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1 Introduction

Dynamic allocation and pricing problems appear in numerous frameworks such
as the retail of seasonal/style goods, the allocation of fixed capacities in the
travel and leisure industries (e.g., airlines, hotels, rental cars, holiday resorts),
the allocation of a fixed inventory of equipment in a given period of time (e.g.,
equipment for medical procedures, bandwidth or advertising space in online
applications), and the assignment of personnel to incoming tasks. Although
dynamic pricing is a very old technique (think about haggling in a bazaar!),
modern Revenue Management (RM) techniques started with US Airline Dereg-
ulation Act of 1978 (see McAfee and te-Velde [22]). A major academic textbook
is The Theory and Practice of Revenue Management by K. T. Talluri and G.J.
van Ryzin [30]. According to these authors, the basic RM issues are:
1) Quantity decisions: How to allocate capacity/output to different seg-

ments, products or channels? When to withhold products from the market?
2) Structural decisions: Which selling format to choose (posted prices, ne-

gotiations, auctions, etc..)? Which features to use for a particular format (seg-
mentation, volume discounts, bundling, etc..)?
3) Pricing decisions: How to set posted prices, reserve prices? How to price

differentiate? How to price over time? How to markdown over life time?
Broadly speaking, all above questions deal in fact with issues treated in

the Auction/Mechanism Design literature (see for example Milgrom’s [25] text-
book). Nevertheless, mechanism design has not been the tool of choice in RM:
instead, most papers have focused on analyzing properties of restricted classes
(sometime intuitive, sometimes rather ad-hoc) of allocation/pricing schemes.
One possible explanation for this gap is that the classical auction/mechanism

∗This paper is based on a keynote lecture delivered at the EARIE annual meeting in
Stockholm, 2011. We wish to thank Martin Peitz for the invitation. We are also grateful to
Martin Peitz and to an anonymous referee for helpful comments. Gershkov: Department of
Economics, Hebrew University Jerusalem, alexg@mscc.huji.ac.il ; Moldovanu: Department of
Economics, University of Bonn, mold@uni-bonn.de

1



design literature had a strong focus on static models while the emphasis in RM
is on dynamics.
Thus, what is necessary for a modern theory of RM is a blend between the

elegant dynamic models from the operations research, management science, com-
puter science (with historical focus on grand, centralized optimization and/or
"ad-hoc" mechanisms), and the classical mechanism design literature (with his-
torical focus on information/incentives in static settings). Such a blend will be
fruitful for numerous applications. Recently, this challenge has been addressed
by a more or less systematic body of work appearing under the heading of Dy-
namic Mechanism Design.1 Here we very briefly illustrate this approach, as
reflected in our recent work. The present illustration and analysis are based on
an elegant, early model due to Derman, Lieberman and Ross [9] who studied a
dynamic version of (assortative) matching of objects to agents.

2 Becker vs. Derman-Lieberman-Ross

There are n agents who arrive sequentially, one agent per period. Periods are
counted backwards, so that the last period is period 1 and the first period
is period n. There are m items. Each item i = 1, ..,m is characterized by a
"quality" qi with 0 ≤ q1 ≤ q2 ≤ ... ≤ qm. Without loss of generality we can
assume that n = m.2 . For any k ≥ 1 and for any vector γ = (γ1, γ2, .., γk) we
denote by γ(j) the jth smallest coordinate of γ, so that γ(1) ≤ γ(2) ≤ ... ≤ γ(k).

The agents can be served only upon arrival. After an item is assigned, it
cannot be reallocated. Each agent is characterized by a "type" xj , and agents’
types are governed by IID random variables Xj = X on [0,+∞) with common
cdf. F. Types are observable to the designer upon the agents’respective arrival
(thus, at each point in time there is uncertainty about the types of agents
arriving in the future). If an item with type qi ≥ 0 is assigned to an agent with
type xj , this agent enjoys a utility of qixj . The designer wants to assign the
items to the arriving agents in such a way as to maximize the expectation of
the sum of agents’utilities.

Theorem 1 Consider the arrival of an agent with type xk in period k ≥ 1.
There exist k + 1 constants 0 = a0,k ≤ a1,k ≤ ... ≤ ak,k =∞ such that:

1. The dynamically effi cient policy assigns the item with quality q(i) - out of
the remaining inventory - if xk ∈ (ai−1,k, ai,k].

2. In a problem with n periods the total expected welfare is given by

Wn =

n∑
i=1

qiai,n+1. (1)

1The more recent literature is surveyed in Bergemann and Said [4] who differentiate among
models where new agents or new information arrive over time. Of course, there were many
antecedents, such as Dolan [12], Riley and Zeckhauser[29] or Wang [31] (arriving agents), and
Courty and Li [7] (arriving information).

2 If m > n, then only the n items with highest qualities are relevant for our study; if m < n,
then we add n−m dummy objects with quality q = 0.
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Note that the cutoff aik that is being used at period k equals the expected
value (in a problem with k − 1 periods) of the type that gets the object with
quality q(i) , assuming that an optimal policy will be used. The remarkable part
of the above result, due to Derman, Lieberman and Ross [9] (DLR hereafter),
is that the precise values of the available qualities do not play any role for the
optimal policy.
It order to better understand the main change induced by sequentiality, it is

interesting to compare the above characterization to the one in the static case,
where all agents arrive at once. Then we have a classic matching problem a la
Becker [3], and the assignment is assortative. Thus, the expected welfare in the
static case is given by

W s
n =

n∑
i=1

qiµi,n. (2)

where µi,n denotes the expectation of the ith lowest order statistic out of n
copies of X. For the comparison of the static and dynamic scenarios we need
the following definition:

Definition 2 We say that vector α = (α1, α2, .., αn) is majorized by vector β
= (β1, β2, .., βn) and we write α ≺ β if the following system of n−1 inequalities
and one equality is satisfied:

α(k) ≤ β(k)

α(k) + α(k−1) ≤ β(k) + β(k−1)

... ≤ ...

α(k) + α(k−1) + ...+ α(2) ≤ β(k) + β(k−1) + ...+ β(2)

α(k) + α(k−1) + ...+ α(n) = β(k) + β(k−1) + ...+ β(n)

Theorem 3 For each n , the vector {ai,n+1}ni=1 is majorized by the vector
{µi,n}ni=1 .

Proof. Assume first that all available qualities are equal, say qi = 1, for all i.
Then it is obvious that the sequential arrivals do not impose any loss of welfare.
Thus, formulas (1) and (2) yield the one equality needed in the definition of
majorization. In order to prove that all required inequalities hold note that
expected welfare in the dynamic case - where assignment "mistakes" occur be-
cause of the sequential arrival - can never be higher than the welfare attained
in the static case. The result follows by applying formulas (1) and (2) to the
n− 1 vector of qualities of the form (1, 0, .., 0), (1, 1, 0, .., 0), ..., (1, 1, .., 1, 0).
If α ≺ β,the vector α is less "variable" than the vector β, and majorization

is the discrete version of second-order stochastic dominance. The above result
makes precise the sense in which allocation "mistakes" due to the sequential
nature of the allocation process yield a more "compressed" optimal policy and
a reduced expected welfare.
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3 Vickrey vs. Derman-Lieberman-Ross

Assume now that agents’ types are private information, and that monetary
transfers are possible. If an agent with type x obtains an item with quality q for
price p then his utility is given by qx− p. In a deterministic, direct mechanism,
every agent reports upon arrival his characteristic xi and the mechanism spec-
ifies:3 1. A non-random allocation rule (which object is allocated, if any) that
only depends on arrival period, on the declared type of the arriving agent, and
on the inventory of items available at that period; 2. A payment to be made by
the arriving agent which depends on the arrival period, on the declared type of
the agent, and on the inventory of items available at that period.
A general mechanism design approach starts by a characterization of all

dynamically implementable allocation policies. Roughly speaking, such policies
are characterized by a monotonicity property: at each point in time, an agent
with a higher type obtains an item with a higher quality (see Gershkov and
Moldovanu [20]). In particular, in deterministic mechanisms, the set of types
that obtains a given quality is an interval. It is immediate that the dynamically
effi cient policy identified by DLR has the required property.

Theorem 4 The complete information, dynamically optimal policy is imple-
mentable also under incomplete information. The necessary payments form the
dynamic analogue of the Vickrey-Clarke-Groves transfers, and are given by

Pk (x,Πk) =

j∑
i=1

(q(i:Πk) − q(i−1:Πk))ai−1,k if x ∈ [aj−1,k, aj,k), (3)

j = 1, 2, ..k.

where Πk is the inventory available at stage k and q(i:Πk) is the ith lowest quality
in Πk.

Payments have here an intuitive interpretation: look at static case with k
objects and k agents where, in addition to the arriving agent with type x, there
are k − 1 "dummies" with types a1,k ≤ ... ≤ ak−1,k. These types are proxies
for future agents. Then, if x ∈ [aj−1,k, aj,k), the arriving agent gets the object
with quality q(j:Πk), and the above payment represents the (negative) externality
imposed on the dummy agents. This is, precisely, the dynamic extension of the
celebrated Vickrey-Clarke-Groves idea.4 .
The main thing to note is that the above prices have a rather complex

structure that does depend on the available qualities at each point in time.
The mechanism design approach - with its focus on implementable allocations
rather than on prices - yielded first the simply structured welfare maximizing

3There is no loss of generality here when we restrict attention to such mechanisms.
4Dolan [12] pioneered the use of dynamic versions of the Vickrey-Clarke-Groves mechanisms

in order to achieve effi cient queue disciplines. Recent general extensions of VCG schemes to
dynamic settings can be found in Athey and Segal [2], Bergemann and Valimäki [5], and
Parkes and Singh [28].
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allocation. The associated prices follow then, basically, by a standard payoff
equivalence exercise (see Myerson [24]). Analogously, it is much easier to find
here, say, the revenue maximizing allocation and then derive associated prices
rather than trying to directly derive revenue maximizing prices.
We conclude this brief illustration by describing several extensions of the

above model/results.

4 Stochastic Arrivals

The generalization of the DLR model to continuous time and stochastic arrivals
is due to Albright [1]. As above, implementable policies are characterized by
cutoffs and satisfy a monotonicity property. The effi cient allocation is imple-
mentable via a dynamic Vickrey-Clarke-Groves mechanism (see Gershkov and
Moldovanu[18]). Budget- balancedness can be attained in the limit where the
deadline and/or the arrival rate go to infinity.

5 Revenue Maximization

One of the classical contributions in RM is by Gallego and van Ryzin [14].
In their model a set of identical units is allocated until a deadline to unit-
demand, stochastically arriving buyers with privately known valuations (Poisson
arrivals)5 . Under complete information, this model is a special case of Albright
[1], who allows for several heterogenous objects. In Gershkov and Moldovanu
[16] we add incomplete information to Albright’s model, and first compute the
revenue generated by any individual-rational, deterministic, Markovian and im-
plementable policy6 . The revenue maximizing policy - characterized by a vari-
ational argument - is, at each point in time, and for each subset of available
objects, consisting of several cut-offs which determine the object allocated to
the arriving agent. The associated optimal prices are, as in the above Section,
completely determined by the implementation conditions. Interestingly enough,
the fact that the cutoffs in the optimal policy do not depend on the precise val-
ues of the available qualities allows us to actually deduce them from the classical
study with identical objects, due to Gallego and van Ryzin [14] !7

Gallien [15], Board and Skrzypacz [6], Gershkov and Moldovanu [19] consider
buyers who are long-lived (and thus strategic with respect to their purchase
times), while Mierendorff [23] and Pai and Vohra [27] focus on agents who are
strategic with respect to the deadline by which they need the objects. The
buyers’strategic behavior also plays a main role in Dana [10], Gale and Holmes
[13] and Nocke, Peitz and Rosar [26] who have focused on the optimality of

5A generalization to multi-unit demand buyers - this is a dynamic and stochastic knapsack
problem - appears in Dizdar et al. [11].

6The focus on such policies is without loss of generality.
7We also obtain a set of intuitive equations that characterize the optimal number of objects

and their respective qualities. Finally, we explain why the average clearance mark-down is
higher for the higher quality product lines, as empirically observed in a variety of settings.
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advanced purchase discounts in frameworks where uncertainty is resolved over
time.

6 Learning

Although very rare in the mechanism design literature (with its static focus), the
assumption of gradual learning about an unknown environment is descriptive
of most real-life dynamic allocation problems. But all above mentioned models
assumed away such features. When learning about the environment takes place,
the information revealed by a strategic agent affects both the current and the
option values attached by the designer to various allocations. Since option val-
ues for the future serve as proxies for the values of allocating resources to other
(future) agents, the private values model with learning indirectly generates in-
formational externalities.8 The effi cient dynamic allocation in the DLR model
with learning, say, need not be implementable (see Gershkov and Moldovanu
[17]). In Gershkov and Moldovanu [20] we characterize the incentive-compatible
dynamic policy that maximizes expected welfare while respecting incentive com-
patibility (second best). In particular, we show that this policy is deterministic,
and that it satisfies a generalized form of a reservation price property appearing
in classical search models. We also offer suffi cient conditions under which the
second-best policy coincides with the first-best. Roughly speaking, the main
requirement puts a bound on the allowed optimism associated to higher obser-
vations in each period of search.

7 Conclusion

Many of the questions addressed in the Revenue/Yield Management literature
are amenable to an analysis that uses the tools of Mechanism Design. A modern
theory of RM should combine the dynamic models from Operations Research,
Management Science and Computer Science on the one hand, and the power-
ful tools of Mechanism Design on the other. Such a combination would allow
the study of many more interesting strategic situations that appear in real life
applications.
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