

λkjhk(θ) +
∑

i:(i,k)∈C∗

λikhi,k(θ)



 xk(θ)gk(θ) dθ

−
∑

k∈I







pk +
∑

j:(k,j)∈C∗

λkj −
∑

i:(i,k)∈C∗

λik + µk







vk(0), (41)

where λij = 0 or µk = 0 only if the respective constraints are not binding. Now, let λij ≤ 0,

(i, j) ∈ C∗ be the multipliers from the proof of Lemma 9 that solve Ψk(R̄, C∗, λ) = 0 for

all k ∈ I and define

µk =







−pk −
∑

j:(k,j)∈C∗ λkj if k ∈ I−

−pk +
∑

i:(i,k)∈C∗ λik if k ∈ I+
. (42)

Then the curly brackets in (41) are zero, and the Lagrangian L is identical to the La-

grangian for the problemR0(C), which, by Lemmata 8 and 9, is maximized by the optimal

static contract. Therefore, (x̄, v̄) maximizes L. It remains to be shown that µk ≤ 0. Since

λik ≤ 0, the claim is trivial for k ∈ I+. For k ∈ I−, recall from (28) in the proof of Lemma

7 that −pk −
∑

j:(k,j)∈C∗ λkj ≤ 0. This completes the proof. Q.E.D.

References

Baron, D. and D. Besanko (1984). “Regulation and Information in a Continuing Rela-

tionship.” Information Economics and Policy 1, 267–302.

Baron, D. and R. Myerson (1982). “Regulating a Monopolist with Unknown Costs.”

Econometrica 50, 911–930.

Battaglini, M. (2005). “Long-Term Contracting with Markovian Consumers.” American

Economic Review 95, 637–658.

37



Battaglini, M. and R. Lamba (2014). “Optimal Dynamic Contracting: the First-Order

Approach and Beyond.” mimeo.

Bergemann, D. and A. Wambach (2013). “Sequential Information Disclosure in Auc-

tions.” mimeo.

Boleslavsky, R. and M. Said (2013). “Progressive Screening: Long-Term Contracting

with a Privately Known Stochastic Process.” Review of Economic Studies 80, 1-34.

Courty, P. and H. Li (2000). “Sequential Screening.” Review of Economic Studies 67,

697–717.

Dai, C., T. R. Lewis, and G. Lopomo (2006).“Delegating Management to Experts.”

RAND Journal of Economics 37, 503–520.
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