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Abstract 

In this paper we analyze a simple non-cooperative bargaining model for coalition 
formation and payoff distribution for games in coalitional form. We show that under our 
bargaining regime a cooperative game is core-implementable if and only if it possesses the 
property of increasing returns to scale for cooperation, i.e. the game is convex. This offers a 
characterization of a purely cooperative notion by means of a non-cooperative foundation. 
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1. Introduction 

The core is a notion of collective stability. A core allocation or outcome is 
immune against deviations by coalitions. However, in non-cooperative and com- 
petitive environments it is not clear when and how can players be induced to play 
core outcomes. This is the question we wish to address in this paper. Collective 
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decision making is often carried out through some procedure of multilateral 
bargaining. In general such bargaining games may yield equilibrium outcomes 
which are neither stable nor even efficient, as was indicated by a well known 
example due to Shaked (see Sutton (1986)). 1 

The motivation of constructing sequential bargaining games to sustain various 
cooperative solution concepts, and in particular the core, stems from the desire to 
explore the role of an arbitrator or a planner in multilateral situations. One of the 
consequences of our analysis is that in the framework and conditions of our core 
implementation no planer or arbitrator is needed in order to induce coalitional 
stable outcomes, since such outcomes can be directly sustained through a face to 
face (non-cooperative) bargaining. 

We will use a simple multi-person sequential bargaining game for coalition 
formation, which is based on a cooperative game with side payments (in coali- 
tional form). Our main objective here is to characterize the class of cooperative 
games for which the non-cooperative solution (subgame perfect equilibria) of the 
bargaining game necessarily yields outcomes which are coalitional stable, i.e, 
outcomes that are in the core of the underlying cooperative game. Such games will 
thus have the property that the bargaining behavior is not only stable with respect 
to unilateral deviations, but stability holds also with respect to multilateral 
deviations. i.e, no group of agents can be made better off by correlating a joint 
deviation. A cooperative game for which this property holds for all its restricted 
games will be said to be core implementable. Our main result asserts that a 
cooperative game is core implementable if and only if it is convex. ’ We thus 
provide a characterization of an important class of cooperative games by means of 
a non-cooperative notion. 

The approach taken in this paper is in a way dual to that which is typically used 
in the literature on core implementation. Usually one restricts itself to a class of 
cooperative games, such as the class of totally balanced games (see Perry and 
Reny (1991) or Moldovanu and Winter (1991)), and then one introduces a 
non-cooperative bargaining model that implements the core within this class. We, 
alternatively, raise the following question: Which are the cooperative games that 
are core implementable under our bargaining regime? 

Convex games have the property of increasing returns to scale for cooperation. 
This means that every player becomes more valuable as the coalition to which he 
joins grows. It is this property that made this class of games so much popular from 
the point of view of applications in economics. There is a wide range of interesting 

r In Van Damme et al. (1990) it is shown that even in bilateral bargaining, when a smallest money 
unit exists inefficient subgame perfect equilibria may exist. 

’ The word convex in our context is perhaps misleading. Using the terminology ‘games of increasing 
returns’ or ‘games of increasing individual contributions’ could have been more informative. We 

however stick to the term convexity because this is the most common name for this class of games ever 

since Shapley (1971) introduced it. 
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exchange markets that give rise to a convex game (see Rosenmueller (1983) and 
Ichiishi (1992)). Public good consumption can typically be modeled as a game 
with increasing returns to scale for cooperation, and a situation of oligopoly can 
also be described as a convex game under some specifications on the demand 
functions of the consumers (Shubik (1987)). 
Our main result implies that, in each of the environments described above, our 
non-cooperative bargaining model always yields outcomes which are core alloca- 
tions, not only on the whole economy but also on every sub-economy. The 
example of a public good economy wiI1 be later more thoroughly discussed. 

Without trying to give a comprehensive survey of the literature on non-cooper- 
ative foundations of cooperative game theory, the works which are closely related 
to ours, and in particular those which discussed core implementation, need to be 
mentioned. A pioneer attempt to investigate coalition formation in cooperative 
games by means of bargaining extensive form games is due to Selten (1981). 
Selten has used a bargaining model similar to ours to establish the relation 
between the set of semi-stable demand vectors (or aspiration vectors a la Bennett 
(1983)) of the cooperative game, and the equilibrium payoffs of the bargaining 
game. Later Chatterjee et al. (1993) examined a different model to explore the 
efficiency of multilateral bargaining outcomes. In Moldovanu and Winter (1991) 
and Winter (1992) the relation between bargaining mechanism robustness and 
order independence on one hand and the core on the other hand is established. 
Roughly, in the later paper it is shown that the only bargaining outcomes which 
are immune against procedural changes are core outcomes. 

A paper which is related to ours is Perry and Reny (1991). Perry and Reny 
consider a bargaining model where time is a continuous variable, and where a 
distinction is made between the time an agreement is reached and the time utility 
is being consumed. They show that under certain restrictions on players strategies 
the core can be implemented by stationary subgame perfect equilibria on the 
domain of totally balanced games. 

Our paper differs from Perry and Reny’s (P&R) both in motivation and in the 
results. Their objective was to describe a bargaining game based on Edgeworth’s 
justification for the core and provide a non-cooperative view of this solution 
concept. P&R’s equivalence result is strongly dependent on the fact that they use 
a continuous time model. They indicate informally that their results cannot be 
obtained by using a discrete time framework. This is indeed the case when one 
considers their domain of totally balanced games. One thing we show in this paper 
is that this can be done when the considered domain is smaller, namely, the set of 
all convex games. 

Our insisting on a discrete time model is driven by the fact that our approach is 
less descriptive than that of P&R. Our concern is more with practical implementa- 
tion of the core. Simplicity thus plays a much more important role here. The 
model we use is in fact the simplest generalization of the two person alternating 
offer model. We impose no restriction on players strategies, but only on the 
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equilibrium outcomes. From the point of view of mechanism design, we feel that 
this simplicity is an important distinction between our paper and other related 
papers in the field. Admittedly we pay back for this simplicity in terms of the fact 
that the core is implemented on a domain smaller than that of all totally balanced 
game, namely the domain of convex games but given the economic importance of 
this domain we feel that this is a cost worthwhile paying. 

Another important distinction between our results and the remaining literature 
on core implementation, is that our intention is not only to implement the core but 
also to exactly identify the cooperative games which admit such simple core 
implementation. What we will show is that if the underlying game is not convex, 
then at least some stationary subgame perfect equilibria will yield outcomes which 
are not in the core. So the property of increasing returns to scale for cooperation is 
not only sufficient for guaranteeing coalitional stable bargaining outcomes, it is 
also necessary. Our results therefore not only characterize the core but they also 
provide a meaningful characterization for the class of convex games in terms of 
core implementability. This follows from a result, with some importance of its 
own, which characterizes the class of convex games in terms of the size of the 
cores of its restricted games. This is an interesting parallel to Shapley and 
Shubik’s characterization of market games. 

2. The model 

Consider a set of n players N = (1, 2,. . . , n} who are involved in some 
interaction which gives rise to utilities for all possible coalitions. Without specify- 
ing precisely the environment in which this interaction takes place, it is repre- 
sented as a cooperative game in coalition function form ~:2~ -+ R. Thus for each 
S, u(S) is the total utility that the coalition S can allocate among its members. We 
therefore assume that utility is transferable. We also assume that cooperation pays 
off in the strict sense. Formally, v is strictly super-additive, i.e. V(S IJ T) > v(S) 
+ v(T) for all S,T with S n T = 0, and that u(S) > 0 for all S. 

The cooperative game (C-game) is an exogenous element of the model, and the 
precise source of the utilities is not specified. However, unlike the classical 
approach to cooperative games, we do not assume that coalition formation and 
payoff distribution can be predicted based solely on the C-game u. We thus 
entertain a simple non-cooperative bargaining procedure upon which such predic- 
tions can be based. We first start with the informal description of this procedure, 
which is a simplified version of Selten’s (1981) proposal model. 

The bargaining starts by randomly choosing a player i from N who has to 
initiate a proposal. A proposing player submits publicly a proposal (S, xS, j) 
which consists of: (1) The proposed coalition of agents S, which contains i; (2) a 
feasible payoff vector xS for the players in S, and (3) a player j in N\i which 
has to respond to i’s proposal. A responding player either accepts the proposal or 
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rejects it. Upon acceptance the responder chooses a new responder among those in 
S who have not yet responded. If the responder rejects a proposal then this 
proposal is removed and the responder initiates a new proposal. An agreement in 
this bargaining game is a pair (S, xs) where x(S) = u(S). 

We assume that each player prefers to be a member of ‘large’ coalitions rather 
than smaller ones provided that he earns the same payoff in the two agreements. 
Formally, the players have lexicographic preferences over agreements. Thus if 
6, xs> and (T, yr) are two agreements, then every i in S f-l T prefers (S, xs> to 

(T, yr) if xi >yi or xi = yi and T 5 S. This assumption is merely used in order to 
cope with the technical problem of ties, which can appear if players are indifferent 
between different agreements yielding the same payoff. Such ties may induce 
inefficiencies which, intuitively, are not very reasonable. In the last section we 
will demonstrate by means of an example why such an assumption is needed. 

Finally, the bargaining terminates when an agreement is reached. Each player 
of the formed coalition receives his bargained payoff, and the rest are assigned 
their individually rational payoffs (i.e. u(i)). If the bargaining never terminates all 
the players are assigned their individually rational payoffs. Thus the bargaining 
model described here fits best environments where no further bargaining takes 
place after the formation of the first coalition. This is often the nature of political 
bargaining, where only one winning coalition can form, but it also resembles 
situations where a single project is being auctioned among a group of competing 
constructors who may also cooperate for the purpose of winning the project. 
Nevertheless, this model is also applicable to situations where sequential forma- 
tions of coalitions takes place, only that in these cases one should view the 
formation of each coalition as a separate game. 

Each choice of the first proposer in the above bargaining model gives rise to a 
non-cooperative game (NC-game) in extensive form with perfect information. Our 
non-cooperative solution concept is stationary subgame perfect equilibrium in pure 
strategies. To define the notion of stationary strategies one needs to divide the set 
of decision points in the game tree into equivalence classes and then require that 
players behave similarly at every two decision points within the same class. Thus, 
in stationary strategies players behavior is history dependent only in a limited way. 
To be more specific, we will use the term position when we refer to these 
equivalence classes. 

Take i in A? A proposal position for i, denoted by (i), is the set of all i’s 
decision points in the game tree in which i has to initiate a proposal. The 
responder position (S, xs, T) for i is the set of all decision points for i in which i 
has to respond to the proposal (S, xs) after the players in T c S have already 
accepted the proposal. A stationary strategy for i is a function which assigns a 
proposal by player i to every proposal position, and assigns a response, i.e., an 
element of the set {yes, no), to every responder position (S, xs, T). In a stationary 
strategy a player acts in the same way at any decision point which belongs to the 
same position. A stationary subgame perfect equilibrium (SSPE), is a subgame 
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perfect equilibrium that uses only stationary strategies. Note that we do not, 
a-priori, restrict players’ strategies in any way. 

3. The core and the SSPE payoffs vectors 

As a counterpart to the non-cooperative solution, we will focus on the core as 
the cooperative solution concept. If v is a C-game on N, the core of v, denoted by 
C(v), is given by 

C(v) ={xER”; x(S) 2 v(S)V,S cN, and x(N) = v(N)}, 

where x(S) = Cicsxi. 

Let v be a C-game and let GLN be the corresponding NC-game, when N is the 
set of players and j opens the bargaining (proposes first). Let b be an SSPE of 
GLN. For each i in N we denote by E,(b) the payoff for i when b is played, and 

E(b) = (E,(b)),, N’ We will use E(GLN) to denote the set of all SSPE payoff 
vectors of G jrN. As was alrea d mentioned our main interest in this paper is to y 
explore the relation between the core payoffs of the C-game v, and the SSPE 
payoff vector of the corresponding NC-game. 

To obtain an equivalence theorem in terms of this relation we need to consider 
not only the C-game v on the set of players N but also all of its restricted 
games 3. For each coalition S c N the restricted game us is the C-game on the set 
of player S given by v,(T) = v(T) for all T c S. We will denote by GAS the 
NC-game induced by us, where j E S opens the game. 

We can now define the notion of core implementability for C-games on which 
our result is based. 

A C-game v is said to be Core Implementable if for all S C N, and j E S, 
E(G”‘) = C( 0’). 4 

Thus, a core implementable C-game is one in which for every possible forum 
of negotiation S c N, the set of all the SSPE outcomes of the bargaining game 
coincides with the core of the relevant C-game. Note that we use the regular 
notion of subgame perfection but our notion of core implementation is somewhat 
stronger than the usual requirement in the sense that it imposes a condition not 
only on the C-game v but also on all of its restricted games. What we want to 
guarantee by this notion is that no group of players refusing to take part in the 
negotiation (or leaving with some pre-play agreement) will cause ‘instability’ on 

3 In our terminology we distinguish between restricted games which refer to cooperative games, and 

subgames which are used as usually for extensive form games. 
4 In the sequel we will allow ourselves to abuse notation by writing GS when we refer to G’,’ for 

some arbitrary player i in S. 
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the set of remaining players, i.e., some equilibria of the resulting C-game will 
yield non-core outcomes. Note, in particular, that in core implementable games 
there is no way also for a group of players to profitably deviate from an SSPE by 
jointly correlating an alternative behavior. Hence all SSPE are also strong equilib- 
ria in the sense of Aumann (1959). 

We are now ready to state our main result. 

Theorem 1. A C-game v is core implementable if and only if it is convex. 

Convex games have the property of ‘snowballing’ cooperation. In such games 
players become more essential when they join large coalitions. Formally, it means 
that players marginal contribution to coalitions is monotone with respect to 
inclusions, i.e u is convex if for all i E N and T, S c N\ i with T c S we have, 
u(S U i> - u(S) 2 v(T U i> - u(T). 

We will in fact show more than the assertion claimed in Theorem 1. Our first 
lemma demonstrates that for any game with a non-empty core (not necessarily 
convex), every core outcome is sustainable by some stationary subgame perfect 
equilibrium of our bargaining game. Later we will use an auxiliary result about the 
relation between semi-stable vectors and the core to show that only in convex 
games all equilibrium outcomes are core outcomes. 

Lemma 3.1. Let v be a C-game with a non-empty core. For each payoff vector x 
in the core of u there exists some SSPE b of the game GN such that x is the 
equilibrium payoff of b. 

Proof. Let x be some core outcome of v. Consider the following strategy 
combination: 

(1) Each player i as a proposer proposes (N, X, j>, where j is an arbitrary player 
in N. 

(2) Each player i as a responder accepts any proposal which yields him a payoff 
greater than xi, and the proposal (N, x). All other proposals are rejected by i. 

Obviously the above strategy combination yields the outcome (N, x). It is thus 
left to show that this strategy combination is indeed and SSPE. Consider first 
proposal positions. Since x is in the core, any alternative proposal which yields i 
more than xi must yield some other player, say j, less than xi. Such a player must 
reject that proposal according to the specified behavior of the strategy combina- 
tion. So no proposer can profitably deviate. We will now consider response 
positions. Obviously a player cannot accept a payoff less than xi, because he is 
better off rejecting it and proposing (N, x> which will then be accepted. For the 
same reason no responder can accept xi with a coalition that is a strict subset of N 
since he prefers (N, x>. It is thus left to show that accepting (N, x1 or any offer of 
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more than xi is a best response for i. Suppose first that i is the last player to 

respond. If i rejects the proposal then he becomes a proposer and he can get no 
more than xi at the continuation of the game. Finally if i is not the last to respond 
the last assertion is obtained by backward induction on the number of players 

proceeding i in their response. Q.E.D. 

Our next Lemma characterizes the equilibrium payoffs of players at positions in 

which they initiate proposals (see also Selten (1981)). 

Lemma 3.2. For each SSPE b of G’, and for each i in N, let d,(b) be i’s payoff 
when b is played at any subgame that starts with i initiating a proposal. Let 

d(S) = lCZES d,(b) for S c N. Then: 

(1) I;br each S CN d(S) 2 u(S), and 
(2) For every i in N there exists some S c N, such that i belongs CO S and 

d(S) = ~16). 

Prmf. We first show (1). Suppose in negation that there exists some S c N such 

that d(S) < z:(S). Let E = [u(S) - d(S)]/1 S I, an consider the following behavior d 
by i: 

1. At a proposer position always propose 6, d, + Es, j), where j is some arbitrary 

player in S. 
2. AI a responder position, stick to what b specifies+ 

We will show that i improves his payoff by adopting the behavior described 
above. To show this, it is enough to prove that i’s proposal as specified above 
must be accepted. Indeed consider the behavior of the last responder to i’s 
proposal, say j. If j rejects the proposal then, because of the stationarity of b, he 
is going to realize a payoff of d],(b) at the resulting subgame. If j however 
accepts the proposal then he earns dj(b) + E. So j must accept the proposal. 
Using a backwards induction argument we can conclude that all the members in S 
must accept the proposal as well. We thus have shown (1). 

To show (2) simply note that for any coalition that forms as a result of some 
SSPE, each player i must be paid at least di, otherwise i will be better off 
rejecting this proposal. So if j EN can guarantee d, at the subgame starring with 
his proposal then there must be some coalition S for j where C, E ,d, zz r!(S). 
Q.E.D. 

Conditions (1) and (2) of Lemma 3.2 define a set of vectors known as the set of 
aspiration vectors or semi-stable vectors, which has been already discussed in the 
literature by both Albers (1979) and Bennett (19831, and was shown to be 
non-empty. Selten (1981) introduced a bargaining model similar to ours to 
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establish the relation between this set of vectors and the equilibrium outcomes of 
the bargaining game. We will adopt Selten’s terminology as this reference is the 
most relevant to our treatment. Thus, any vector which satisfies (1) and (2) is 
called a semi stable vector of U. 

Denote by X(u) the set of all semi-stable vectors of the C-game u, and define 
Fj(x) := {S cN, i E S and x(S) = u(S)}, we obtain X(u) = {x E R”; Vi EN 

Fi(u) # 0, and VS cNx(S) 2 u(S)}. Note that C(u) cX(u). 
Our next auxiliary result has an importance of its own. It, in fact, provides a 

characterization of convex games in terms of the relation between their core 
payoffs and the semi-stable payoff vectors. ’ 

Proposition 3.3. Let v be a C-game on the set of player N. Then u is convex if 

and only if for every S c N, C(u,) = X(v,). Namely, the core of the restricted game 
on S coincides with the set of semi-stable vectors of that restricted game. 

There is a surprising relation between Proposition 3.3 and the famous Shapley 
and Shubik (1969) Theorem on market games. Shapley and Shubik have shown 
that a game is a market game if and only if each of its restricted games has a 
non-empty core. Proposition 3.3 asserts that a game is convex if and only if each 
of its restricted games has a ‘large’ core, where large means X(U,) = C(U,). 

Proposition 3.3 will follow immediately from the following two lemmas. 

Lemma 3.4. If u is not convex then there exists some S c N for which C(v,) s 

X(u,). 

Proof. Let S be a minimal coalition for which us is not convex i.e., for every 
T c S ur is a convex game. (Note that a one-person game is always convex). Since 
us is not convex there exists i E S, R, T c S such that i E R c T, with u(T U i> - 
u(T) < u(R U i) - u(R). By the minimality of S we must have S = T. Otherwise 
ur is also not convex contradicting S’s minimality. Let us now take a permutation 
rr of the players in S such that i is placed last. Without loss of generality rename 
the players in S according to their position in rr, i.e., r = (1, 2, . . . , s) for s = 1 S 1, 
(i is now named s). For each j E 11, 2,. . . , s) write mj = u({l, 2,. . ., j}) - 
u({l, 2,. . . , j - l}), and 

’ See also Sharkey (1982) and Moulin (1990) for a different characterization of convex games in 
terms of the property of their cores. 
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Since 

C mj=v(R\{sl)7 

jcR\G) 

our assumption on S implies bs > ms. Consider now the vector x = 

(m r, . . . , m,- lr bd. 

Claim 1. x is a semi-stable payoff of v,. 

Proof. Since the restricted game on (1, 2.. . , s - 1) is assumed to be convex (the 
minimality of S>, we have x(R) = Cj, R mj 2 v(R) for all R C (1, 2,. . . , s - 1). 
In fact (x1,. . . , x,_ 1> is an extreme point of the core of v{r, *, _, s_ r). (See Shapley 
(1971)). Since b, 2 ms we have x(R) 2 v(R) for all R c S. This shows that the 
first condition for semi-stability is satisfied. We will now show that every player i 

can realize his payoff xi in at least one coalition. Indeed if i < s, then 

x(0, 2,. . . , i}) = ~((1, 2,. . . , i}). If i = s, then let R be the coalition for which the 
maximum in the definition of b, is obtained and observe that x(R) = v(R). SO x 

is a semi-stable vector of us. 

Claim 2. x is not in the core of vs. 

Proof. Since Cg,, mj = v(S), and since b, > m,, we have x(S) > u,(S). So x is 
not feasible with respect to the grand coalition in us, and thus is not a core payoff 
of this game. Claims 1 and 2 show that x E X(v,)\ C(v,). This completes the 

proof of the Lemma. Q.E.D. 

Lemma 3.5. Zf v is convex then X(v,) = C(v,) for all S C N. 

Proof. The fact that C( us) c X( us> is straightforward. We will thus show that 
X(U,> c C( us>. Since all the restricted games of a convex game are also convex it 
is sufficient to show this inclusion for the grand coalition. Let x E X(v). TO show 
that x is in C(U) it is sufficient to demonstrate that x is feasible with respect to 
the grand coalition. For each i in N let Ci(x> be a coalition which is minimal in 
Fi(x) with respect to the inclusion relation, i.e, if S s C,(x), then S ‘Z Fi(x). We 
will first show that Ci(x) is unique. Since x is kept fixed we set C,(x) = Ci. 

Suppose that C: and CF are both minimal in Fi(x), with C: # Cf. Since 
i E Cf and i E C?, we have C! l-j C,? # 0. By the minimality with the fact that 
x(S) 2 u(S) for all S, we get x(C,! fl Cf) > u(C! fl C?). We now obtain 

,(c~uc~)=~(c;>+x(c~)-x(c~~~~) 

= “(c;) + +;) - X(C: n c:) 

< v(~;) + up:) - U(C: n c:) 

I zl(q! u ci”). 
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The last inequality follows from the convexity of u. We thus obtain x(cf U Cf> 
< u(C: lJ Cf> which contradicts the fact that x is semi-stable. 

We next show that for i,j in N with i #j, we have either Ci = Cj or 
i,j E N\(Ci n Cj>. Suppose that Ci # Cj. If i E Ci n Cj, then by the minimality 
of Ci we have v(C, n Cj> < x(C, n Cj>, and again with the same chain of 
inequalities as above we obtain x(C, U Cj> < u(C, U Cj>, which contradicts the 
fact that n E X( u). Similarly, we show that j E Cj is impossible. We thus get that 
for each i, and each j E Ci we have Ci = C!‘, whtch means that the relation i - j if 
and only if i E Cj is an equivalence relation on N. For each equivalence class 
choose some player k and let K denote the set of all these players. {C,}, E K is 
partition of N. Since each C, satisfies x(C,) = u(C,) we obtain by super-additiv- 
ity (which is implied by the convexity): 

x(N) = xx(C,) = &(C,) <u(N). 
kEK kEK 

So x is feasible for N and thus in the core of u. Q.E.D. 

The Proof of Theorem 1. First, if the C-game u is convex, then by Proposition 

3.3, for all S CN X(u,) = C(u,>. Take S cN, and an SSPE b of GS. Let 
d, = (d,, . . . , d, S ,>, where di is the payoff for i when b is played at any subgame 
starting with i proposing (see the proof of Lemma 3.2). By Lemma 3.2 d, E X(u,>, 
and thus d, E C( u,). This means that d, is feasible for the coalition S. By our 
assumption on players preferences on agreements, (i.e, that players prefer among 
two agreements in which they attain the same payoff the one with the larger 
coalition), we can conclude that S must form. Thus dS is b’s equilibrium payoff. 
This means that E(G’> c C( us> for all S c N, and together with Lema 3.1 this 
yields that u is core implementable. Suppose now that u is not convex, then, by 
Lemma 3.4, there exists some S C N for which C( us> 5 X( us). Take n E X( us) \ 
C(u,>, and for each i in S let Ti c S be some coalition for which i E Ti and 
x(Ti) = u(Ti). Since x @ C(u,>, Ti # S for all i in S. Consider the following 
stationary strategy profile b = ( bili E S in GS, where each bi is given as follows: 

(1) At each position in which i is a proposer i proposes (Ti, xT,). 
(2) At each responder position (R, y,, T) in which i is a responder, i accepts the 

proposal (R, yR) if and only if yj 2 xj for all j E S\ T (note that i E S\T 
since i hasn’t responded yet). 

We will now show that b is an SSPE in GS. Let us consider first the responder 
behavior. Assume that i is the last to respond to an existing proposal (R, yR). If i 
rejects the proposal then, in the continuation of the game, i cannot attain more 
than xi. Hence if yi 2 xi, i’s optimal behavior is to accept the proposal as 
specified by b. If xi > yj i’s optimal behavior is to reject the proposal and to 
propose a different proposal which yields him his xi. Now if i is not the last to 
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respond, then inducting backwards on the number of players who still need to 
respond shows that the action specified for a responder by b is indeed a best 
response for every responder. Suppose now that i is a proposer, and that i deviates 
by proposing an outcome (R, yR) with yi > xi. Since x(R) 2 u(R), this means 
that for some j E R, yj <xi, and according to the action specified by b for a 
responder, such proposal is going to be rejected by the first responder. If i as a 
proposer submits a proposal with yi < xi, then either this proposal is accepted and 
i has lost by deviating, or this proposal is rejected by some of the concerned 
players, say j. In the later case the rejecting player will propose again (q, x,> 
which will then be approved as b specifies. Thus no proposer i can attain more 
than xi by deviating at some subgame, which shows that b is an SSPE. Now, 
when b is played the resulting payoff vector is z = (x,, (u( j>jj E s,r,) for some i 
in S. (recall that S\ Ti # 0). Since u is supper additive, z(S) < u(S) and z is not 
a core payoff of us and the proof is completed. Q.E.D. 

Remark. The second part of the proof of Theorem 1 shows that unlike other 
models of bargaining in characteristic function games, ours always admits station- 
ary subgame perfect equilibria also in games with empty core. This follows from 
the fact that the set of semi-stable vectors is always non-empty. In fact every 
semi-stable vector x gives rise to an SSPE in which each player’s equilibrium 
payoff at any decision point in which he is a proposer is xi. 

4. Examples 

The following example shows that subgame perfect equilibria which employ 
non-stationary strategies may sustain outcomes which are not in the core even 
when the C-game is convex. 

Example 4.1 

Consider the following 2-person convex game: u(l) = v(2) = 1, ~((1, 2)) = 3. 
Consider first the following three auxiliary strategy combinations: 

b,. Player 1 proposes always (N, (2, 1)) and accepts a proposal if and only if 
xi 2 2. 
Player 2 proposes always (N, (2, 1)) and accepts a proposal if and only if 
X,2 1. 

b,. Player 1 proposes always (N, (1, 2)) and accepts a proposal iff x1 2 1. 
Player 2 proposes always (JV, (1, 2)) and accepts a proposal iff x2 2 2. 

b,. Player 1 proposes always (N, (1.2, 1.2)) and accepts a proposal iff xi 2 1.2. 
Player 2 proposes always (N, (1.2, 1.2)) and accepts a proposal iff x2 2 1.2. 
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b,, b, and b, are all stationary strategies. b, and b, are also SSPEs but b, is 
not. 
Consider now the following non-stationary strategy combination: 

b*. Both players play b, as long as nobody deviates from b,. Whenever some 
player i E (1, 2) deviates from b, both players move to play b,_,. 

b* is a non-stationary equilibrium which, when played, yields the payoff 
(1.2, 1.2) which is not in the core of u (since it is not Pareto optimal). Moreover 
b* is a subgame perfect equilibrium. To realize that, note that on subgames which 
occur after some player has deviated from b,, b* yields an equilibrium, since both 
b, and b, are equilibria. Furthermore, deviating from the path induced by b, 
cannot be optimal for either players, because this will yield the deviator a payoff 
of 1 which is less than 1.2. 

The next example demonstrates that strictly super-additive games which are not 
convex may admit SSPE outcomes which are not in the core, even when the core 
is non-empty. 

Example 4.2 

Consider the three person game given by u(i) = l/5 (i = 1, 2, 3), ~(1, 2) = 1, 
~(1, 3) = 1, ~(2, 3) = l/2 and ~(1, 2, 3) = 1.25. The game u is strictly super-ad- 
ditive with a non-empty core but it is not convex. Consider now the following 
stationary strategy combination: 

Player 1 proposes ((1, 2), (l/2, l/2)) and rejects an agreement if and only if it 
yields him less than l/2. 

Player 2 proposes ((1, 21, (l/2, l/2)), and rejects an agreement if and only if it 
yields him less than l/2. 

Player 3 proposes (11, 3}, (l/2, l/2)) and rejects an agreement if and only if it 
yields him less than a half. 

The strategy combination described above is a stationary subgame perfect equilib- 
rium. This follows from the fact that for a player to get more than l/2, would 
mean that some other player must be satisfied with less than l/2, but everyone 
rejects such agreements. Similarly to get l/2 within the grand coalition would 
mean a consent by some other player to obtain less than l/2. 

Suppose that player 1 opens the game, then the equilibrium strategies induce 
the agreement ((1, 21, (l/2, l/2)). The payoff outcome of the game is thus 
(l/2, l/2, 0) h’ h w IC is outside the non-empty core. So u is not core-implementa- 
ble. 6 Note that every restricted game of u is convex, so all the SSPE outcomes in 

6 Note that the same result can be achieved when either player 2 or player 3 open the game. 
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GS for S 5 N must be core outcomes in the corresponding C-game. In fact the 
strategy combination above is an SSPE whenever u(N) < 3/2. For v(N) r 3/2 
this strategy combination in not an SSPE any more, since every proposer can 
propose a better agreement consisting of the grand coalition, which will be 
accepted by the rest of the players. In particular for u(N) = 3/2 the agreement 

(N, (l/2, l/2, l/2)) is preferred by player 1 to ({l, 21, (l/2, l/2)). However to 
guarantee that all SSPE outcomes of GN will be in the core of u we need to have 
v(N) 2 7/4. For these values of u(N) the game u is convex. 

We conclude by illustrating the implications of our results for a model of public 
good provision. 

Example 4.3. The provision of a public good 

A group of agents has to decide on the provision and cost sharing of a public 
good. Let g(a) denote the cost of producing the amount (Y of the public good. 
Each agent has an initial endowment of money wi, and a utility function q(a). 
We assume that g(0) = 0, and that g(a) and Ui( a) are increasing and continu- 
ous. To obtain a bounded set of payoffs we also assume that g( (Y)/CX is bounded 
above and that U,(o)/a approaches 0 as cx approaches infinity. 

If the amount (Y is produced with the cost allocation (c,, . . . , c,), then agent i’s 
utility level is U,(a) - ci. This public good economy induces the following TU 
game: u(S) = max& E s q(a) -g(a); g(cr) 5 Ci.,wi}. This definition is 
based on the assumption that each coalition can produce any quantity with total 
cost that does not exceeds the total initial endowment available to its members, 
and then make side payments among them. 

It can easily be shown that the game u is convex. (see also Demange (1987)). 
This means first that, if the quantity of production and the cost allocation are 
determined by means of the bargaining model described above, then all the utility 
levels vectors which are sustainable by some stationary subgame perfect equilib- 
rium are in the core of the economy. In particular, Demange (1987), (Proposition 
1) also implies that the correspondence SSPE (UN) ’ which associates to each 
vector of utility functions the set of all utility levels which are sustainable by some 
SSPE of the bargaining game is coalitional non-manipulable. This means that no 
coalition has an incentive to misrepresent a the preferences of its members. 

’ Formally this means the following. Let G(U,) be the bargaining game based on the utility 
functions UN. Let U& be some alternative utility functions for some coalition S C N. There exists no 

SSPE b of G(U,‘,U,,,) such that for each SSPE b’ of G(U,), and for each i in S i’s equilibrium 

payoff in b is greater than his equilibrium payoff in b’. 
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5. Conclusions 

1. In this paper we have analyzed a bargaining game which implements the core of 
every game with increasing returns to scale for cooperation, i.e, convex game. We 
have also characterized the class of convex games by this property of core 
implementation. Typically implementation results are strongly dependent on the 
precise mechanism of negotiation which is applied. The one we have used here is 
the simplest and most straightforward generalization of the natural two person 
alternating bid model (without discounting), which includes coalition formation. 

The fact that it is exactly the class of convex games which admits core 
implementation using our simple bargaining game, indicates the relation between 
the property of increasing returns for cooperation and the stability of bargaining 
outcomes. What we have shown is that the property of convexity is conducive for 
stability. This indeed seems to fit our intuition about real life environments of 
interactive decision making. In situations where every individual contribution is 
essential, and there is a lot to loose by an antagonistic formation of small groups, 
even when players behave competitively (or non-cooperatively) the collective 
interaction will necessarily induce a stable result. 
2. We have imposed a weak condition on players preferences over agreements, 
namely that players prefer large coalitions to small ones provided that they earn 
the same payoff. This is done in order to prevent players from excluding others 
from the formed coalition just because they are indifferent between them joining 
the coalition or staying out. One might tend to think, that the notion of subgame 
perfection alone, will take care of breaking ties in favor of large coalitions. This is 
unfortunately not the case in our context. Consider for example the following 
3-person convex game; 

U({i}> = 0 (i = 1, 2, 3) 
v(S) = 1 for 1 S I = 2, and u(N) = 3. 

Consider the following SSPE of our bargaining game on the set of players N. 

Player 1: Proposes (11, 21, (0, l)), and accepts any proposal yielding him a 
non-negative payoff. 
Player 2: Proposes ((1, 21, (0, l)), and accepts a proposal if and only if it yields 
him at least 1. 
Player 3: Proposes (N, (0, 1, 2)), and accepts a proposal if and only if it yields 
him at least 2. 

It is easily shown that the above strategy combination is an SSPE. (See the 
second part of the proof of Theorem 1.) Now, if the bargaining starts with either 
player 1 or 2, then the equilibrium outcome involves the coalition 11, 2) and not 
the grand coalition. The equilibrium outcome thus cannot be in the core. This 
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rather technical problem will arise whenever the strategy combination is based on 
an extreme point of the core. 
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