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Abstract

We study a notion of locally robust implementation that captures the idea that the planner

may know agents�beliefs well, but not perfectly. Locally robust implementation is a weaker

concept than ex-post implementation, but we show that no regular allocation function is locally

robust implementable in generic settings with quasi-linear utility, interdependent and bilinear

values, and multi-dimensional payo¤ types.

1 Introduction

Bayesian mechanism design is frequently criticized for assuming too much knowledge about agents�

beliefs. This knowledge gives the planner an implausible amount of power when designing the

mechanism, and optimal mechanisms can be very sensitive to this knowledge, e.g., the well-known

full surplus extraction mechanism of Crémer and McLean [6]. To address this issue, the robust

mechanism design literature follows Harsanyi [10] by modeling an agent�s belief as part of her

private type, and requiring a robust mechanism to be incentive compatible for a range of agents�

beliefs so as to re�ect the planner�s uncertainty about these beliefs (see Bergemann and Morris [1]

and also Neeman [21] for an earlier investigation on mechanism design with a focus on payo¤ and

belief types.).

Much of the robust mechanism design literature, e.g. Bergemann and Morris [2], takes the

above criticism of the Bayesian paradigm to the opposite extreme, and assumes that the planner
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knows nothing at all about agents�beliefs. When the planner allows for all �rst-order beliefs of

agents, any robustly implementable choice function is also dominant-strategy implementable when

valuations are private, or ex-post implementable when valuations are interdependent, as shown by

Ledyard [16] and by Bergemann and Morris [1], respectively.

Dominant-strategy and ex-post implementation are overly restrictive in important settings. In

private value environments with unrestricted preference types and three or more social alternatives,

Gibbard [8] and Satterthwaite [25] show that only dictatorial choice functions are implementable

in dominant strategies. Restricting attention to quasi-linear utilities gives rise to more positive

results when values are private, as shown by Vickrey [26], Clarke [5], Groves [9] and Roberts [23].

In interdependent value environments, positive results regarding ex-post implementation are ob-

tained when signals are one-dimensional and value functions satisfy a single-crossing property (see

Dasgupta and Maskin [7] and Jehiel and Moldovanu [12]). But, Jehiel, Meyer-ter-Vehn, Moldovanu

and Zame [13], JMMZ henceforth, show that only trivial allocation functions are implementable

when payo¤ types are multi-dimensional and the interdependent value functions are generic.1 The

strong negative results due to Gibbard, Satterthwaite and JMMZ suggest a weakening of the

implementation concept.

In this paper we relax the requirement that a mechanism be incentive compatible for any

�rst-order beliefs of the agents. More precisely, we only require the mechanism to be incentive

compatible for beliefs that lie in a neighborhood of some benchmark beliefs (which may be derived

from some common prior as usually assumed in the mechanism design literature). We call such a

mechanism locally robust, and ask which social choice functions can be locally robustly implemented

in this sense.

We show by example that some social choice functions can be locally robustly implemented

while not being ex-post implementable. Thus, the notion of locally robust implementation does

not reduce to ex-post implementation. Yet, the main result of this paper extends the impossibility

result of JMMZ to locally robust implementation. More precisely, with quasi-linear utility and

multi-dimensional payo¤ types, locally robust implementation implies a geometric condition that

equates the marginal rates of information substitution of agents�value functions and the allocation

function. This condition, in turn, implies a system of di¤erential equations that needs to be satis�ed

by the value functions. But for almost all bilinear value functions, this system does not have a

solution.2

The connection between our main present result and the impossibility result of JMMZ is in-

1The JMMZ genericity notion excludes several interesting settings. For example, Bikhchandani [4] shows that
non-trivial ex-post implementation can be achieved in auction environments without consumption externalities.
Jehiel, Meyer-ter-Vehn and Moldovanu [14] also display some possibility results in a non-generic framework with
multi-dimensional signals.

2We restrict attention to the �nite-dimensional space of bilinear value functions to allow for an elementary
genericity notion, and for an elementary proof of our main result. This approach also allows us to avoid a technical
assumption in JMMZ which is violated in our example in Section 3.
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structive. As for many other implementation concepts, locally robust mechanisms need to satisfy

a monotonicity condition and an integrability condition (commonly referred to as �payo¤ equiva-

lence�). Locally robust implementation is weaker than ex-post implementation because an alloca-

tion function that is monotone for a small set of beliefs need not be monotone ex-post. This is so

because monotonicity is an inequality constraint: if the inequality is strict in expectation then it

is still satis�ed when some probability is shifted to realizations where monotonicity is violated ex-

post. Locally robust implementation is generically not feasible because integrability for a small set

of beliefs implies integrability ex-post. This is so because integrability on multi-dimensional payo¤

type spaces implies that equilibrium marginal utility is a conservative vector �eld, determined by

the value function and the allocation function. Conservativeness imposes an equality constraint

on the cross-partials of these functions. This equality must hold ex-post if it holds in expectation

for an open set of beliefs.

The concept of locally robust incentive compatibility de�ned in this paper is very similar to

optimal incentive compatibility de�ned in Lopomo, Rigotti and Shannon [17], LRS henceforth.3

For payo¤ environments more general than the quasi-linear environment considered in this paper,

LRS show that optimal incentive compatibility together with ex-post cyclical monotonicity implies

ex-post incentive compatibility. But, ex-post cyclical monotonicity is a strong assumption which

by itself implies ex-post implementability in quasi-linear environments, as shown by Rochet [24].

Conversely, locally robust implementability by itself does not imply ex-post implementability as

shown by an example in Section 3 below. Therefore, our main result does not follow by combining

the results of LRS and JMMZ. Locally robust implementation is also similar to continuous im-

plementation, as de�ned in Oury and Tercieux [22] who relate partial implementation of a social

choice function on the neighborhood of a type space to full implementation of this social choice

function.

We proceed as follows. Section 2 introduces the model; Section 3 shows by example that locally

robust implementation is more permissible than ex-post implementation; Section 4 shows that

locally robust mechanisms satisfy monotonicity and integrability in expectation, and integrability

ex-post; Section 5 introduces a regularity condition on allocation functions and proves the main

impossibility result, Theorem 1.

2 The Model

The Payo¤Environment: We consider the simplest setup in which our main result, Theorem 1,
holds. Speci�cally, there are two social allocations x 2 f0; 1g; and there are two agents i 2 f1; 2g
with payo¤ types �i drawn from di-dimensional cubes �i = [0; 1]di . Agents have quasi-linear

3For LRS the uncertainty about beliefs is in the mind of the ambiguity-averse agent, while for us the uncertainty
is in the mind of the planner. Both interpretations give rise to the same model.
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Bernoulli utility functions of the form ui = xvi (�i; ��i) � pi, where pi is a monetary payment by

agent i and vi is i�s smooth interdependent value function. For the proof of genericity in Theorem

1 we will restrict attention to the �nite-dimensional space of bilinear value functions vi.

The Type Space: Baseline beliefs are given by continuous functions ��i : �i ! �(��i), where

�i is equipped with the sup-norm and �(��i) with the metric of absolute variation; for " > 0 we

let B" be the open "-balls in these metric spaces.

Even though not required for our main result, we observe that the baseline belief ��i could be

derived from a common prior distribution �� over � where ��i (�i) would be the marginal of �
�

over ��i conditional on �i. This common distribution �� could allow for correlation between �i
and ��i as in the work of Crémer and McLean [6].4

To model the planner�s local uncertainty about agents�beliefs ��i (�i) we assume that there is

" > 0 such that agent i�s type space Ti � �i � �(��i) includes all "-perturbed beliefs, that is
�i � B" (�

�
i (�i)) � Ti for all �i. We interpret �i 2 �(��i) as a belief over T�i with marginal �i

over ��i such that �if(��i; ���i(��i))j ��i 2 ��ig = 1. This means that the type space Ti di¤ers
from a standard Bayesian type space f(�i; ��i (�i)) j�i 2 �ig only to the degree that agent i could
have di¤erent beliefs about �i�s payo¤ types, but i believes with probability one that �i�s beliefs
are speci�ed by ���i.

We view Ti as a small type space because every neighborhood of f(�i; ��i (�i)) j�i 2 �ig in the
universal type space with respect to the product, or to the uniform-weak topology includes such a

neighborhood Ti. Importantly, the de�nition ensures that Ti is large enough to ensure that beliefs

are locally independent in the following sense: For every �i there exists " > 0, an "-ball of payo¤

types B" (�i), and an "-ball of belief types B" (��i (�i)), such that:
5 ;6

B" (�i)�B" (��i (�i)) � Ti: (1)

Implementation: The planner wants to implement a (possibly stochastic) allocation q : � !
[0; 1] as a function of payo¤ types �. An allocation function q is locally robust implementable if

there exist type spaces Ti as above and a (possibly belief-dependent) payment function p : T ! R2,
such that the direct revelation mechanism (q; p) is incentive compatible on T , i.e.

E�i [vi (�) q (�)� pi (t)] � E�i
�
vi (�) q

�
�0
�
� pi

�
t0
��

(IC)

for all ti = (�i; �i) ; t0i =
�
�0i; �

0
i

�
, where we set � = (�i; ��i) ; �0 =

�
�0i; ��i

�
; t = (�i; �i; ��i; ��i); t0 =

(�
0
i; �

0
i; ��i; ��i).

4We could also allow the baseline belief to bear on payo¤-irrelevant aspects of the type (such as, for agent i,
signals over agent �i�s realization of ��i). Yet, the same result as Theorem 1 would hold for this more general
setting.

5This is an elementary version of �overlapping beliefs�, as de�ned by LRS.
6This argument relies on the continuity of the belief functions ��i (�).
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Locally robust implementability is not directly comparable to optimal incentive compatibility

introduced in LRS because it pertains to allocation functions q : � ! [0; 1] that need to be

augmented by payment functions p : T ! R2 which may additionally depend on agents�beliefs.
However, when we �x a mechanism with belief-independent payments (q; p) : � ! [0; 1] � R2 we

can address LRS�question, that is whether locally robust incentive compatibility of (q; p) implies

ex-post incentive compatibility.

Locally robust implementation is a weak implementation concept since: (1) payments are

allowed to depend on beliefs; (2) condition (IC) only requires partial implementation; (3) the type

space T is small. This implies that our negative result, Theorem 1, is strong. In contrast, any

positive result for locally robust implementation may be subjected to the critique that it is due

to the above three factors. Therefore, we argue at the end of Section 3 that the positive result

in that section is not due to these factors, but that it obtains under more demanding notions of

locally robust implementation.

3 Locally Robust vs. Ex-Post Implementation

In this Section we illustrate that a locally robust implementable allocation function q need not

be ex-post implementable. While this fact may not be surprising, it is not obvious either, as

highlighted by LRS.

Assume that type spaces are one-dimensional �i = ��i = [0; 1], and that value functions are

given by vi (�) = �i(3��i�1) and v�i (�) = ��i. Thus agent i�s value is increasing in own type when

��i = 1 (as @ivi (�; ��i) � 2), and is decreasing in own type when �0�i = 0 (as @ivi
�
�; �0�i

�
� �1).

When i�s belief �i assigns su¢ cient weight to high values of ��i, for example if �i is uniform on

��i = [0; 1], then i�s expected value is increasing in own type since

E�i [@ivi (�; ��i)] = 3E�i [��i]� 1 > 0:

We consider two allocation functions q: the �rst to contrast locally robust implementation and

ex-post implementation in the simplest possible manner, and the second to satisfy the regularity

condition of Section 5 below.

Dictatorial Example: Consider a dictatorial allocation function that only takes i�s payo¤
type into account. Speci�cally, we de�ne q by a cuto¤ ��i 2 (0; 1) with the property that

q(�i; ��i) =

(
1 if �i � ��i ,

0 else.

This allocation function is not ex-post implementable because for �0�i = 0 it chooses allocation

0 for payo¤ types �i < ��i who have a high value for allocation 1, and it chooses allocation 1 for
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payo¤ types �i � ��i who have a low value for allocation 1. This ex-post violation of monotonicity

is not compatible with agent i�s ex-post incentive constraint.

Nevertheless, q is locally robust implementable. To see that, consider uniform beliefs ��i (�i) 2
�(��i) for all �i and the payment rule

pi (�i; ��i) =

(
vi(�

�
i ; ��i) if �i � ��i ;

0 else.

Agent i�s type (�i; �i) is then e¤ectively choosing between the outcome (q; pi) = (1; vi(�
�
i ; ��i))

with an expected payo¤ of

E�i [vi(�i; ��i)� pi] = E�i [vi(�i; ��i)� vi(��i ; ��i)]

and outcome (q; pi) = (0; 0) with a payo¤ of 0. For small " > 0 and any belief �i 2 B"(��i ) we have
E�i [@ivi (�; ��i)] > 0, so that the agent indeed chooses q = 1 when �i � ��i and q = 0 when �i < ��i .

Regular Example: Consider the stochastic allocation function q (�) = (�i + ��i)=2. For the

same reason as above this allocation function is not ex-post implementable, but it is locally robust

implementable. To show this we �rst assume that agent �i reports truthfully �̂�i = ��i, and

analyze i�s IC constraint. Consider uniform beliefs ��i (�i) and the (belief-independent) payment

rule

pi(�̂i; ��i) = q(�̂i; ��i)vi(�̂i; ��i)�
Z �̂i

0
q(~�i; ��i)@ivi(~�i; ��i)d~�i.

Then utility of type �i reporting type �̂i is given by

ui(�i; �̂i; ��i) = q(�̂i; ��i)vi(�i; ��i)� q(�̂i; ��i)vi(�̂i; ��i) +
Z �̂i

0
q(~�i; ��i)@ivi(~�i; ��i)d~�i

and marginal utility in the report �̂i equals

@�̂iui(�i; �̂i; ��i) = @�̂iq(�̂i; ��i)| {z }
=1=2

(vi(�i; ��i)� vi(�̂i; ��i))| {z }
=(�i��̂i)(3��i�1)

:

Ex-post with ��i = 0 we have 3��i � 1 < 0, so every type �i optimally reports either �̂i = 0 or

�̂i = 1.

In contrast, ex-ante we have

@�̂iE�i
h
ui(�i; �̂i; ��i)

i
=
1

2
(�i � �̂i)E�i [3��i � 1]

and E�i [3��i � 1] > 0 for all �i in the neighborhood of ��i , so every type �i optimally reports
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�̂i = �i.

So far we have assumed that agent �i reports truthfully �̂�i = ��i. This is justi�ed, because

an analogous construction of payments p�i makes truthful reporting �̂�i = ��i a strictly dominant

strategy.

This positive result for locally robust implementation and the contrast to ex-post implemen-

tation is due to the core idea of local robustness, i.e. agents�beliefs are known to be close to some

baseline. It is not due to the weaknesses of the solution concept discussed in the previous section

since: (1) the mechanisms (q; p) have payments de�ned as a function of payo¤ types alone; (2)

every rationalizable strategy of type (�i; �i) leads to outcome q(�i), so (q; p) fully implements q;

and (3) incentive compatibility is maintained on any larger type space with the same �rst-order

beliefs because higher-order beliefs do not matter in the mechanisms (q; p).

4 Monotonicity and Integrability

As a �rst step towards the main result, we follow Jehiel, Moldovanu, Stacchetti [11], and show

that implementable allocation functions must satisfy locally robust versions of monotonicity and

integrability. In deriving these necessary conditions we only exploit agents�ability to misreport

payo¤ types for any given belief type, but ignore their ability to misreport belief types.7

Lemma 1 If the direct mechanism (q; p) is incentive compatible on T , then it satis�es:

(a) Monotonicity: For all �i; �0i and �i such that (�i; �i); (�
0
i; �i) 2 Ti we have

E�i
��
vi (�)� vi

�
�0
�� �

q (�)� q
�
�0
���

� 0 (2)

where � = (�i; ��i) and �0 = (�0i; ��i).

(b) Integrability: Let �i and " > 0 be such that condition (1) holds. Let

Ui;�i (�i) = E�i [q(�i; ��i)vi(�i; ��i)� pi(�i; �i; ��i; ��i)]
7 Ignoring such misreports of beliefs does not signi�cantly weaken the IC constraints, because one can elicit beliefs

by a continuous version of the log-scoring rule (see for example Johnson et al. [15]). The discrete version of this
rule punishes agent i with the payment rule pi(�̂i; t�i) = � log(�̂i(t�i)) when i reports belief �̂i and others report
type t�i . If i�s true belief is �i and others truthfully report t�i, the net bene�t from misreporting her belief as �̂i
is non-positive:

E�i [log(�̂i(t�i))� log(�i(t�i))] = E�i
�
log

�
�̂i(t�i)

�i(t�i)

��
� logE�i

�
�̂i(t�i)

�i(t�i)

�
= log 1 = 0

where the inequality follows from the concavity of the log function and Jensen�s inequality.
Building on this insight, Bergemann, Morris and Takahashi [3] show that an allocation function can be implemented

on a �nite type space T if and only if it satis�es ��i-cyclical montonocity�on �i(�i) := f�i : (�i; �i) 2 Tig for every
�i.
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be agent i�s expected equilibrium utility with payo¤ type �i under (q; p) and belief �i. Then

for all (�0i; �i) 2 B" (�i) � B" (�
�
i (�i)) and all di¤erentiable paths s : [0; 1] ! B" (�i) with

s (0) = �i and s (1) = �0i, we have

Ui;�i
�
�0i
�
� Ui;�i (�i) =

Z �0i

�i

E�i [q (s; ��i)rivi (s; ��i)] � ds (3)

where rivi is the di-dimensional vector of partial derivatives of vi with respect to i�s own
payo¤ type. Thus the vector �eld E�i [q (�; ��i)rivi (�; ��i)] : �i ! Rdi is conservative on
B" (�i).

Proof. To show monotonicity, consider as usual the IC constraints of types (�i; �i) and (�0i; �i)
not to misreport each other�s type:

E�i [vi (�) q (�)� pi (t)] � E�i
�
vi (�) q

�
�0
�
� pi

�
t0
��

E�i
�
vi
�
�0
�
q
�
�0
�
� pi

�
t0
��

� E�i
�
vi
�
�0
�
q (�)� pi (t)

�
Adding up the above two inequalities yields (2).

Integrability (or payo¤ equivalence) basically follows from the envelope theorem. More pre-

cisely, �x agent i�s belief, and let

E�i
h
ui(�i; �̂i; ��i)

i
= E�i

h
q(�̂i; ��i)vi(�i; ��i)� pi(�̂i; �i; ��i; ��i)

i
be the expected utility of type �i when reporting �̂i: Let ��i (�i) 2 argmax�̂i E�i

h
ui(�i; �̂i; ��i)

i
be

any selection from the argmax-correspondence. Then the multi-dimensional version of Corollary

1 in Milgrom and Segal [20] states that

Ui;�i
�
�0i
�
� Ui;�i (�i) =

Z �0i

�i

r�iE�i [ui(s; ��i (s); ��i)] � ds.

To conclude the argument, we apply the theorem of dominated convergence to change the order

of di¤erentiation and integration, i.e. to pull the gradient r�i = ri into the expectation.

At �rst, one might be surprised by the fact that Lemma 1.b holds even though no assumption

about the independence of the baseline belief across agents has been made. But, note that integra-

bility holds only locally, where the belief of agent i can be held constant (due to our consideration

of a neighborhood of the baseline belief). When the belief is constant, the situation is similar to

the one arising with independent distributions of types.

Coming back to the examples of Section 3, the contrast between locally robust implementation

and ex-post implementation is due to the fact that monotonicity can be satis�ed for all close-
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by beliefs �i 2 B"(�
�
i ), but violated for other far-away beliefs �

0
i 2 �(��i). This is indeed the

case in the examples in Section 3 where E�i [@ivi (�; ��i)] > 0 for beliefs �i close-to uniform, but

E�0i [@ivi (�; ��i)] = �1 for belief �
0
i that puts probability one on type ��i = 0.

Loosely speaking, monotonicity is a locally robust property in the following sense: When

inequality (2) is strict for some belief ��i , then it is still satis�ed when some probability is shifted

to ex-post realizations ��i for which the inequality is violated.

The situation is di¤erent for integrability since the requirement that the vector �eld E�i [q (�; ��i)
rivi (�; ��i)] be conservative translates into an equality constraint (on cross derivatives), which
needs to be satis�ed also ex-post.

Lemma 2 If (q; p) is incentive compatible, then for every ��i 2 ��i the vector �eld q (�; ��i)rivi (�; ��i) :
�i ! Rdi is conservative on �i. That is,Z �i

�i

q (s; ��i)rivi (s; ��i) � ds = 0

for all di¤erentiable paths s : [0; 1]! �i with s (0) = s(1) = �i.

Proof. By de�nition of type space Ti, there exists for every payo¤ type �i some " > 0 such that
B" (�i) � B" (�

�
i (�i)) � Ti. Consider s : [0; 1] ! B" (�i) with s (0) = s(1) = �i. By Lemma 1,

the vector �eld E�i [q (�; ��i)rivi (�; ��i)] is conservative on B" (�i) for all �i 2 B" (��i (�i)), and in
particular for �0i = (1� ")��i (�i) + "I��i for any ��i. Thus,

0 =

Z �i

�i

�
E�0i [q (�; ��i)rivi (�; ��i)]� (1� ")E��i (�i) [q (�; ��i)rivi (�; ��i)]

�
� ds

= "

Z �i

�i

q (s; ��i)rivi (s; ��i) � ds

so q (�; ��i)rivi (�; ��i) is conservative on B" (�i).8 This argument is valid for all �i and ��i,

completing the proof.

5 Generic Impossibility of Locally Robust Implementation

We now derive the main result of the paper: generically, no regular allocation function is locally

robust implementable. We proceed by deriving from Lemma 2 some geometric conditions on the

agents�value functions, which do not admit a solution for bilinear value functions with generic

parameters.

8This argument is an elementary version of the proof of Theorem 1 in LRS.
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5.1 The Regularity Assumption

The proof of our main result, Theorem 1, relies on geometric arguments on the boundary I � � that
separates the regions where di¤erent allocations are chosen. In order to facilitate these arguments

we focus on regular allocation functions that are smooth and non-satiated in the following sense.

1. A stochastic allocation function q : � ! [0; 1] is regular if it is smooth with riq(�) 6= 0 for
all i and �.

2. A deterministic allocation function q : � ! f0; 1g is regular if it maximizes a smooth, non-
satiated objective function, i.e. there exists  : �! R such that q(�) 2 argmaxx2f0;1g x (�),
where  satis�es ri (�) 6= 0 for all i and �, and there exists an interior � 2 � with

 (�) = 0.9 ;10

For deterministic regular q we �x I =  �1(0). For stochastic regular q we choose any interior

� and �x I = q�1 (q(�)). In either case I is a di + d�i � 1-dimensional submanifold of �. For
any interior �� = (��i ; �

�
�i) 2 I let Ii (��) � �i be the path-connected component of f�i 2 �i :

(�i; �
�
�i) 2 Ig that includes ��i .

Lemma 3 Assume that di � 2, that q is regular, and that q
�
�; ���i

�
rivi

�
�; ���i

�
: �i ! Rn is a

conservative vector �eld for some interior �� 2 I. Then vi
�
�; ���i

�
is constant on Ii (��).

Proof. The idea of the proof is to construct a �taxation mechanism�with allocation function
q(�; ���i), that is generally not incentive compatible but satis�es a �rst-order condition that implies
the Lemma.

To simplify notation in this proof, we drop the argument ���i from the functions q and vi. Fix

�0i 2 �i. As qrvi is conservative, the integral

Ui (�i) =
Z �i

�0i

q(s)rvi (s) � ds

is the same for any di¤erentiable path s : [0; 1] ! �i with s(0) = �0i and s(1) = �i. We interpret

Ui as i�s �equilibrium utility�of a �taxation mechanism�with allocation function q and �payments�

Pi (�i) = q (�i) vi (�i)� Ui (�i) .
9Our results extend immediately to piece-wise constant allocation functions q = � �  : � ! fq1; � � � ; qng with

full range, where 0 � q1 < � � � < qn � 1, � : R!fq1; � � � ; qng is increasing, and  : � ! R satis�es ri (�) 6= 0 for
all i and �.
10The dictatorial allocation function illustrating the di¤erence between locally robust implementation and ex-post

implementation in Section 3 violates regularity. We have been able to de�ne analogous examples with regular,
deterministic allocation functions q. However, these examples require value functions that are non-linear in own
type and are thus omitted from this paper.
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Figure 1: This �gure illustrates the logic of our approach: Lemma 1 shows that the vector �eld
E [qrivi] must be integrable when (q; p) is incentive compatible. Lemma 2 shows that interim
integrability implies ex-post integrability. Lemma 3 reconverts ex-post integrability into a �rst-
order condition.

First, consider a regular stochastic allocation function q. Then, by

rPi = virq + qrvi �rUi = virq (4)

the �payment� Pi is constant on Ii (�
�), and we can write Pi(�i) = P̂i(q(�i)) for all �i in a

neighborhood of Ii (��). By equation (4) and rq 6= 0 we know that P̂i is di¤erentiable with
P̂ 0i(q(�i)) = vi(�i). We can interpret this equation as the �rst-order condition of a �taxation mech-

anism�that lets agent i choose allocation q to maximize vi (�i) q� P̂i(q).11 As P̂ 0i(q(�)) is constant
on Ii (��), also vi(�) is constant on Ii (��).

Second, consider a regular deterministic allocation function q. By construction, Pi is constant
on path-connected components of q�1 (0) and q�1 (1). As Ui (�) is continuous and q (�) vi (�) has a
discontinuity of vi (�i) at any �i 2 Ii (��) we can again conclude that vi (�) is constant on Ii (��).

Lemma 3 allows us to write i�s value on the boundary as �i
�
���i
�
= vi

�
�i; �

�
�i
�
for any �i 2

Ii (�
�). Next we want to extend �i to a neighborhood of �

�
�i. In doing so we have to be careful

in choosing the correct path-connected component of f�i 2 �i : (�i; ��i) 2 Ig. To this end we
�x open neighborhoods Ni (��i ) of �

�
i and N�i

�
���i
�
of ���i that are small enough so that for every

��i 2 N�i
�
���i
�
the set

I loci (��; ��i) := f�i 2 Ni (��i ) : (�i; ��i) 2 Ig

is a path-connected di � 1-dimensional submanifold of �i, and similarly for every �i 2 Ni (��i ) the
set

I loc�i (�
�; �i) := f��i 2 N�i

�
���i
�
: (�i; ��i) 2 Ig

11Note that this �taxation mechanism�is generally not incentive compatible (for �xed ���i) as emphasized by the
�regular example�in Section 3 and indicated in Figure 1.
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is a path-connected d�i � 1-dimensional submanifold of ��i.
For ��i = ���i the set I

loc
i

�
��; ���i

�
includes ��i and is thus non-empty. So for �xed neighbor-

hoods Ni (��i ) ; N�i
�
���i
�
with the above property, we can choose smaller neighborhoods Mi (�

�
i ) �

Ni (�
�
i ) and M�i

�
���i
�
� N�i

�
���i
�
such that for any ��i 2 M�i

�
���i
�
the set I loci (��; ��i) is

non-empty, and for any �i 2Mi (�
�
i ) the set I

loc
i (��; �i) is non-empty.

Thus, for every internal �� 2 I, we can de�ne �ex-post transfers� �i : M�i
�
���i
�
! R and

��i :Mi (�
�
i )! R by

�i(��i) = vi(�i; ��i) for any �i 2 I loci (��; ��i) ;

��i(�i) = v�i(�i; ��i) for any ��i 2 I loc�i (��; �i) :

The implicit function theorem implies then that �i is di¤erentiable at �
�
�i,

12 and ��i is di¤erentiable

at ��i .

5.2 The Main Result

With the above preparations in place, we can now show that locally robust implementation imposes

similar conditions on value functions as ex-post implementation.

Lemma 4 Assume di � 2. If a regular allocation function q is locally robust implementable, then
there exists an interior �� 2 I such that the vectors

rivi(��i ; ��i) and ri(v�i(��i ; ��i)���i(��i )) are parallel for all ��i 2M�i
�
���i
�
with (��i ; ��i) 2 I.

(5)

Proof. For any such ��i we argue that both these vectors are perpendicular on I loci (��; ��i).

For rivi(��i ; ��i) this follows from Lemma 3. For ri(v�i(��i ; ��i) � ��i(�
�
i )) it follows by the

construction of ��i, because v�i(�; ��i)� ��i(�) vanishes on Mi (�
�
i ).

Lemma 4 is a close analogue to Proposition 3.3 in JMMZ, but there are two di¤erences. First,

Proposition 3.3 in JMMZ shows that the two vectors are not only parallel but also point in the

same direction. This corresponds to the fact that an ex-post implementable allocation function

must be ex-post monotone, while a locally robust implementable allocation function need not be

12More speci�cally, the gradient of �i is given by

r�i (�
�
�i) = r�ivi (�

�
i ; �

�
�i) +

@xvi (�
�
i ; �

�
�i)

@x (�
�
i ; �

�
�i)

r�i (�
�
i ; �

�
�i) (deterministic regular)

r�i (�
�
�i) = r�ivi (�

�
i ; �

�
�i) +

@xvi (�
�
i ; �

�
�i)

@xq (�
�
i ; �

�
�i)

r�iq (�
�
i ; �

�
�i) (stochastic regular)

where x is any direction in �i for which @x (�i; ��i) 6= 0 (resp. @xq (��i ; ���i) 6= 0).
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ex-post monotone. Second, by focusing on regular allocation functions, we simplify the analysis in

comparison to JMMZ; among other things, this rules out case (ii) of Proposition 3.3 in JMMZ.

For any regular allocation function q to be locally robust implementable, Lemma 4 requires

the existence of ��i 2 �i and ri��i(��i ) 2 Rdi such that (5) is satis�ed. Condition (5) imposes
more equations on the value functions vi and v�i than can be satis�ed by the free parameters

��i and ri��i(��i ). Dealing with ex-post implementation, JMMZ took a �highbrow�approach to
show a similar result, proving genericity in an in�nite-dimensional functional space of su¢ ciently

smooth value functions. Here, we provide an alternative, elementary approach for the �nite-

dimensional space of bilinear value functions. This approach has the additional advantage that

it does not require rivi 6= 0 everywhere, which was assumed in JMMZ. We conjecture that the

proof of Theorem 1 generalizes, for any n 2 N, to the �nite-dimensional space of polynomial value
functions with degree below n.

Bilinear value functions can uniquely be represented as

vi (�) = �Ti (fi + Fi��i) + gi +G
T
i ��i (6a)

v�i (�) = �Ti (f�i + F�i��i) + g�i +G
T
�i��i (6b)

with vectors fi; f�i 2 Rdi ; Gi; G�i 2 Rd�i , constants; gi; g�i 2 R, and matrices Fi; F�i 2M (di � d�ijR),
where �Ti is the transposed row vector corresponding to column vector �i. For the following argu-

ments we introduce some geometric terminology. For vectors x; y 2 Rn we write x k y if x and y
are parallel, i.e. there exists � 2 R with y = �x or x = 0, and x ? y if x and y are orthogonal, i.e.

x � y = 0. Finally, we say that bilinear value functions (6) are generic if neither

Fi��i k F�i��i for all ��i 2 Rd�i (G1)

nor

F T�i�i k G�i for all �i 2 �i. (G2)

The set of non-generic value functions has Lebesgue-measure zero: Condition (G1) requires the

did�i-dimensional matrices Fi and F�i to be scalar multiples of each other, and therefore describes

a submanifold of co-dimension did�i� 1 in R2did�i 3 (Fi; F�i). Condition (G2) requires each of di
columns of F T�i to be a scalar multiple of the d�i-dimensional vector G�i, and therefore describes

a manifold of co-dimension di(d�i � 1) in Rdid�i � Rd�i 3 (F�i; G�i).

Theorem 1 Assume di � 2. For generic bilinear value functions, no regular allocation function
is locally robust implementable.
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Proof. Let q be regular and �x �� =
�
��i ; �

�
�i
�
in the interior of I. With bilinear value functions

the geometric condition (5) simpli�es to

fi + Fi��i k f�i + F�i��i �ri��i(��i ) for all ��i 2 I�i (��) . (7)

We can assume that I�i (��) is a hyperplane in ��i: If r�iv�i (��i ; �) 6= 0 then the level set

f��ijv�i (��i ; ��i) = v�i
�
��i ; �

�
�i
�
g is a hyperplane in ��i and coincides with I�i (��) by Lemma

3. Otherwise, if r�iv�i (��i ; �) = 0, assumption (G2) implies that the direction of r�iv�i (�i; �) =
F T�i�i + GT�i varies in �i, so there exists �i 2 Mi(�

�
i ) with r�iv�i (�i; �) 6= 0. By our regularity

assumption I�i
�
�i; �

�
�i
�
is non-empty and condition (7) holds when we replace ��i by �i. Subject

to this replacement, we can assume that r�iv�i (��) 6= 0 and that I�i (��) is indeed a hyperplane.
As Fi; F�i are linear functions of ��i, we rewrite (7) as

fi+Fi�
�
�i+�Fi

�
���i � ��i

�
k f�i+F�i���i�ri��i(��i )+�F�i

�
���i � ��i

�
for all ��i 2 I�i (��) and � 2 [0; 1] :

We then apply Lemma 5 (see Appendix) to y = Fi
�
���i � ��i

�
and y0 = F�i

�
���i � ��i

�
to obtain

Fi
�
���i � ��i

�
k F�i

�
���i � ��i

�
for all ��i 2 I�i (��) .

Alternatively

Fi��i k F�i��i for all ��i ? r�iv�i (��i ; �) (8)

as the gradient r�iv�i (��i ; �) is the normal vector on the hyperplane I�i (��).
By regularity, (8) holds for all �i in a neighborhood of ��i and by condition (G2) the direction of

r�iv�i (�i; �) varies linearly in �i. So by Lemma 6 (see Appendix) there exists a single parameter
� 2 R such that �Fi��i = F�i��i for all ��i 2 Rd�i , or Fi � 0. This contradicts (G1), �nishing
the proof.

Discussion of Regularity: We rely on the regularity assumption in two ways. First we use it
whenever we assume that the sets Ii(��) are �well-behaved�as in the proof of Lemma 3. This use of

regularity is an innocuous way to keep the analysis clean. Second, we use the assumption ri 6= 0
or riq 6= 0 when we argue that �i(�) is di¤erentiable, or even well-de�ned. This use of regularity is
more substantial because it rules out dictatorial choice functions q = q(�i) where a small change

of �i can tip the allocation from q = 0 to q = 1 for all ��i. For such dictatorial function q the

boundary I�i(��) � ��i does not exist for any ��.13

We complement Theorem 1 by showing that, generically, dictatorial allocation functions are

not locally robust implementable either. Indeed, consider any non-constant dictatorial allocation

13The same issue arises in JMMZ. There we treat �irregular�allocation functions in part (ii) of Proposition 3.3.,
and parts (iii) and (iv) of Proposition 4.3.
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function q : �i ! [0; 1]. By monotonicity (2), the allocation q (�) must be increasing in the same
direction as i�s expected value E��i [vi (�; ��i)], so generically there exists a hyperplane I � �i

that separates lower values of q(�i) from higher values of q(�i). Lemma 3 implies that vi(�; ��i)
is constant on I for all ��i, so rivi (�; ��i) = Fi��i does not depend on ��i. This is clearly a

non-generic condition.

6 Conclusion

In this paper we have studied a notion of locally robust implementation that takes an intermediate

position between Bayesian implementation and robust implementation. Speci�cally, the agent�s

type space is some neighborhood of a Bayesian type space, modeling slight uncertainty of the

planner about agents� beliefs. While such a type space may seem much closer to a classical

Bayesian type space than to, say, the universal type space, we show that for rich environments

with multi-dimensional payo¤ types, locally robust implementation is still an overly demanding

concept. Theorem 1 shows that, for generic bilinear values, no regular allocation function is

locally robust implementable. This result parallels and reinforces the negative result on ex-post

implementation in JMMZ.

One way to interpret this negative result is that in many payo¤ environments even local ro-

bustness is too demanding when applied to social choice functions. One should be then ready to

allow for the implementation of social choice correspondences in which the outcome may depend

(at least slightly) on agents�beliefs. This calls for a redirection of the robust mechanism design

agenda towards the implementation of social choice correspondences - a direction actually present

in Bergemann and Morris [1], but less so in the subsequent literature. In particular, following the

spirit of the local perturbations considered in this paper, it would make sense to uncover the kind

of local perturbations of beliefs and the baseline social choice functions for which a nearby outcome

can be ensured. Some insights along these lines are developed by Meyer-ter-Vehn and Morris [19]

who show that, for open sets of value functions and for arbitrary belief spaces, the planner is able

to achieve belief-dependent, but close-to-optimal outcomes (see also Madarasz and Prat [18] in a

multi-product monopoly setup for a related investigation).

7 Appendix

Lemma 5 Let x; x0; y; y0 be vectors in Rn. If (x+ �y) k (x0 + �y0) for three or more values � 2 R,
then y k y0.

Proof. First note that x k x0 i¤ xjx
0
k 6= x0jxk for all coordinates j; k 2 f1; � � � ; ng. Now, if

(xj + �yj) (x
0
k + �y

0
k) = (xk + �yk) (x

0
j + �y0j) for three or more values of �, then the coe¢ cients

on the �2-terms must coincide, so yjy0k = yky
0
j .
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Lemma 6 Let x; x0; y; y0 be vectors in Rn. If �x + (1� �) y k �x0 + (1� �) y0 for all convex
combinations of x; y and x0; y0, then there exists a single parameter � 2 R such that for all linear
combinations of x; y and x0; y0 we have � (�x+ �y) = �x0 + �y0 or �x+ �y = 0.

Proof. Assume that x and y (and x0 and y0) are linearly independent (otherwise the proof is
obvious), so �1x = x0 and �0y = y0. Then

�x0 + (1� �) y0 = ��1x+ (1� �)�0y = �0 (�x+ (1� �) y) + � (�1 � �0)x

can only be parallel to �x+ (1� �) y if �0 = �1.
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