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Abstract

We study contests where several privately informed agents bid for a prize. All
bidders bear a cost of bidding that is an increasing function of their bids, and, moreover,
bids may be capped. We show that, regardless of the number of bidders, if agents have
linear or concave cost functions then setting a bid cap is not profitable for a designer
who wishes to maximize the average bid. On the other hand, if agents have convex
cost functions (i.e., an increasing marginal cost) then effectively capping the bids is

profitable for a designer facing a sufficiently large number of bidders.

1 Introduction

In many sport competitions audiences are thrilled when several teams or individuals engage

in close races. The bodies governing competition rules in these events are interested to create
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what they call a "competitive balance”. In particular, this means increasing the expected

performance of a league as a whole rather than the performance of the top team or individual.

Entry in professional competitions is often restricted, and only contestants that have
achieved a certain predefined minimum requirement are allowed to compete. Similarly, re-
serve prices and entry fees are often used in order to exclude players with low valuations
from an auction. Such procedures can be beneficial for the seller in an auction (or for a
contest designer willing to raise the average effort) and have been amply discussed in the
literature. On the other hand, common sense intuition suggests that imposing upper bounds
on bids will have a detrimental effect on the average bid level. Upper bounds will obviously
constraint high valuation bidders. As a consequence, the prize will not necessarily go to the
agent who values it the most. This efficiency loss will, in turn, imply that the seller’s share

of the pie will be smaller.

But, contrary to the conventional wisdom sketched above, in many competitive situations
we often observe severe constraints imposed on contestants. For example, in sports where
equipment plays a major role (e.g., sailing, motor races, etc...) there are very strict, explicit
or implicit technological constraints imposed on the allowed equipment!. Formula 1 racing
cars must be constructed such that they cannot run faster than an absolute limit of 360
km/hour. In addition there are many stringent technical specifications whose main goal is
to slow down the cars under various racing conditions?. It is well-known that the constraints
bind, and the Formula 1 competition is sometimes compared to a cat and mouse game
among organizers and engineers. Similarly, the mandatory specifications for racing yachts
cover pages of arcane technical detail.

In US professional sports leagues (e.g., NBA, NFL) individual teams face annual caps

on the sum of money they are allowed to spend on salaries®. The usual explanation is

! Anti-doping rules play, in a sense, a similar role for sports where external equipment is not crucial.
2Without going into very technical details, consider these rules: the cars have a maximal allowed engine

capacity of 3000 cm?, at most 10 pistons, at most 5 ventils per piston, at most 7 gears, they must weigh at

least 600 kg and have maximal size of 455 x 180 x 95 cm, etc...
3For example, this year NFL teams face a salary cap of $62.172.000 per club. A club’s top 51 salaried

players count towards the cap.



that the salary caps help even competition between teams in large and small cities, since
otherwise big-city teams could afford to pay more, would buy the best talent and destroy
any semblance of competition in the league®. Salary caps are clearly binding, and teams are
sometimes forced to trade expensive players in order to make place to other needed team

members®.

To take some examples from other fields, consider first the much discussed initiatives
to cap both lobbying contributions (affecting the contests among lobbyists such as political
action committees) and spending (directly affecting the contest among candidates) in US
electoral campaign. An interesting question is whether these initiatives will indeed induce

the desired outcome, i.e., a decrease in aggregate campaign expenditure.

The countries in the European Union spend considerable resources (in the form of tax
rebates, tax exemptions, etc...) in order to attract capital. This contest is the mirror image of
an usual all-pay auction, since the prize goes to the lowest bidder. Various initiatives propose
a harmonization of capital taxation in the EU. In particular this may mean the imposition of
a minimum taxation of capital gains in all countries®. How will such a measure, if introduced,

influence the entrepreneurial decisions and the welfare of each country 7

In this paper we provide a model that explains the effects and use of endogenous bidding
constraints. Several results have also implications for auctions with financially constrained

bidders where the constraints may be exogenous.

In Section 2 we describe the model. Several risk-neutral agents engage in a contest for
a prize. Each bidder is privately informed about her valuation for the prize. The function
governing the distribution of valuations is common knowledge, an valuations are drawn inde-
pendently of each other. Each contestant makes a bid for the prize, but bids are constrained

to be lower than a commonly known bid cap d, that may be controlled by the designer.

4Others see the cap as a device by which teams’ owners capture some of the rents, rather than having all
the rents going to players. Fort and Quirk (1995) present empirical evidence that salary caps are nevertheless

effective in restoring ”the competitive balance”
SEuropean leagues do not have salary caps, but impose indirect limitations such as the number of foreign

(i.e., expensive) stars. These limitations often lead to curious citizenship awards and legal battles.

6At the moment Luxembourg, for example, does not tax capital gains at all.



The contestant with the highest bid wins the prize”, but all contestants incur a cost that
is a strictly increasing function of their bid (the cost function is common-knowledge). This
model is strategically equivalent to one in which the value of the prize is known and the
same for all contestants, but each bidder is privately informed about an ”ability parameter”
influencing the cost functions®. Lower valuations correspond then to lower abilities, since a
player with lower ability has higher costs to provide the same bid (or effort). We differentiate
among the cases where the cost function is, respectively, linear, concave or convex. There

are several possible interpretations for these features:

1. The agents are engaged in an contest where they all spend resources to win a prize.
The cost of a bid is an increasing function of the bid, but it becomes infinite above a certain

level that can be controlled by the designer.

2. The agents face an increasing cost of financing and an absolute budget constraint that

cannot be exceeded, but the designer may provide some additional financing.

Each contestant chooses his bid in order to maximize expected utility. The goal of the
contest designer is to maximize the average bid at the contest (in out ez-ante symmetric

model this coincides with maximizing the expected sum of bids.)

In Section 3 we analyze the case of linear cost functions, and we display the symmetric
bidding equilibrium for contests with an effective bid cap d. In equilibrium each bidder makes
a bid that is a (weakly) increasing function of her valuation for the prize. Let b denote the
bid function in the symmetric equilibrium of an unconstrained contest (see Proposition 1),
and let g_l(d) denote the valuation of the agent that makes a bid d in this equilibrium. In
Proposition 2 we show that the equilibrium of the contest with bid cap d is characterized
by a critical valuation ¢ = c(d) < b~'(d) such that all lower types bid according to b , but
all higher types make a bid equal to d. A bidder with the critical valuation ¢ is exactly
indifferent between bidding b(c) and d. Since ¢ < b=2(d), the equilibrium bidding function is

not continuous at the critical valuation.

"If several bidders make the same highest bid ( a feature that arises here in equilibrium), then each of
the high bidders has the same chance to get the prize.
8See Moldovanu and Sela (1999).



For all types in the interval [c,b~!(d)) the equilibrium bid in the constrained contest is
higher than the equilibrium bid in the contest without bid caps! This is the main "hidden”
effect of bid caps. Hence, in order to compute the overall effect of bid caps on the designer’s
revenue it is necessary to compare this gain with the loss incurred because the constrained
bid of all types higher than b~'(d) is lower than their unconstrained bids. A priori, it seems
that the comparison depends on the exact shape of the equilibrium bid function, i.e., on
such factors as the distribution of types, and the number of bidders. Proposition 3 shows
that, with linear cost functions, the average loss due to bid caps is invariably higher than
the average gain. Hence bid caps are disadvantageous for the designer. While we give a
direct proof, this result can also be derived by Myerson’s (1981) approach, which employs
direct revelation mechanisms. Note that in some cases (where a regularity condition on
the function governing the distribution of valuations® is not satisfied), Myerson’s revenue
maximizing auction does involve pooling, and hence it will also be inefficient. But, as our
result suggests, this optimal pooling cannot be of the form induced by bidding caps. In

particular, the optimal auction never displays ”distortion at the top”.

In Section 4 , Proposition 4, we display the symmetric equilibrium bid function for the
case of strictly increasing (not necessarily linear) cost functions: this equilibrium is obtained
by applying the inverse cost function to the unconstrained part of the bid function and to
the critical value obtained for the linear case, respectively. Proposition 5 shows that bid
caps decrease the designer’s revenue when he faces bidders with concave cost functions. In
contrast, Proposition 6 shows that, for any strictly convex cost function, the introduction
of effective bid caps strictly increases the designer’s revenue if there are sufficiently many
bidders. A (rough) intuition for this result is as follows: When there are sufficiently many
contestants, the chances of getting the prize are slim, and only a small measure of types will
make very high bids. Thus, the loss induced by capping the bids of high valuation bidders is
not too large!®. On the other hand, with increasing marginal costs, a slight increase in bids
is relatively less costly for a lower valuation type, and more such types will find it optimal

to increase their bid up to the allowed maximum. Hence the measure of types for which the

90ur analysis does not depend on any regularity assumptions.

10This intuition applies in general, no matter what the shape of the cost function is.



cap leads to gains for the designer gets larger, and ultimately so large that it can dominate

the losses sustained by capping the bids of high valuation bidders.

At the end of this Section we display an example showing that if bidders have convex
cost functions, setting a maximum bid is profitable for the designer even if she is allowed to

impose a minimum bid!’.

Concluding comments are gathered in Section 5. All proofs are relegated to an Appendix.

1.1 Related Literature

The economic literature on contests and all-pay auctions is very large. All-pay auction
models with incomplete information about the prize’s value to different contestants include
Weber (1985), Hillman and Riley (1989), and Krishna and Morgan (1997). Equilibrium
uniqueness in such models with two players is treated in Amann and Leininger (1996) and
Lizzeri and Persico (2000). All these papers study models with linear cost functions and

unconstrained bidders.

Our paper is closely related to several important contributions by Che and Gale and

Laffont and Robert.

Laffont and Robert (1996) show that an all-pay auction with a reserve price is a revenue-
maximizing mechanism for selling one object to bidders that face linear costs and a common
(and common-knowledge) budget constraint. In addition, these authors show that the opti-
mal reserve price for financially constrained bidders is lower than the one without constraints.
Since in their interpretation the budget constraint is exogenously given, Laffont and Robert

do not analyze what happens when this constraint varies.

Che and Gale (1998a) calculate the bidding equilibrium of a complete information, all-pay
contest with two bidders having different valuations for a prize and (using our terminology)

linear cost functions. In contrast to our finding with linear cost functions, they show that a

HRecall the $62172000 annual salary cap imposed on NFL teams. Interestingly, there is also a minimum

salary requirement of $51561000.



bid cap can increase the designer’s revenue. Their result is due to the ez-ante asymmetry in

valuations'?. Che and Gale also make an application to political lobbying.

Che and Gale (1998b) study standard auctions for one object where bidders are pri-
vately informed about their valuation and about their ability to pay (type spaces are two-
dimensional). In their model the symmetric equilibrium bid function depends continuously
on the valuation and on the budget constraint. (Due to the technical complexity, Che and
Gale do not analytically compute equilibria, and their arguments are indirect ones). Their
main intuition is that auction procedures that generate lower bids perform better since
budget constraints will be binding for less types. In particular, an all-pay auction revenue
dominates a first price auction, and a first-price auction revenue- and welfare- dominates a
second-price auction. This last result is shown to generalize to frameworks where the winner
incurs a bidding cost which is a convex function of her bid. As in Laffont and Robert (1996),

the budget constraints are taken to be exogenous and not subject to variation.

Che and Gale (2000) describe the optimal mechanism for selling a good to a budget
constrained buyer who is privately informed about her valuation and about her ability to
pay. This mechanism involves non-trivial price discrimination (whereas it reduces to a take-

it-or-leave-it offer if the budget constrained is known)

Pitchik and Schotter (1988) study complete information sequential auctions with two
financially constrained bidders and two independent objects. In particular, they point out

that the order of sale affects revenue.

Benoit and Krishna (1998) extend this model to more than two bidders, allow for synergies
among the objects and for budgets chosen by the bidders. They note that the seller may
benefit from the budget constraints, and that this feature cannot occur in their model if only
one object is auctioned. In their example, two objects are sold in a sequence of second-price
auctions to two bidders. It is optimal for one of the bidders to force up the price of the first
object since this depletes the budget of the other bidder, and the second object sells cheaply.

The seller’s revenue is higher than in the unconstrained auction.

2Baye et. al. (1993) also study an asymmetric model with complete information, and show that excluding

some bidders may be advantageous for the beneficiary of the lobbying activities



Moldovanu and Sela (1999) study the effect of the bidding cost function in a contest
model where the designer can split a fixed prize sum among several prizes. They show that
awarding a unique prize is optimal if the contestants have linear or concave cost functions,
but that awarding several prizes can increase the designer’s revenue if contestants face a
convex cost function. One effect of adding a second prize is similar to the effect of bid caps:
relatively to a winner-takes-all contest, high value bidders will decrease their bids, while

medium value bidders will increase their bids.

2 The model

We consider n agents bidding for an indivisible object. Bidder i's valuation for the object,
denoted by v;, is private information to ¢, 7 = 1,2, ...,n. All bidders other than ¢ perceive v;
as a random selection out of the interval [0, 1], governed by the distribution function F, and
independent of other valuations. We assume that F' is continuously differentiable, and we

denote by f the associated density function. We also assume that f(v) > 0 for all v € [0, 1]

Each bidder i submits a bid b; < d, where d € [0,1] is a commonly known bid cap.
The cap can be exogenous (e.g., due to budget constraints) or controlled by the contest’s

designer. Bids are submitted simultaneously and independently of each other.

The bidder with the highest bid wins the object, but all the n bidders pay their bids.
A bid z causes a cost g(z), where g : Ry — R, is a strictly increasing function, twice
continuously differentiable with ¢g(0) = 0. If more than one bidder submits the highest bid,
then the winner is randomly selected among the highest bidders (each one of them has the

same chance to win the object).

3 Linear cost functions

In this section we assume that the cost functions are linear, i.e., g(z) = x.



Proposition 1 Consider a contest where n bidders face linear cost functions and a bid cap
d>1-— fol F™Y(y)dy. Then the bid cap is not effective, and, in a symmetric equilibrium!3,

the bid function of every bidder is given by

bv) = vF" (v) — /Ov Fr Y y)dy, 0<v <1 (1)

Proof: Well known O

Proposition 2 Consider a contest where n bidders face linear cost functions and a bid cap
d such that 0 <d <1 — fol FY(y)dy. In a symmetric equilibrium the bid function of every

agent is gien by
bv) f0<v<c
b(v) = (2)
d if c<v<l1
where the critical value ¢ = ¢(d) is defined by

c(1 - F"(c)) S
d:m—/oF (y)dy - (3)

Proof: See Appendix!* O

Example 1 Assume that n = 2 and that F(v) = v (uniform distribution on [0,1] ). Assum-

ing that d < %, the symmetric equilibrium bid function is given by

L2 if o< v<2d

d if 2d<v<1.
The following figure shows the bid functions with and without a bid cap.

figure 1 here

131t can be shown that the symmetric equilibrium is unique.
HMLaffont and Robert (1996) use a direct revelation approach to calculate, for each type, the equilibrium

probability of getting the prize and the payment in a revenue maximizing mechanism with a fixed budget
constraint. That approach (which employs an additional regularity condition on hazard rates) can be also

used to derive the equilibrium here.



Proposition 3 With linear cost functions, the expected sum of bids is an increasing function

of the bid cap d, and of the number of bidders n.

Proof: See Appendix O

In particular, the last result shows, that, regardless of the number of bidders, and for all
distribution functions, setting an upper bound on bids is not profitable for a designer facing

ex-ante symmetric bidders with linear costs.

4 Non-linear cost functions

In this section we allow the cost function g to depend non-linearly on the bid x. We denote by
g~ ! the inverse function of the strictly increasing function g. We first display the equilibrium

bid functions in this situation.

Proposition 4 Consider an all-pay auction where n bidders have a cost function g and face
a bid cap d such that 0 < d < g ! (1 — fol F”_l(y)dy) 15 In a symmetric equilibrium, the

bid function of every agent is given by

g ! @(v)) if 0< v<e
b(v) = (5)

d if c< v<l1

where the critical value ¢ is defined by
4 [c(1—=F™(c)) c
d=g 1(——/F" Hy)dy | - (6)
n(l—F(c) Jo
Proof: Completely analogous to the proof of Proposition 2. O

We next show that, similarly to the linear case, when bidders have concave cost functions

setting an effective bid cap is not profitable for the seller.

15 As in the case of linear cost functions, higher bid caps have no influence on the bidding behavior.
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Proposition 5 With concave cost functions, the expected sum of bids is an increasing func-

tion of the bid cap d .

Proof. See Appendix. O

In contrast, the next result shows that capping bids is optimal for a seller facing a large

enough number of bidders with convex cost functions.

Proposition 6 In any contest where the bidders have convex cost functions and the number

of bidders n is large enough, an effective bid cap d increases the designer’s revenue 6

Proof. See Appendix. O

The next example illustrates the above phenomenon for a simple class of cost functions.

3=

Example 2 Assume that F(v) = v and that g(z) = 2™ , m > 1. Letd, 0 <d < (=1)™ be

the bid cap. The symmetric equilibrium bid function is

(”—_12)”)% if 0< v<e

d if e<v<1,

The critical value ¢ as a function of d is given by:

3=

The average bid of an agent is

Ulen) = /ch(v)dv Lt (—)d=

(n_l)% R ©)

1
n L +1 nm

16For this result we assume that the density f is once- and that the cost function g is three times continuosly

differentiable .
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. We will now show that, for large enough n, % < 0, and therefore that the optimal

critical value is strictly less than 1. That is, setting an upper bound d > 0 is profitable for

the seller.
The optimal critical value ¢ is obtained by the equation dUéZ’") = 0. If n is large enough
we can ignore exponentially small terms, and the equation % = 0 has the approximate

solution ¢ = % Inserting this expression for d, we obtain that the optimal bid cap for large

n 18 1

Let g_l(d) be the type that places a bid of d in the symmetric equilibrium of the auction
without bid caps. We have

b '(d) ~ (ﬁ)l (11)

figure 2 here

Note that fcb_l(d) (d — 5(1))) dv is the average gain of the seller in the auction with bid cap
d relatively to the same auction without a bid cap (where g(v) is the symmetric equilibrium
bid function in the absence of caps). Likewise, fgl_l( 0) (g(v) - d) dv is the average loss of the

seller in the auction with bid cap d relatively to the same auction without a bid cap.

Since the bid function b is convex, the areas of the triangles ABAO and ATOS in figure

2 satisfy

- - b1 (d) -
ABAO — %(bl(d)—c)(d—b(c))< / (b)) do
ATOS = %(’5(1)—(1)(1—’51(d))>/gll(d) (E(v)—d) v | (12)

We proceed to show that, for n large enough, ABAO > ATOS. By 12, this shows that

setting a bid cap is profitable for the seller.

12



Simple calculations ( neglecting exponentially small components) yield:

1

ABAO ~ (l)mcl,

n

ATOS ~ (1— (ﬁ)j Cy | (13)

where C7, Cy are constants.

By L’Hospital’s rule we obtain that

ABAO 1
li « lim C3 n'~m, 14
ML ATOS T 14)
where Cj3 is a constant. Hence, for m > 1( i.e., for convex cost functions) the ratio ﬁg’:gg

goes to infinity when n approaches infinity. O

4.1 Minimum bids

For a fixed and exogenous budget constraint d, Laffont and Robert (1996) have showed that
an all-pay auction with a reserve price r is the revenue-maximizing mechanism. If the seller
can vary d itself, the question arises whether bid caps remain effective when bidders with
lower valuations can be excluded from the auction. The next example shows that if bidders
have convex cost functions, setting a maximum bid may be profitable for the designer even

if she is allowed to impose a minimum bid.

Example 3 Assume that the seller imposes a minimum bid r > 0, and a bid cap d > r.

Bidders have quadratic cost functions, i.e. g(x) = z* and uniformly distributed values over

[0,1], i.e., F(v) =w.

Let h = h(r) be the lowest type that makes a bid of at least 7, and let ¢ be the lowest

type for whom placing a bid d is a best reply (this is the critical value from above).

The average bid is given by

13



U(c,h,n) / \/n_lv" —dv+(1—c)\/ (1(Ifnc)1> —1—%. (15)

dU(c,h,n)

A numerical analysis reveals that ==

< 0 for n large enough and for all ¢ < 1. This
implies that, for n large enough, the optimal h equal zero, i.e., the optimal r also equals
zero. Hence, the previous analysis applies and bid caps are optimal for sufficiently many

bidders.O

5 Concluding Remarks

We have studied a model of all-pay contests where the designer can restrict bids from above.
This feature is often observed in real life situations. In an ex-ante symmetric model, we have
related the effectivity of bid caps to the form of the bidding costs born by the contestants.
Bid caps lower the bids of high valuation (or high ability) types but increase the bid of middle
valuation types. Moreover, caps increase the average bid if the contestants face increasing
marginal costs, but they decrease it if the bidders face constant or decreasing marginal costs.
These results have also several implications for auctions with financially constrained bidders
where the seller can provide financing. A possible extension is the study of the interplay
between exogenous constraints (such as budget limitations, that may be private information)

and endogenous constraints, controlled by the designer.

6 Appendix
Proof of Proposition 2

Assume that the bid function of every bidder j, j # 4, is given by

b(v) = vEF" o) — [ F" Y y)dy if 0< v<ec
b(v) = (16)

d if c<v<1,

14



where the critical value c satisfies

_A=F") [
d—m—/o F" (y)dy . (17)

Note first that ¢ = 1 solves equation 17 for d = 1 — fol F" Y (y)dy, and ¢ = 0 solves
that equation for d = 0. Moreover equation 17 has a unique solution in the interval [0, 1]

for each d, 0 < d < 1 — fol F"(y)dy, since the function (% Jo F( )dy) =

[£(1+ F(c) +..F"(c)) — [y F**(y)dy] is strictly increasing on [0, 1].
We now show that b;(v) = b(v) is the best response of bidder i against the other bidders’
strategies. The maximization problem of bidder ¢ with valuation v < ¢ is given by
MAX, (vF" (b~ (z)) — z) (18)
subject to
r<d.

Assuming that b;(v) is continuously differentiable for all v < ¢, we obtain the first order

condition
v(in =1 F" (b7 () £ (b7 (2)) (07 (x)) —1=0 (19)
It can be verified that = b(v) is a solution of the differential equation in 19.

Consider now v > ¢. Obviously a bid x such that b(c) < z < d is not a best response for

bidder 7, since every such bid is dominated by x — €, where € is a small positive number.

The expected payoff of bidder 7 with valuation c that submits the bid b(c) = cF™ !(c) —
foc Fr=Y(y)dy is .
cF" c) — b(c) = / FrYy)dy . (20)
0

The probability of winning with a bid of d is

+

Wl

Pr(win) = F"'(c) +% (”11) F"%(c)(1 — F(c)) ( 2 )F" 3(c)(1— F(c)? +
+ i <"§,1> F"4(c)(1 — F(c)) % <n - 1) F(e))"

- Y2 () Pon - pay

1

3

<.
Il

15



j=1
1—F"(c)
S, e 21
"= (o) 2
Thus, the expected payoff of bidder ¢ with valuation of ¢ that submits a bid of d is
c(1—F™(c))
—_— = —d. 22
n(l— F(c)) d (22)

By setting 17 in 22 we obtain that bidder ¢ with valuation v = ¢ is exactly indifferent
between submitting b(c) = ¢F""!(c) — [5 F*'(y)dy and submitting the maximum allowed
bid d. Similarly, all types v > ¢ strictly prefer a bid b;(v) = d to any lower bid.

Finally, we want to show that , for any d < 1 — fol F"=1(y)dy, we have ¢ < b-'(d) , so
that the constrained equilibrium bid function displays a discontinuity at the critical value c.

For this it is enough to show that

ble) < d&
o) - [P < ST - [ e
(o) < %(1+F(c)+F2(c)+...F“‘1(c)) (23)

The last inequality clearly holds since F™"1(c) < F*(c) for any ¢ < 1 and for any k,
0<k<n-2.0

Proof of Proposition 3

Fix the number of bidders n. Given the bid cap d (or alternatively, the critical value c),

each agent’s average bid is given by
Ule,n) = /Oc b(v) f(v)dv + d/ f(v)dv
= [ [ Frw e+ di - Fo)

0

- ,”F;(“) |g—%/OCF”(v)dv—(F(U) /O " (y)dy 5 —/OCF"("")CZU)
+d(1 — F(c))
_ g_/o F"_l(v)dv+n;1/0 F"(v)dv (24)

16



Differentiating with respect to ¢ gives

oU(c,n) 1 . n—1
Z\= . fm
oc n (c) + n

F(c) . (25)

Multiplying by n and recalling that 1 — s® = (1 — s)(1 4+ s+ 82 + 83 + ... + s"71) yields

dnU(c,n)]

o = (1= F(e)(1+F(c) + F(c) + ... + F"2(¢) — (n — 1)F"(c))

> (1-F(e)((n—1)F"2c) - (n—1)F"c)) >0 (26)

That is, the designer’s expected revenue, nU(c, n), increases in c.

We now analyze the dependence of the expected revenue on the number of bidders. For
a fixed d, let c(n) be the critical value (we make now the dependence on n explicit). Observe

that c¢(n) increases in n. Since U(c, n) increases in ¢, we obtain:

(n+1)U(c(n+1),n+1)> (n+1)U(c(n),n+1) (27)

This yields:

(n+ 1)U (e(n+1),n+1) —nU(c(n),n) >
(n+1)U(c(n),n+1) —nU(c(n),n) =
/0 nFl(0) (1 — F(0)2do > 0. (28)

Thus, nU(c(n),n) increases in the number of bidders n. O

Proof of Proposition 5.
An agent’s average bid as a function of the critical value and the number of bidders is given
by
Ule,n) = / b(w) f(v)dv + d(c) (1 — F(c)) . (29)
0
where

bo) =g (vF“<v> - [ F“l(.y)dy) (30)

0

and
i) =9 (S~ [ 7). (31)

17



Define

_1=F"() [ pn
m = mi) =SS - [ Py
_(-F)
s s(e) = W= F(0) F"(c) (32)
Then, we can rewrite d(c) and b(c) as
d(c) =g~ (m) ; b(c) =g~ (m—s). (33)

Expanding ¢g~'(m — s) to a second order Taylor’s series near m, we obtain

be) =g~ (m) — s (7 (@), + 35" (57 (@)

" (34)

z=y
where m — s < y < m. Derivating d(c) with respect to ¢ yields

d(c) = (g7 (%)) (1 — F"(;)(l—_n;f((ci))}?’”(c) + Cféz(i_p(i;;;)) - F”_1(0)> (35)

Differentiating with respect to ¢ in 29 an substituting 33, 34 and 35 , we obtain:

% — (b(e) — d()) f(c) + (1 — F(e)) d'(c)

(36)

Since g is increasing and concave, we have g~*(z))" > 0 and g~ *(z))" > 0. Therefore, the
average bid is an increasing function of the critical value ¢, and it is never optimal to set an

effective bid cap. O
Proof of Proposition 6.

We assume here that f is continuously differentiable at z = 1, and that ¢g~! is three times
continuously differentiable.

We will show that, for any convex cost function g, we have % < 0 near ¢ = 1 for

sufficiently large n. Hence the designer’s revenue is decreasing in ¢ near ¢ = 1, and an effective

bid cap (i.e., ¢ < 1) is optimal.

18



The first equality in 36 yields that U’(1,n) = 0. For the second derivative we have
9?U(c,n)

et = [V =)+ b= df — fd + (1= P) |

= (V'(1) —2d(1)) f(1) =0 (37)
The last equality follows by noting that &'(1) = 2d’(1). Therefore, the second derivative is

also zero. We now show that the third derivative is strictly negative at ¢ = 1. By continuity;,

it must be negative for some ¢ < 1.
03U (c,n)

acg — (b// _ d//)f + 2(b/ _ d/)fl + (b _ d)f// _ f/d/ _ 2fd// + (1 _ F)d/l/ . (38)
After rearranging and using b'(1) = 2d'(1), we obtain
aSU(Cv n) 1 1" U !
TSy = (1)~ 3d(1) £0) + (1) (1) 39
Define
_ L= FY) [ gy — N ©
m(c) = WA= F(0) —/0 F' (y)dy = 5;1[7 () —/O F" (y)dy
te) = oo - [ Py (10)

Observe that m(1) = #(1) = 1 — [; F""}(y)dy. Hence (¢7'(m(1))" = (¢7(#(1))’ and
(g_l(m(l))” = (g‘l(t(l))”. Thus we have

(¢(1)
(97 ((W) (0 =D fD) + (n = 1)(n = 2)f2(1) + (n = 1)f'(1))

H(1) = (o7 0W)" (- 2P0 +
»
PM) = 1o m) POm -1+
(

(57 (m(1) (%f’<1)<n—1>+ LN - 1)) (41)

Recalling that Z;:Ol j(j — 1) = 3n(n — 2)(n — 1) we obtain

B(1) = w0 (7 60)" + n PO () + o)
T() = 2P (7 m(D)" + 2t 1) (D) +oln?)

d(1) = o(n?) . (42)
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Thus

PU(c,n)

O |y = @) = B ) + = 300 (97 (1) o) (43)

By the convexity of g(x), we have (g~ !(m(1))" < 0. Hence, for n large enough, we obtain

63%25”” le=1 < 0. Since 32%37“’ le=1 = 0, we obtain that ¢ = 1 is a maximum of the function
%. Since %h:l = 0, this yields % < 0 for ¢ in the vicinity of 1, as desired. O
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