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We study 3-person noncooperative games of coalition formation where the 
underlying situation is represented by a game in coalitional form without side 
payments. We look at coalition-proof Nash equilibria and we show that if the 
underlying game is balanced (in the sense of Scarf), then, except for indifferences, 
the grand coalition forms, and the payoff is in the core. If the underlying game has 
an empty core, then only a two-player coalition can form, and the payoff to its 
members is given by the respective coordinates of a unique “outside-options” 
vector. If the underlying game is not balanced but has a nonempty core, then 
either one of the two mentioned cases may hold. Journal of Economic Literature 
Classification Numbers: 022, 020. 8 1992 Academic press, IIIC. 

1. INTRODUCTION 

Explicit models of coalition formation cannot take into account, without 
becoming very intricate, all aspects of group communication and joint 
action. Instead of incorporating these aspects in the extensive form we 
use a solution concept that supplements the Nash equilibrium concept 
with some additional “cooperative” intuition. 

We study a noncooperative game of coalition formation and payoff 
division, based on a nontransferable utility (NTU) three-person game in 
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coalitional form. To each coalition we associate a set of feasible utility 
allocations, and use an explicit set of rules for the interaction between the 
agents. The bargaining procedure is based on a method due to Selten 
(1981). 

The solution concept is the coalition-proof Nash equilibrium (CPNE) 
due to Bernheim et al. (1987). Unlike the Nash equilibrium concept, this 
more refined concept takes into account joint deviations of coalitions. 
However, only self-enforcing deviations are considered to be credible 
threats. A deviation by a coalition is self-enforcing if no subcoalition has 
an incentive to initiate a new deviation. The CPNE is formally a refinement 
of the Nash equilibrium. However, its underlying intuition is close to 
“cooperative” reasoning since the detailed mechanism that describes 
group interaction is left unmodeled. 

We look at subgame-perfect coalition-proof Nash equilibria in stationary 
strategies. Quite surprisingly, we find that the concept of balancedness for 
NTU games (see Scarf (1967)) plays the main role in the analysis. Recall 
that balancedness is sufficient but not necessary for the nonemptiness of 
the core of NTU games. 

We prove the following for the noncooperative game: When the three- 
player game in coalitional form is balanced then, except for indifferences, 
the grand coalition forms, and the payoff is in the core. When the underly- 
ing game has an empty core (and hence is not balanced) then only a two- 
player coalition will form, and the payoff to its members is given by the 
respective coordinates of a unique “outside-options” vector. When the 
underlying game is not balanced but has a nonempty core, either the grand 
coalition forms with payoff in the core, or a two-player coalition forms 
with payoff according to the “outside-options” vector. 

The intuition behind the “outside-options” vector goes back to Harsa- 
nyi who argued that a particular payoff vector “will represent the equilib- 
rium outcome of a bargaining among the n-players only if no pair of players 
has any incentive to redistribute their payoffs between them, as long as 
the other players’ payoffs are kept constant” (Harsanyi, 1977, p. 196). 

The paper is organized as follows: In Section 2 we introduce games in 
coalitional form, the core, and the concept of balanced games. In Section 3 
we describe an explicit bargaining procedure based on games in coalitional 
form and we introduce coalition-proof Nash equilibria. In Section 4 we 
characterize coalition formation and payoff division under CPNE in three- 
player games. In Section 5 we discuss the results. 

2. GAMES IN COALITIONAL FORM 

Let N = {I, 2, . . . , n} be a set of players. A coalition S is a nonempty 
subset of N. A payoff vector for N is a function x: N * R. 
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Notation. We denote by xs the restriction of x to members of S. The 
restriction of IRS to vectors with nonnegative coordinates is denoted by 
l@. The zero vector in Rs is denoted by OS. For x, y E Rs we write 
x 2 y if xi z y’ for all i E S. Let K be a subset of R”,. Then int K denotes 
the interior of K relative to IRS, and X denotes the set mint K. 

DEFINITION 1. A nontransferable utility (NTU) game in coalitional 
form is a pair (N, V), where V is a function that assigns to each coalition 
S in N a set V(S) c Rs such that: 

V(S) is a non-empty, closed, and bounded subset of [WS, ; (2.1) 

tli E N, V(i) = 0’; (2.2) 

If y E [w:, x E V(S) and x 2 y then y E V(S); (2.3) 

Ifx,yEaV(S)andxzythenx =y. (2.4) 

Condition 2.2 is a normalization. Condition 2.3 ensures that utility is 
freely disposable. A set V(S) satisfying 2.3 is said to be comprehensive. 
Condition 2.4 requires that the Pareto-frontier of V(S) coincide with the 
strong Pareto-frontier, and it implies that utility cannot be transferred at 
a rate of zero or infinity. A set V(S) satisfying 2.4 is said to be nonleveled. 

Denote by A x B the Cartesian product of the sets A and B. An NTU 
game (N, V) is superadditive if the following holds: 

VS, T C N with S fl T = $3, V(S) x V(T) C V(S U T) (2.5) 

A game with transferable utility (TU) in coalitional form is a pair (N, u), 
where u is a function that assigns to each coalition S in N a real nonnegative 
number u(S). 

We next define two concepts that will play an important role in our 
analysis: 

DEFINITION 2. Let (N, V) be an NTU game, and let x E V(N). x can 
be improved upon if there exists a coalition S and a vector ys E V(S) with 
y’ > xi for all i E S. 

The core of (N, V), C(N, V), is the set of all x E V(N) that cannot be 
improved upon. 

DEFINITION 3. A collection B of coalitions of N is called balanced iff 
the system of equations 

Q= l for allj E N (2.6) 

has a nonnegative solution with A, = 0 for S $Z B. 
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An NTU game (N, V) is said to be balanced if and only if the following 
statement holds for any balanced collection B: 

If x E RN and xs E V(S) for all S E B, then x E V(N). (2.7) 

A fundamental theorem due to Scarf (1967) states that the core of a 
balanced NTU game is nonempty. The converse is not true; i.e., there are 
unbalanced NTU games with a nonempty core. For TU games balanced- 
ness is equivalent to the existence of a core. We note also that games 
arising from exchange markets are balanced. 

3. THE BARGAINING PROCEDURE AND COALITION-PROOF 
NASH EQUILIBRIA 

We now describe a bargaining procedure based on a game (N, V): A 
player i E N has the first initiative. An initiator may shift the initiative to 
another player, or he may make a proposal. A proposal consists of a 
coalition S, a payoff vector xs E V(S), and a responder who must be a 
player of S. The responder can reject or accept the proposal. If the res- 
ponder rejects, then he becomes the new initiator. If the responder accepts 
there are two possibilities: 1. Coalition S forms and the game ends if the 
responder was the last player in S needed to accept the proposal. The 
members of S are paid according to x s, the other players receive zero 
payoffs. 2. Otherwise the responder must select the next responder to the 
existing proposal. 

An infinite play results in zero payoffs to all players. 
Whenever our results hold independently of the identity of the first 

player with the initiative we omit the dependence of the game form on this 
parameter, and we denote the sequential bargaining game by I(N, V). For 
a formal description of this game we refer the reader to Selten (1981), 
where a version is studied in which the underlying situation is described 
by a TU game. For a TU game (N, V) the bargaining procedure has the 
same structure as above. The only difference is that a proposed payoff 
vector xs must satisfy x(S) I u(S), where x(S) denotes the sum &xi. 

We note that a general version of this game would allow the consecutive 
formation of several coalitions. However, we concentrate on three-player 
games, and it is clear that in such games only one essential coalition can 
form-a two-player coalition or the grand coalition. Hence it makes sense 
to look at the simplified version described above. 

We restrict our attention to subgame-perfect equilibria in stationary 
strategies. A stationary behavioral strategy for a player in I(N, V) assigns 
to each decision node of that player a probability distribution over the set 
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of actions available at that node. A player uses the same mixture of 
possible actions whenever he acts as proposer. The action of a responder 
depends only on the existing proposal and on the set of players that 
have proposed or accepted this proposal. Nash and subgame-perfect Nash 
equilibria are defined in the usual way. Note that Nash equilibria in station- 
ary strategies are stable also against nonstationary deviations. Again, for 
a more formal treatment of these matters we refer the reader to Selten 
(1981). We note that without the stationarity assumption one obtains re- 
sults of the Folk-Theorem type even if time discounting is introduced (see 
Chattejee et al. (1990)). 

Let (N, V) be an NTU game, and let T(ZV, V) be the associated noncoop- 
erative game. Let (T = (&, a*, . . . , u”) be a stationary strategy profile for 
r(N, V). Denote by qi the expected payoff of player i, given the strategy 
cr and that i has the initiative. This is well defined because of the stationarity 
assumption. Let q = (q’, q*, . . . , q”) denote the vector of expectations 
for all players in N. Note that q is not necessarily feasible for the grand 
coalition. 

These considerations apply unchanged for the TU case. Selten calls q 
the “demund vector” of u, and proves the following useful theorem: 

THEOREM (Selten, 1981). Let (N, u) be an n-person TU game, and let 
r(N, u) be the associated bargaining game. Assume that a stationary 
subgame-perfect Nash equilibrium u is played, and let q be the demand 
vector of (T. 

Zf coalition S forms in a subgame starting with an initiator’s decision 
node, then u(S) is divided according to qs. The demand vector q has the 
following properties: 

(1) ifs C N, q(S) 2 4s) (3.1) 

(2) Vi E N, 3S c N such that i E S and q(S) = u(S) (3.2) 

Conversely, for any vector q satisfying conditions 3.1 and 3.2 there exists 
a pure stationary equilibrium strategy cr such that q is the demand vector 
ofcr. 

For the NTU case we prove the following lemma (the proof is analogous 
to Selten’s proof of the previous Theorem, and it uses conditions 2.3 and 
2.4): 

LEMMA 1. Let (N, V) be an n-person NTU game, and let T(N, V) 
be the associated bargaining game. Assume that a stationary subgame- 
perfect Nash equilibrium u is played, and let q be the demand vector 
ofu. 

Zf coalition S forms in a subgame starting with an initiator’s decision 



570 BENNY MOLDOVANU 

node, then V(S) is divided according to qs. The demand vector q has the 
following properties: 

(1) VS c N, qs $Z int V(S) (3.3) 

(2) Vi E N, 3s c N such that i E S and qs E V(S) (3.4) 

Conversely, for any vector q satisfying conditions 3.3 and 3.4 there exists 
a pure stationary equilibrium strategy cr such that q is the demand vector 
Of-U. 

Note that the set of subgame-perfect equilibrium payoffs may be quite 
large even when attention is restricted to equilibria in stationary strategies. 
Example 2 in Section 5 displays a “counterintuitive” result related to this 
phenomenon. 

Bernheim et al. (1987) proposed the concept of “coalition-proof Nash 
equilibrium” (CPNE) for situations where communication is possible but 
binding commitment is not. The concept requires stability against devia- 
tions of coalitions, but internal consistency requires that only self-enforc- 
ing deviations be regarded as credible threats. A deviation by a coalition 
is self-enforcing if no subset of this coalition has the incentive to deviate 
yet again, while taking as given the strategies of the nondeviating players, 
We recall that an earlier concept, the strong Nash equilibrium due to 
Aumann (1959), requires stability against deviations of all conceivable 
coalitions, but the deviations are not in any way restricted. The idea 
behind the concept of CPNE is closely related to that of “renegotiation- 
proofness”. We now proceed to the formal definition of coalition-proof 
Nash equilibria. We first need some preparations: 

DEFINITION 4. An n-person game in normal, or strategicform consists 
ofafinite set ofplayers, N = {1,2, . . . , n}; an n-tuple of nonempty strategy 
sets, (A’, A*, . . . , An); and an n-tuple (g’, g*, . . . , g”) of payoff functions 
g’: AN -+ R, where As denotes the Cartesian product of A’ over i E S. 

Notation. Let G be an n-person game in normal form, and let S be a 
coalition in N. Let -S denote the complement of S in N. For r E AN let 
Gf denote the game induced on S by the actions rps for coalition -S; 
i.e., Gf = (S, {hi}iES, {Ai}iES) where hi: As * R is given by hi(oS) = 
g’(o-5 7 -‘) for all i E S and (T’ E As. 

DEFINITION 5. In a single player game G, T* E AN is a coalition-proof 
Nash equilibrium (CPNE) if and only if 7* maximizes g’(7). 

Let n > 1 and assume that CPNE have been defined for all games with 
fewer than n players. Then 
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(a) For any game G with n players Q-.+ E AN is self-enforcing if, for all 
coalitions S 4 N, T”, is a CPNE in the game Gf. 

(b) For any game G with n players, 7* E AN is a CPNE if it is self- 
enforcing and if there does not exist another self-enforcing strategy 
7 E AN such that gi(T) > gi(rJ for all i E N. 

We note that the concept of CPNE is a less stringent refinement of Nash 
equilibrium than the strong Nash equilibrium (indeed all strong equilibrium 
are CPNE), and despite this CPNE may not exist even for simple games. 

4. THREE-PLAYER GAMES 

Three-player games offer the first interesting case for the study of coali- 
tion formation and payoff division. 

In the sequel an equilibrium will mean a subgame-perfect Nash equilib- 
rium. We study equilibria that are also coalition-proof. We are now ready 
to prove: 

PROPOSITION A. Let (N, V) be a three-player balanced game and let 
T(N, V) be the associated bargaining game. Then 

1. Let u be a CPNE in stationary strategies. Then q, the demand 
vector of r, belongs to the core of (N, V). 

2. For each vector x in the core of (N, V) there exists a CPNE in pure 
stationary strategies with payoff x. 

Proof. 1. By Lemma 1, 

VS, S c N qs 6 int V(S). (4.1) 

To prove that q E C(N, V) it suffices to show that q E V(N). The proof 
is by contradiction: if q $Z V(N) then there are self-enforcing deviations, 
hence we obtain a contradiction to the assumption that c is a CPNE. 

Assume therefore that 

4 = Cd, q2, s3) @ VW. (4.2) 

We first show that q must have some special properties-here we use the 
fact that the game is balanced. If u is played then the grand coalition 
cannot form, since if it does it must divide the payoff according to q (by 
Lemma I), and this is impossible by 4.2. Certainly q # ON, since the zero 
vector is in V(N) by the definition of NTU games. Therefore a two-player 
coalition can form if cr is played. Assume without loss of generality that 
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player 1 has the initiative, and that at a certain end node the coalition 
{I, 2) forms. By Lemma 1 we know that the payoff is (ql, q*, 0), and that 

(4.3) 

Again by Lemma 1, we must have a coalition S with 3 E S and qs E V(S). 
By assumption 4.2 q p V(N), hence S # N. If S = (3) then q3 = 0. The 
game (N, V) is balanced and therefore also superadditive. With 4.3 this 
implies that q E V(N), which contradicts q3 = 0. Thus 

q3 > 0 and q3 e V(3). (4.4) 

Coalition S must be a two-person coalition, and we assume without loss 
of generality that S = (2, 3). With 4.1 this yields 

k?*, q3) E dV(2, 3). (4.5) 

If it were true that (ql, q3) E V(Z, 3) then 4.3,4.5, and the balancedness 
of (N, V) imply that q E V(N), which contradicts (ql, q3) E V(Z, 3). (Note 
that the collection ({I, 2}, {2,3}, {Z,3}) is balanced.) Hence it must be that 

(4, q3) e vu, 3). (4.6) 

By 4.2,4.5, and the superadditivity of (N, V) it must be that q1 > 0. By 
Lemma 1, and by the definition of the demand vector q , the only possible 
coalition at an end node of any subgame starting with player I as initiator 
is the coalition {I, 2}, and the payoff is (ql, q*, 0). 

We now describe a self-enforcing joint deviation of players 2 and 3. First 
we choose E > 0 such that 

q3-&>0 (so that (q3 - E) e V(3)) 

(q’, q3 - El e vu, 3) 

cd, cl*, q3 - 8) e VW). 

(4.7) 

(4.8) 

(4.9) 

Such a choice is possible because V(3), V(2,3), V(Z, 2,3) are closed sets 
and the distances between q3 and V(3), between (q’, q3) and V(Z, 3), and 
between (q’, q*, q3) and V(N) are positive. Let y* be defined by 

(y2, q3 - E) E cYV(2,3). (4.10) 

If E is sufficiently small then y* will be close to q* (see 4.5), and hence it 
will also be true that 
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FIGURE 1 

(4’9 Y2, q3 - El e VW). (4.11) 

Nonlevelness and comprehensiveness of V(2,3) (see 2.3 and 2.4) guaran- 
tee that 

y2 > q2. (4.12) 

(See Fig. 1.) 
The joint deviation of players 2 and 3 is as follows: Player 2 proposes 

the coalition (2, 3) with the division (y2, q3 - E), and accepts only offers 
that yield him at least y2. Player 3 proposes the coalition (2, 3) with 
the division (y2, q3 - E) and accepts only offers that yield him at least 
q3 - E. 



574 BENNY MOLDOVANU 

If player 1 adheres to his strategy, he never accepts proposals that yield 
him less than q’, since by rejecting such a proposal he becomes initiator 
and is guaranteed q l. Hence, if players 2 and 3 deviate as above, then this 
deviation constitutes a Pareto-optimal Nash equilibrium in their induced 
game and they can both benefit by it. The reader may confirm this with 
the help of 4.3, 4.7, 4.8, 4.10, 4.11, 4.12. By Definition 5, a deviation that 
constitutes a Pareto-optimal Nash equilibrium in an induced two-player 
game is self-enforcing. 

The strategy profile u is a CPNE; hence the assumption that q, the 
demand vector of U, does not belong to V(N) (4.2) has led to a contradic- 
tion. Hence q E V(N) and, by 4.1, q belongs to C(N, V). 

2. Let x E C(N, V). Consider the following strategy profile: Each 
player proposes the coalition N with division x (note that x E V(N)), and 
a responder. A responder accepts a proposal if all players who have not 
yet accepted the standing proposal (including himself) get at least their 
respective payoff in x. If he is not the last responder to such a proposal 
he designates the next responder from the set of players who have not yet 
accepted. Other proposals are rejected. 

Assume that an initiator i deviates and proposes coalition S with 
yS E V(S), and y’ > xi. With x E C(N, V) and nonlevelness this implies 
that yj < xj for a playerj in S. This player will reject the proposal, hence 
i cannot benefit from this deviation. By backward induction it is easy to 
check that the actions of a player are optimal whenever he has to respond, 
and therefore we have described a subgame-perfect Nash equilibrium in 
pure, stationary strategies. This is also a strong Nash equilibrium, hence 
it is also a CPNE. Q.E.D. 

Remark. The fact that the grand coalition does not necessarily form at 
all possible endpoints is due to possible indifferences. A responderj may 
be indifferent between accepting and rejecting a proposal if in both cases 
he is guaranteed the same payoff. Assume that each responder faced with 
such an indifference accepts the proposal (this can be interpreted as a 
secondary preference for shorter plays). Then each initiator is indifferent 
between the proposal according to (+, and the proposal (N, q) that yields 
the formation of the grand coalition with a payoff in the core of the 
game. By backward induction the proposal (N, q) will be accepted by all 
responders. The tie-breaking rule in favor of the grand coalition can be 
interpreted as “nondiscrimination”: if the inclusion of a player in the final 
coalition does not affect the payoff of other players in that coalition, 
then this player should not be excluded. The tie-breaking problem is a 
“boundary” phenomenon and it does not appear if q is in the relative 
interior of the core. 

The next example demonstrates that balancedness is necessary for the 
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first part of the previous proposition. We describe a nonbalanced, super- 
additive game with a nonempty core. 

EXAMPLE 1. Let N = {I, 2, 3}, define a game (N, V) as follows: 

V(i) = O’, Vi E N. (4.14) 

V(2,3) = {(x2, x3) E [wyqx2 + x3 5 2). (4.15) 

V(1,2) = {(xl, x2)I(x’, x2) E convK0, O), (0, ‘7% (1, l), (& ON). (4.16) 

V(l,3) = W,x3)l( x1, x3) E convK0, Oh (0,2), (1, 11, (Z, O>l). (4.17) 

V(N) = (x1,x2,x3) E @lx’ + $ + $5 1.5 

Let c’ be the following strategy combination for the game F(N, V): 
Player i, 1 I i I 3, proposes coalition {i, j} together with the division 
(1, I), wherej = i + 1 (mod 3). He accepts only those offers that yield 
him and all receivers that have not yet accepted at least 1. 

Let o2 be the following strategy combination: Each player proposes the 
grand coalition with division z = (z’, z2, z3) = (0.5, 1.5, l.S>, and accepts 
only offers that yield him and those responders that have not yet accepted 
the respective payoff in Z. The reader may verify that both o1 and u2 are 
CPNE. Under (T* the grand coalition forms immediately and the payoff z 
is in the core of the game. Under (+’ only two-player coalitions can form 
with payoff (1, 1) to each, and zero to the other player. Observe that 
the demand vector of ul, namely y = (1, 1, l), has the property that 
(y’, yj) E aV(i, j) for all i, j E N, i # j, but y $Z V(N). This is possible 
because the game (N, V) is not balanced. 

We next consider games with an empty core. By Scarf’s Theorem these 
games are not balanced. We first prove a lemma that has also some 
independent interest. 

LEMMA 2. Let (N, V) be a three player super-additive game with an 
empty core. Then there exists a unique vector y = (y’, y2, y3) such that: 

Y $ V(N), (4.19) 

(Y’, Y’> E aV(i,j) foralli,jE N,i#j. (4.20) 

(See Fig. 2.) 

Proof. Let aV(i,j) be described by the graph of a function J = fij(ui), 
for i,j E N, i < j. By the conditions in the definition of NTU games these 
functions are continuous and monotonically decreasing. 
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FIGURE 2 

Uniqueness of y: Assume there exists a vector z # y such that z $L V(N) 
and (z’, zj) E dV(i, j) for all i, j E N, i # j. Without loss of generality 
assume that z 1 > y ’ . The monotonicity of the functionsf,i and the properties 
of z imply that z2 < y2 and z3 < y3. This contradicts (z2, z3) E dV(2, 3). 

Existence of y: It suffices to prove existence of a vector y with property 
4.20. The emptiness of the core implies that such a vector also has property 
4.19. The existence of y is proved using a constructive fixed point argu- 
ment: y will be determined by the intersection of a specially constructed 
path with the boundary of the feasible set belonging to a two-player co- 
alition. 

We first construct the end point of the path. Consider the vectors 
(0, &(O) E dV(Z, 3) and (0, f23(0) E dV(2, 3). These are the best feasible 
outcomes for player 3 in coalitions {2,3} and {2,3}, respectively. Assume 
without loss of generality thatf,,(O) sfz3(0). The set dV(2,3) is comprehen- 
sive, hence (0, fu(0) E V(2, 3) and ffi’(f,JO)) is well defined. Consider 
the vector (x’, x2, x3), where 

x3 = fi3m, x2 = f&fi3W, x1 = &‘(fi3(0)) = 0. (4.21) 

The definition of x implies that 

(xl, x3) E l3V(Z, 3); 

(x2, x3) E dV(2, 3). 

(4.22) 

(4.23) 

By superadditivity, 4.23, and 4.21 we obtain 

x E V(N). (4.24) 
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If it were true that (xl, x2) @ V(Z, 2) then 4.24,4.23, and 4.22 imply that 
x belongs to the core of (N, V), but this is impossible because the core is 
empty. Hence it must be that 

(x’, x2) E V(Z, 2). (4.25) 

We now describe a path in 5% ‘f*2) that ends at (x’, x2): For 0 % f 5 x3, let 

By 4.26 the following statement holds: 

vt, 0 5 t I x3: (o’(t), t) E aV(Z, 3) and (02(t), t) E aV(2, 3). (4.27) 

We now look at the starting point (w’(O), ~~(0)). We claim that 

Assume for the moment that the statement in 4.28 is true. The path w(t) 
is monotonically decreasing in both coordinates. Hence, by 4.25 and 4.28, 
this path must intersect the boundary JV(Z, 2) for t = t* with 0 I t* 5 x3. 
It holds that 

(d(t*), d(t*)) E f3V(Z 2) 7 * (4.29) 

By 4.27 and 4.29 we obtain that y = (w’(t*), o’(t*), t*) is the desired 
vector. 

It remains to prove 4.28. The proof is by contradiction: if 4.28 does not 
hold then we find a vector in the core of (N, V), hence we obtain a 
contradiction to the assumption that the core is empty. Assume therefore 
that (w’(O), ~~(0)) E V(Z, 2). We may increase the coordinates of this 
vector until (z’, z2) E aV(Z, 2) is reached. By superadditivity, (z’, t2, 0) E 
V(N). By 4.27 and the construction of (z’, z2) we obtain that (z’, z2, 0) E 
C(N, V). This is a contradiction, and 4.28 must be true. Q.E.D. 

The vector described in Lemma 2 is called the outside-options vector. 
If the core is empty, and if the grand coalition forms, there will always 

be objections to the proposed outcome. We observe that in this case the 
set of strong equilibria is empty, because there are always joint deviations 
that benefit some coalition. This is closely related to the emptiness of the 
core. 

PROPOSITION B. Let (N, V) be a three-player superadditive game with 
empty core, and let T(N, V) be the associated bargaining game. 
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Let y = (y’, y2, y3) be the unique vector such that (y’, yj) E aV(i,j)for 
all i, j E N with i # j. Then 

(1) The set of CPNE is not empty. 
(2) Let c~ be a CPNE in stationary strategies. In any subgame starting 

with an initiator’s decision node only a two-player coalition can form. Zf 
S = {i, j} forms then the payoffs are always (y’, 4j) for the members of S, 
and zero for the other player. 

Proof. 1. Let m1 be the following strategy profile: Player i, 1 5 i 5 3, 
proposes the coalition Si = {i, j} together with payoff y’i, where j = 
i + 1 (mod 3). He accepts only those offers that yield him and all players 
that have not yet accepted at least the respective payoff in y. It is easy to 
check that this describes an equilibrium. 

It is easy to verify that, given the strategy of any player i, the strategies 
of the other two players constitute a Pareto-undominated Nash equilibrium 
in the game induced on those players by the strategy of player i. Hence 
o1 is a CPNE in the game I(N, V). Note that this equilibrium is very 
simple, using only pure stationary strategies. 

2. Assume without loss of generality that the subgame starts with 
player 1 as the initiator. We first show that q, the demand vector of 
(T, must be equal to our outside-options vector y. In particular o is an 
equilibrium, therefore q must satisfy conditions 3.3 and 3.4 in Lemma 1. 
Condition 3.3 and the emptiness of the core imply that q $!G V(N). By 
condition 3.4, there exists a coalition S C N, with I E S and qs E V(S). 
It must be the case that (SI 4 2, where ISI denotes the cardinality of the 
set S. Assume first that ISI = 2, and that, without loss of generality, 
S = {I, 2). Then, by condition 3.3, we obtain (q’, q2) E aV(l, 2). Similarly, 
for player 3 it must hold that, say, (q’, q3) E aV(2, 3). By condition 3.3 
we know that (q’, q3) $Z int V(I, 3). If (q’, q3) E aV(Z, 3), then q has the 
desired form. Otherwise one can find, using the construction of Proposition 
A, a self-enforcing deviation of players 2 and 3. This is a contradiction 
because o is a CPNE. Similarly, one can check the result for the case 
ISI = 1 (then q1 = 0). 

We have proved that the demand vector of any CPNE must be y. 
Because y @ V(N) we know by the first part of Lemma 1 that the grand 
coalition cannot form in a CPNE. Only two-player coalitions can form, 
and, again by the first part of Lemma 1, the payoff division must be 
according to y. Q.E.D. 

The next result concludes the characterization of CPNE in stationary 
strategies for the noncooperative bargaining based on three-player super- 
additive games. 

PROPOSITION C. Let (N, V) be a three-player, superadditive, and non- 
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balanced game with nonempty core, let T(N, V) be the associated bargain- 
ing game, and let u be a CPNE in stationary strategies. Then either q = 
(q’, q2, q3), the demand vector of u, is an element of C(N, V), or it is the 
outside options vector. 

Proof. If q E V(N), then we obtain q E C(N, V) by condition 3.3 in 
Lemma 1. Otherwise we find, using the arguments of Proposition A, that 
the respective projections of q must be on the boundary of at least two of 
the sets representing the feasible allocations for two-player coalitions (see 
4.3, 4.5, and Fig. 1). If the respective projections of q are also on the 
boundary of the feasible allocations set for the remaining two-player coali- 
tion, then q is the outside options vector. Otherwise we find, using the 
construction of Proposition A, a self-enforcing deviation that benefits 
a pair of players. This is a contradiction to the assumption that (T is 
a CPNE. Q.E.D. 

5. CONCLUDING REMARKS 

We have illustrated strong relations between outcomes in coalition- 
proof Nash equilibria of a sequential bargaining game and the fine structure 
of the underlying cooperative game in coalitional form. 

It may be argued that it is inappropriate to study coalition formation 
using a concept that already embodies the fact that coalitions may form. 
However, the kind of study attempted here-a combination of cooperative 
and noncooperative analysis-is in its infancy, and we believe that using 
equilibrium concepts that “go already some of the way” may simplify the 
models while still focusing on the main issues. 

The next example shows that subgame-perfect Nash equilibria (that are 
not CPNE) may lead, in our model, to results that contradict our intuition: 

EXAMPLE 2. Consider a market with two buyers, B, and B,, and a 
seller A. The seller owns an indivisible object and his reservation price 
for the object is normalized to zero. The buyers have reservation prices 
of 1 and 2, respectively. This defines the following TU game: 

v(B,) = u(B2) = v(A) = 0 (5.1) 

u(B,,A) = l;v(B,,A) = v(B,,B,,A) = 2. (5.2) 

Consider the following strategies for the bargaining game: 
B, proposes the coalition {B,, A} with division (0.5, 0.5) and accepts 

only proposals where he is offered at least 0.5. 
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B, proposes the coalition {B2, A} with division (1.5, 0.5) and accepts 
only proposals where he is offered at least 1.5. 

A proposes the coalition {B2, A} with division (1 S, 0.5) and accepts 
only proposals where he is offered at least 0.5. 

This profile is an equilibrium (irrespective of who has the first initiative), 
and trade always takes place at price of 0.5. The associated demand vector 
is (qBI,qBZ,qA) = (0.5, 1.5, 0.5), and this is not feasible. By proposition 
A, in coalition-proof Nash equilibria this “paradox” disappears, and trade 
can take place only at prices of at least 1. 

The outside-options vector for three-player games reminds one of bar- 
gaining aspirations for NTU games (Bennett and Zame, 1988). In general 
however, the philosophy of the CPNE concept is very different from that 
of aspirations. Harsanyi’s intuition about pairwise renegotiation-proofness 
(see our Introduction) is captured by the stable bargaining equilibria due 
to Moldovanu (1990). However, these equilibria always exist only in NTU 
games that generalize two-sided markets. 

Note that the outside-options vector is, in a sense, a limiting case of the 
core. Consider for example a TU, superadditive, three-player game with 
an empty core. Let the value of u(N) continuously increase. At a certain 
point the core appears and it contains a unique vector-the outside-options 
vector. After that point the core grows larger and larger. 

Binmore (1985) studies three-player games where each pair of players 
controls the division of a different “cake,” but only one of the cakes can 
be divided. His “telephone bargaining model” is similar to the procedure 
we used here, and its subgame-perfect equilibria may have the paradoxical 
nature exhibited in Example 2. In Binmore’s “market bargaining model” 
players announce sequentially real numbers that represent the utility they 
require if agreement is to be reached. The results are remarkably similar 
to ours: either a cake is divided according to the outside-options vector, 
or one cake is relatively much bigger than the remaining two-this yields 
a kind of “core” -and this cake is divided according to a vector in the 
core. A full comparison with our results is not possible because of the 
absence of a cake for the grand coalition. 

Let (N, V) be an n-player NTU game with a nonempty core. The game 
l?(N, V) has subgame-perfect equilibria that are also strong, and hence 
coalition-proof. It is more difficult to characterize the payoffs in CPNE. 
Even the existence of CPNE is not clear if the core of (N, V) is empty. 
As in our proofs, it appears that one must actually go over the balanced 
collections for n-person games. 

Bernheim et al. (1987) have also defined the notion of perfect coalition- 
proofNash equilibrium for extensive-form games with afinite number of 
nested proper subgames. Because of its inductive nature, it is not at all 
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clear how to generalize this concept for games with an infinite number of 
nested subgames. For some possible approaches see Asheim (1990) and 
Bemheim and Ray (1989). 
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