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Abstract

We analyze dynamic allocations in a model with uncertain demand and with
unobservable arrivals. The planner learns along the way about future demand, but
strategic agents, who anticipate this behavior, strategically choose the timing of
their arrivals. We examine the conditions under which the complete information,
dynamically efficient allocation is implementable, and characterize the necessary
payments that control the ensuing allocative and informational externalities.

1 Introduction

We study the following continuous-time optimal stopping problem: A planner endowed
with an indivisible object faces a sequence of agents who randomly arrive over time, ac-
cording to a general counting process which allows correlations in arrival times. Agents
are long lived, and each agent is privately informed about her value for an object and
about her arrival time. Thus, private information is two-dimensional, and recall is pos-
sible. Both agents and planner discount the future, and the planner - who may not
be perfectly informed about the nature of the arrival process - wishes to maximize the
expected value of the allocation. We ask whether the complete information optimal stop-
ping rule is implementable in the present informational setting via individually rational
monetary transfers that do not depend on events posterior to the physical allocation (”on-
line”). We also identify scenarios where the monetary scheme involves/does not involve
transfers between the planner and agents that do not get the object.

The main innovation lies in the combination of several features:
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1. Agents are long lived, and each agent is privately informed about her value for an
object and about her arrival time to the market. Thus, agents may strategically
choose when to make themselves available for trade, and private information is
two-dimensional.

2. The planner may not be aware of the nature of the arrival process, which allows
here for correlations in arrival times. Thus, the planner is able to learn about future
arrivals (and thus about future demand) from past arrivals.

3. Since our agents can optimally choose their arrival time, they will take into account
the effect of their current actions on the planner’s belief about the future, which in
turns affects the terms of trade and the probability of trade.

Besides the theoretical interest of extending the static mechanism design paradigm to
a classical dynamic allocation problem, we see the main applications of our model and
methods to dynamic pricing questions in situations where capacity is limited, demand
is random and where agents can strategically choose the time of their purchases. The
strategic effects of such timing decisions have been mostly neglected by the existing
literature since the standard assumption is that buyers are short-lived (see review below).
If agents’ arrivals are observable, it is well known that the dynamically efficient policy
can be implemented by requiring payments equal to the imposed allocative externality.
In contrast, our main new insights can be summarized as follows:

1. If arrivals are unobservable, allocative externality payments are not sufficient to
induce agents to trade as soon as possible, leading to delay and inefficiencies (see
Example 1). The reason is that, by choosing when to reveal themselves to the
mechanism, strategic agents can manipulate the planner’s beliefs about the arrival
process in a way that induces more advantageous terms of trade, e.g. lower prices.
This happens when later arrivals make the designer more pessimistic about the fu-
ture. In other words, an earlier arrival may provide valuable information about the
arrival process (and hence about demand) by allowing the designer to charge the
right kind of payment in the future. Therefore transfers that lead to truthful rev-
elation of information must also take into account this additional informational
externality. In order to deal with the informational externality, we introduce a
non-negative subsidy that is paid irrespective of physical trading, and that is a
decreasing function of arrival times1. Together with the allocative externality pay-
ment discussed above, this subsidy implements the complete information efficient
dynamic policy (Proposition 2). The subsidy has the flavor of an ”advanced book-
ing” discount, but here the discount is independent of a physical transaction.

2. In contrast to the case where there is learning via past observed values (see Ger-
shkov and Moldovanu [2009]), a positive implementation result can nevertheless be
obtained here because of a special physical property of the arrival times: agents can
only lie in one direction, making themselves available for trade after they arrive, but
not before2. But practical applications of this positive result hinge on a verifiability

1Non-negativity is required by the individual rationality constraint.
2Green and Laffont [1986] pioneered the study of (static) mechanism design problems where particular

deviations from truth-telling are not feasible.
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assumption: the planner needs to identify those agents that falsely claim to be avail-
able for trade just in order to claim the subsidy. For example, such identification
may work via proofs of liquidity or the possession of a certain necessary technol-
ogy. When such identification is impossible it makes sense to restrict attention to
mechanisms that couple monetary transfers to physical transactions (winner-pays
mechanism). Proposition 7 shows that no individually rational winner-pay scheme
can implement the efficient allocation in a natural setting where later arrival of
some agent makes the designer more pessimistic about future arrivals.

3. Proposition 3 and Proposition 2 identify large and important classes of arrival pro-
cesses - renewals with a known distribution of inter–arrival times, non-homogenous
Poisson processes, as well as any pure birth process - where the complete informa-
tion efficient policy can be implemented via winner-pays mechanism even if arrivals
are not observable.

The paper is organized as follows: In Section 2 we present the model with two-
dimensional private information. In Section 3 we illustrate the paper’s main ideas in
a simple, but typical example where the arrival process is known to be a renewal, but
where the precise inter-arrival time distribution is not known. In Section 4 we introduce
direct revelation mechanisms. In Section 5 we briefly describe the expected externality
scheme that implements the efficient allocation for the case where values are private,
but arrivals are observable. We then show that this scheme must be augmented by a
subsidy for early arrivals in order to implement the efficient allocation in the general
model with private information about both value and arrival time. Section 6 discusses
the limitations imposed by requiring that monetary payments can only accompany actual
physical transactions. Section 7 concludes. All proofs are relegated to an Appendix.

1.1 Related Literature

The statistical and operations research literature analyzed continuous time, dynamic allo-
cation problems with long-lived agents and with recall. This strand includes, among oth-
ers, Zuckerman [1988], Zuckerman [1986], Stadje [1991], and Boshuizen and Gouweleeuw
[1993]. In these models, the agents are non-strategic and hence the planner is perfectly
informed about the arrival process. Monetary transfers are therefore not necessary in
order to implement the efficient policy.

Bergemann and Valimäki [2010], Cavallo, Parkes and Singh [2010], Parkes and Singh
[2003], Said [2012] construct generalizations of the VCG mechanisms for various environ-
ments where either the population or the available information changes over time. Athey
and Segal [2013] extended the expected externality mechanisms ala Arrow-D’Aspremont-
Gerard Varet to dynamic environments which in addition to effficient allocation also
satisfies per-period budget balancedness. Roughly speaking, all these papers use various
independence assumptions in order to stay within a private values framework, and some-
times need to use payments that are not necessarily connected to physical allocations, or
that may depend on events that happen after the physical allocation has been completed
(”offline”).3 Mierendorff [2013] analyzes an independent, private value model where an

3Lavi and Nisan [2004] provided worst-case analyses of online auctions and compared their outcome
with the optimal offline mechanisms.
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agent’s value for the object may change over time. He shows that the efficient allocation
can be implemented by an online mechanism where only the winner of the object pays. An
earlier literature starting with Dolan [1978] has dealt with similar questions in the more
restricted environment of queueing/scheduling. For example, Kittsteiner and Moldovanu
[2005] study efficient dynamic auctions in a continuous time queueing framework where
agents arrive according to a Poisson process and have private information about needed
processing times.

Gershkov and Moldovanu [2010] analyze efficiency in continuous-time optimal stop-
ping frameworks where the agents are short-lived (thus there is no recall) and where
the planner has several heterogenous objects. In a model with discrete time, Gershkov
and Moldovanu [2009] and Gershkov and Moldovanu [2012] allow the planner to learn
about the distribution of values from past observations. In that model as well agents are
short-lived. Learning about values introduces direct informational externalities (i.e., in-
terdependent values), and these papers illustrate that the efficient implementation of the
complete information optimal dynamic policy is only possible under strong assumptions
about the learning process.

A small strand within the revenue management literature considers the effect of cus-
tomers that may strategically decide about their arrivals. Su [2007] determines the rev-
enue maximizing policy for a monopolist selling a fixed supply to a deterministic flow of
agents that differ in valuations and patience, and hence have different incentives to wait
for sales. Aviv and Pazgal [2008] also consider patient buyers, but restrict the monopolist
seller to choosing two prices, independently of the past history of sales. Gallien [2006] an-
alyzes the revenue maximizing procedure in a continuous time model where the agents are
long lived, and where arrivals are private information. He restricts attention to arrivals
that are governed by a known arrival processes where the complete information stopping
policy is characterized by a constant threshold rule which is independent of the previous
arrivals. Thus, strategizing in the time dimension and the ensuing learning - which are
the focus of our paper - do not play a role there. Board and Skrzypacz [2010] derive
the revenue maximizing mechanism when arrival times are independent, i.e. the arrival
process is Poisson, and thus learning does not play a role. In a recent paper Gershkov,
Moldovanu and Strack [2014] analyzed a problem of revenue maximizing monopolist that
faces a stream of random arrival of consumers. The arrivals are governed by a Markov
process (a class of arrival processes that includes Poisson arrival process with unknown
rate). Similarly to the present model, in their model recall may be part of the optimal
mechanism.

Pai and Vohra [2013] and Mierendorff [2010] analyze revenue maximization in a dis-
crete time, finite horizon framework where the arriving agents are privately informed
about values, and about a deadline by which they need to get the object. The distribu-
tion of the number of arrivals in each period is known to the designer.

Besides dynamic pricing, there are other important settings where strategic timing
decisions affects learning and implementability of optimal policies. These include: 1) Fi-
nancial markets where specialist market makers face sequences of traders, some of them
better informed than the market. The possibility of strategic timing of trading decisions
differentiates two classical models of the market micro-structure literature, Glosten and
Milgrom [1985] and Kyle [1985]. 2) Gradual implementation of monetary policy. There
investors who anticipate how their behavior changes future monetary policy will strategi-
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cally choose investment times, sometimes completely defeating the purpose of the planned
policy- see for example the model of Caplin and Leahy [1996]. 3) In another type of mod-
els, the agents themselves learn over time by observing others4. For example potential
investors in an infant industry may want to delay their investment decisions until the
market conditions become less uncertain. This kind of behavior may hinder the imple-
mentation of a targeted industrial policy. Rob [1991] studies subsidies to early entrants
in infant industries and shows that they can restore efficiency by correctly adjusting the
informational externality.

2 The Model

A designer endowed with an indivisible object faces a stream of randomly arriving agents
in continuous time. The agents’ arrivals are described by a counting process {N (t), t ≥ 0}
where N (t) is a random variable representing the number of arrivals up to time t5. The
time horizon is potentially infinite, but the framework is rich enough to embed the finite
horizon case by considering arrival process where after some time T̄ no more arrivals
occur, i.e., where N (t) is constant for any t ≥ T̄ .6 Since arrivals are described by general
counting processes, the designer’s beliefs about future arrivals may evolve over time, and
may depend on the number of past arrivals and their exact timing.

Each agent has two-dimensional private information: the arrival time t ≥ 0 and the
value v ≥ 0 he gets if allocated the object. That is, the designer does not observe agents’
arrivals. If the agent arrives at time t, gets the object at time τ ≥ t and pays p at time
τ ′ ∈ [t, τ ], then her utility is given by e−δτv − e−δτ

′
p where δ ∈ (0, 1) is the discount

factor. We implicitly assume here that all agents disappear after the allocation of the
object, i.e., payments cannot be conditioned on information that arrives after the sale.
Moreover, we assume that the item cannot be reallocated after an initial assignment.

The agents’ values vi are I.I.D. distributed with common c.d.f. F, on the support [0, a]
where a ≤ ∞. We assume that F admits a continuous density f and has finite mean
and variance. We also assume that, for each agent, his arrival time is independent of
his value. This allows us to focus on the information revealed by manipulating arrivals,
as opposed to information revealed by manipulating values. Allowing for correlation
between the values and the arrival times introduces a correlation between the agents’
values, which generates further complications for implementing the efficient allocation,
as was illustrated in Gershkov and Moldovanu [2009].

If the object is allocated to the agent with type (t, v) at time τ ≥ t, the designer’s
utility is given by e−δτv. The designer’s goal is to implement the efficient allocation (that
maximizes his discounted expected utility) in a Bayes-Nash equilibrium.

4See Chamley [2004] for a good survey.
5Most textbooks on stochastic processes discuss the construction and properties of counting processes.

See for example Ross [1983].
6Since the designer is interested in implementing the efficient allocation, he never allocates the object

strictly after the last arrival in a finite horizon model.
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2.1 The Complete Information Case

Let us briefly consider the benchmark case where the designer observes the agents’ ar-
rivals and their values for the object, so that agents have no private information. Our
environment is then equivalent to the standard continuous-time, infinite-horizon search
model with perfect recall. Since the main focus here is on the implementation of the
efficient dynamic allocation (or, equivalently, the implementation of the optimal stopping
policy), we assume that an optimal stopping time in the complete information model
exists, and is almost surely finite.

The optimal stopping policy is deterministic. If the planner allocates the object at
some time T , then he will allocate it to the agent with the highest value that arrived
until T. Denote by X (T ) the highest value observed until time T (if until T no agent
arrived, we set X(T ) = 0) , and by tN (T ) =

(
t1, ..., tN (T )

)
the agents’ arrival times until

T . Since values are independent of arrival times, the state of the process at T - on which
the stopping policy depends - can be taken to be {X (T ) , T, tN (T ))}.

Optimal policies in our framework have the following property. A stopping policy
satisfies the instant reservation price (IRP) property if for any time T and for any history
of arrivals tN (T ), stopping at state {X(T ), T, tN (T )} implies stopping also at all states
{X ′(T ), T, tN (T )} with X ′(T ) ≥ X (T ).

Lemma 1 The optimal stopping policy in the complete information case satisfies the IRP
property. In particular, for any time T and for any history of arrivals tN (T ), there exists
a cutoff v∗T (tN (T )) such that it is optimal to stop search as soon as the highest available
value exceeds this cutoff.

3 An Illustration of the Main Ideas

In our motivating illustration, the arriving process is an unknown counting process where
the designer learns the precise distribution of the inter-arrival times after the first arrival7.
We illustrate below the main difficulty the planner faces when trying to implement the
first-best allocation rule.

Example 1 Assume that the inter-arrival times are I.I.D. The designer believes that all
arrivals distribute either uniformly on the interval [1, 2], or uniformly on the interval [2, 3]
and assigns equal probabilities to each alternative. The distribution of the agents’ values
is, in both cases, uniform on the interval [0, 1].

3.1 The Complete Information Case

In order to characterize the complete information, dynamically efficient policy we use
a result by Zuckerman [1988] who analyzed an infinite horizon, complete information
model where the arrival process is a renewal, i.e., inter-arrival times are I.I.D. random
variables with known, common distribution G.8. Note that, although inter-arrival times

7Even if the designer is not completely informed, the arrival process is still a counting process.
8The Poisson process is a special case where G is exponential (see Mortensen [1986] for the analysis

of that case)
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are independently distributed random variables, arrival times are correlated in a renewal
process. In particular, the planner’s beliefs about the timing of the next arrival depend
on the elapsed time since the last arrival.

Contrary to what one may expect from the discrete case with deterministic arrivals,
or from the Poisson process case, the designer may not wish to allocate the object imme-
diately upon arrival, i.e., the recall option may be used by the optimal stopping policy9.
Nevertheless, Zuckerman identified a large class of inter-arrival distributions G for which
the optimal policy never employs the recall option, and is therefore characterized by a
reservation value such that the object is allocated to the first arrival whose value is above
the reserve10.

Definition 1 A non-negative random variable W is called NBU (new better than used)
if, for every y > 0, W is stochastically larger than the conditional random variable (W −
y/W ≥ y).11

Theorem 1 (Zuckerman, [1988]) Assume that the inter-arrival distribution G satisfies
the NBU property, and let φ denote its Laplace Transform. Then, the optimal stopping
policy allocates the object to the first arrival whose value is above v∗ where v∗is the unique
solution to

v∗ =
φ(δ)

1− φ(δ)

∫ ∞
v∗

(v − v∗)dF (v).

In particular, recall is never used by the optimal policy, and all allocations occur upon
arrival.

The intuition is as follows: between arrivals, the seller updates her belief about the
timing of the next arrival, and about the option value of not allocating the object right
now. If the inter-arrival time satisfies the NBU property, the seller is most pessimistic
about the timing of the next arrival immediately following an arrival, and gets more and
more optimistic about it as time passes without arrivals. Thus, if it is optimal not to
allocate the object immediately following an arrival - because the current option value of
waiting is higher - it will not be optimal to do so until the next arrival.

Since each of the two possible distributions in our illustration satisfies the NBU
property, Theorem 1 implies that the optimal complete information policy for the case
where the designer knows the relevant distribution of inter-arrival times is such that
search stops upon the arrival of the first agent whenever the value of that agent exceeds
some fixed, time-independent cutoff, denoted by x[1,2] (δ) and x[2,3] (δ) , respectively. In
the Appendix we prove the intuitive assertion that

x[1,2] (δ) > x[2,3] (δ) .

9For example, consider a process where times between consecutive arrivals can be either ε or ∆ where
ε << ∆. Assume that a buyer with a moderately high value arrives at t. Then, for not too low discount
factors, it may be optimal to wait until t + ε hoping for a new arrival with a higher value, but then
immediately stop search at t + ε while recalling the previous buyer if no arrival occurred (because now
the next arrival is known to be at the much more distant t+ ∆).

10Thus, the effiicent policy coincides with the one obtained for renewal processes without recall by
Albright [1974].

11Note that any random variables with an increasing hazard (or failure) rate is NBU.
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Therefore, in the case where the designer observes the agents’ types but does not
know the inter-arrival distribution, the dynamically efficient policy is given by 12:

1. For T ∈ [1, 2] the cutoff is x[1,2] (δ)

2. For T ∈ (2, 3] the cutoff is x[2,3] (δ) if there were no arrivals before time 2, otherwise
the cutoff is x[1,2] (δ)

3. For T > 3, the cutoff is x[1,2] (δ) if the first arrival happened during time interval
[1, 2], whereas the cutoff is x[2,3] (δ) if the first arrival happened during (2, 3].

3.2 The Incomplete Information Case

We now show that a standard expected externality payment scheme a la Vickrey-Clarke-
Groves (see also the general scheme defined in Proposition 1 below) generates incentives
for the agents to misrepresent their arrival times. They do so in order to influence
the terms of trade via the designer’s beliefs about the arrival process. Therefore, such
payments - that only deal with the allocative externality imposed by an agent that obtains
the object, but that do not take into account the informational externality - cannot
implement the complete information efficient allocation constructed above.

In order to calculate the relevant externality payment note that the object is allocated
upon arrival in the complete information optimal policy (i.e., ”recall” is not employed).
Hence, by the definition of the optimal cutoff, the designer’s continuation value at any
time T after the first arrival t1 must equal the optimal relevant cutoff at the time of
the first arrival. Thus, the allocative externality payment, which needs to be paid by an
agent who arrives at T ≥ t1 and obtains the object, is given by

P (t1) =

{
x[1,2] (δ) if t1 ∈ [1, 2]
x[2,3] (δ) if t1 ∈ (2, 3]

. (1)

Given such payments, consider a type (t, v) with t ∈ (1, 2) and v ∈ (x[2,3] (δ) , x[1,2] (δ)).
Truthful reporting yields utility zero since the object is not allocated to this agent. But,
a report of arrival at time t′ = t + 1 ∈ (2, 3) together with a truthful report in the
valuation dimension yields utility e−δt

′ (
v − x[2,3] (δ)

)
> 0 13. Hence truthful reporting is

not optimal.

3.3 A Subsidy Scheme

For any arrival time t′ we define now a subsidy that is paid to an agent that arrives at
t′, independently of whether this agent obtains the object or not:

S(t′) =

{
x[1,2] (δ)− x[2,3] (δ) > 0 if t′ ∈ [1, 2]

0 if t′ ≥ 2
. (2)

The above scheme subsidies early arrivals occurring in the time interval [1, 2]. We now
show that a combination of the externality payment made by the winner (defined in (1))

12Since no agents should arrive at T ∈ [0, 1) the cutoff can be specified arbitrarily up to T = 1.
13Any report t′ ∈ (2, 3) yields a positive utility with a positive probability.
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and the subsidy scheme in (2) - which deals with the informational externality- does
implement the complete information dynamically efficient allocation.

An agent with type (t, v) where t > 2 cannot gain by misrepresenting his type if all
other agents report truthfully. Therefore, it is sufficient to show that an agent with type
(t, v) where t < 2 does not want to misrepresent his type. There are two cases:

1. If an agent with type (t, v) where t < 2 and v ≥ x[1,2] (δ) reports an arrival at t′ > 2,
the price of the object is indeed reduced, but the subsidy is also reduced by exactly the
same amount, yielding no gain. A report such that the object is never obtained cannot
be profitable either.

2. An agent with type (t, v) where t < 2 and v < x[1,2] (δ) cannot gain by misrep-
resenting his type: getting the object at some time t′ < 2 requires paying a price above
value; reporting a later arrival reduces the price below value, but also reduces the subsidy
to zero, which yields an overall decrease in that agent’s expected utility.

Finally, consider a designer who seeks to use only payment schemes where agents that
do not get the object pay nothing. We show now that there is no payment scheme in
this class that implements the efficient allocation. To see this, note that if there were no
arrivals until time t = 2, then the principal needs to charge a price x[2,3] (δ) to the agent
that gets the object. But this implies that an agent i that arrives at time t ∈ [1, 2] with
value v ∈ [x[2,3] (δ) , x[1,2] (δ)) should get a strictly positive expected utility, since he can
postpone his arrival and get the object for a price below value. Therefore, a mechanism
where only the agent that gets the object makes a payment requires that such an agent
i gets the object with a positive probability. But this contradicts efficiency.

The above example shows that implementation of the welfare maximizing policy is
impossible without subsidizing agents who do not get the object for some arrival process
which is a renewal with unknown interarrival distribution. This negative result does,
however, not depend on the uncertainty about the arrival process. In section 6.1 we con-
struct an example where no winner-pay mechanism implements the welfare maximizing
allocation with unobservable arrivals. In this example the process is a renewal process
with known interarrival distribution, but the principal faces a deadline before which he
has to allocate the object (see Example 2).

4 Direct Revelation Mechanisms

We now come back to the general, incomplete information model. Without loss of gen-
erality (see Myerson [1986])14 we can restrict attention to mechanisms where the agents
do not observe the history, and only know whether the object is still available or not.15

Since arrivals are unobservable, without loss of generality we can restrict attention to
direct mechanisms where each agent reports his value and arrival time, and where the
mechanism specifies a probability of getting the object and a payment as a function of
the reported value, reported arrival time and the time of the report. Moreover, without

14Although the so called ”revelation principle” need not hold in settings where some deviations from
truth-telling are unfeasible for certain types, this principle does hold for our case of unilateral deviations
in the time dimension - see Theorem 1 and Example 5.a.2 in Green and Laffont [1986].

15Intuitively, minimizing the information revealed to each agent reduces the available contingent de-
viations from truthtelling, and therefore relaxes the incentive compatibility constraints for that agent.
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loss of generality, we can restrict attention to direct mechanisms where each agent reports
his type upon arrival, e.g., the time of the report coincides with the arrival time.16

Since recall may be employed by the optimal policy, an allocation to an agent can be
conditioned also on information that accrues between the arrival of that agent and the
allocation time. We denote by η(T ) a history at time T : this is a list of reported arrivals
and the reported values up to time T . Then

HT =
∞∏

N (T )=0

[0, T ]N (T ) × RN (T )
+

is the set of all possible histories at time T . We denote by h a history from the beginning
of the game (time zero) until infinity, i.e., h = limT→∞ η(T ).

A direct mechanism specifies at every time t and for every agent that reported an
arrival at that or any earlier time the probability of getting the object and a payment at
t. An incentive compatible mechanism is (ex-post) individually rational if the utilities of
all agents in the truth-telling equilibrium are non-negative.

Since incentive compatibility considers possible deviations by only one agent, it will
be helpful to introduce additional notation. Let h−i be the history (from the beginning
of game until infinity) formed by agents’ reports other than i, and let ηh−i (t) denote the
derived history up to time t formed by the reports of agents other than i. We denote
by µ the measure on histories generated by the counting process, and by µ(h−i/t) the
conditional measure given an arrival of agent i at time t.

Denote by τv(t, h−i) the optimal stopping time if agent i arrives at time t and reports
value v while the other agents form history h−i. Recall that, by the standard definition
of stopping times, if τv(t, h−i) = T, then τv(t, h

′
−i) = T for any h′−i that agrees with h−i

up to time T. In other words τv(t, h−i) depends on h−i only via ηh−i (τ) . We denote by
H−i(t, v) the set of histories h−i such that in the efficient allocation agent i gets the object
if he reports type (t, v), and we denote by Hc

−i(t, v) its complement.17

5 A Subsidy Scheme for Early Arrivals

Let us first consider the base-line case where values are private information, but ar-
rival times are observable. Then the dynamically efficient allocation is implementable by
a mechanism where each agent pays the expected externality he imposes on the other
current and future agents. The mechanism described below is a variant of the standard
dynamic Vickrey-Clarke-Groves mechanisms - dynamic Pivot mechanism - that was char-
acterized by Bergemann and Valimaki [2010]. We take its construction and properties -
including the properties of the underlying optimal stopping policy - as given primitives
for the sequel.

Denote by V (t, v, η−i(t
′), t′) the designer’s expected utility at time t′ when agent i

arrives at time t ≤ t′ and has value v while the other agents’ types form history η−i, and

16The equilibrium outcome of any mechanism where at least one agent reports his type (value and the
arrival time) after his arrival, can be replicated by another mechanism and equilibrium where all agents
reports their types upon arrival.

17If arrivals are not private information we define H−i(v) and Hc
−i(v) analogously.
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when the designer uses the optimal stopping rule. Observe (also for later uses) that

V (t, v, η−i(T ), T )

{
= X(T ) if X(T ) ≥ v∗T (tN (T ))
> X(T ) if X(T ) < v∗T (tN (T ))

.

Let P (t, v, η−i (T ) , T ) denote the payment charged at time T to agent i with value v
if he arrived at time t and other agents’ reports form history η−i (T ).

Proposition 1 Assume that values are private information, but arrival times are ob-
servable. The payment scheme

P (t, v, ηh−i (T ) , T ) =

{
V (t, 0, ηh−i(T ), T ) if T = τv(t, h−i) and if vi = X (T )

0 otherwise
(3)

implements the dynamically efficient allocation policy18. The resulting mechanism is ex-
post individually rational.

5.1 Unobservable Arrivals

Let us now remove the assumption that the designer observes the arrival times of the
agents. Note that a mechanism implementing the efficient dynamic allocation needs here
to be individually rational. Otherwise, agents may choose never to show up.

Our illustration above suggests that the allocative externality payment scheme has to
be adjusted: intuitively, early arrivals need to be subsidized since they create a positive
externality by enabling the designer to learn about the nature of the arrival process.

We now construct a subsidy S(t′) ≥ 0 that is paid to all agents upon their reported
arrivals, and that depends only on their reported arrival times. In this construction,
we use the physical nature of the arriving process: each agent can only deviate in one
direction, by claiming an arrival time later than the true one. Let

U (t, t′, v) = max
v′

∫
H−i(t′,v′)

e−δτv′ (t
′,h−i) [v − V (t′, 0, η−i (τv′(t

′, h−i)) , τv′(t
′, h−i))] dµ(h−i/t)

be the utility of an agent with type (t, v) - net of any payments made whenever he does
get the object - when he reports (t′, v′) such that v′ is chosen optimally given the reported
arrival time t′ and the type (t, v). This construction is solely based on the properties of
the complete information optimal stopping policy.

Under a very mild Lipschitz condition about the variation of U (t, t′, v) , our next
Proposition shows that, for any finite time T, it is possible to implement the efficient
allocation if the object is allocated before T. In particular, since the optimal stopping
time is assumed to be almost surely finite, efficiency can be approximated by taking T
arbitrarily large.

18We assumed that agents do not observe the history prior to their arrival. It is easy to see that, in
the framework with observable arrivals, the payment scheme described above implements the efficient
allocation even if the prior history - consisting of arrivals and reported values of the agents that arrived
beforehand - is observable to the agents.
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Proposition 2 Assume that there exists M ≥ 0 such that for any t ≤ t′ ≤ t′′ in an
interval [0, T ] , and for any v it holds that

U (t, t′′, v)− U(t, t′, v) ≤M(t′′ − t′)

Then the subsidy S(t′) = eδt
′
M(T−t′) together with the payment scheme given in Proposi-

tion 1 implements the dynamically efficient allocation for any history h where the optimal
stopping time is less than T.

Remark 1 1. If U (t, t′, v) is decreasing in t′, then the above condition is satisfied with
M = 0, and a subsidy S(t′) ≡ 0 implements the efficient allocation for any history,
i.e T = ∞. Proposition 3 below displays (in terms of the model’s primitives)
an important class of processes where U (t, t′, v) is indeed decreasing in t′. Note
that such a condition plays here a similar role to the well known single-crossing
condition in static allocation problem with interdependent values. Indeed, U (t, t′, v)
can be also seen as the expectation of the difference between the value of allocating
the object to a particular agent (say agent i) and the externality imposed by that
agent in the efficient allocation (represented by the option value function V in the
definition of U). In the static case, single crossing requires that this difference is
monotone in i′s signal.

2. Although the above results rely on a Lipschitz condition or on differentiability in
reported arrival t′ of the expected utility U(t, t′, v), an analogous reasoning - choose
S such that the function U (t, t′, v)+e−δt

′
S(t′) decreases in the reported arrival time

t′ for any t and v- can be used even if the function U (t, t′, v) is not even continuous.
Recall, for example, the setting of Example 1, where we illustrated such a case.

3. If time is discrete and if the interval where values distribute is bounded, then the
above result holds without any assumptions on the function U(t, t′, v). In the Ap-
pendix we show how the minimal subsidy for this case can be constructed by a simple
backward induction argument.

The above rather permissive result is in stark contrast with the restricted possibility
result obtained by Gershkov and Moldovanu [2012] where there the planner dynamically
learns about the valuations of future agents. Although both models of learning - about
future values or about future arrivals - create informational externalities and hence ob-
stacles to implementation, the difference lies in the special nature of arrival times where
only one-directional deviations are feasible.

6 Winner-Pay Mechanisms

As mentioned in the Introduction, the applicability of the above solution is restricted for
at least two reasons: 1) It requires the designer to have ”deep pockets”. In other words,
the implementation of the efficient allocation may be very costly, disproportional to the
benefits from the efficient allocation itself. 2) It generates incentives for agents that have
no interest in the object to ”arrive” just in order to collect the subsidy. Therefore, if it
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is not possible to physically identify ”fake” arrivals, it makes sense to restrict attention
to the mechanisms where a transfer of money takes place only between the planner and
the agent that gets the object. Individual rationality requires here that agents who do
not get the object do not make any payments.

Definition 2 A mechanism is called winner-pay mechanism if the transfers to all agents
that do not get the object are zero.

Our next results identify two important classes of stochastic processes where the effi-
cient dynamic allocation can be implemented via winner-pay mechanisms even if arrivals
are unobservable. Thus, identifying fake arrivals is not an issue in such frameworks.

6.1 Renewal Processes

We first look at renewals, i.e., at processes where the inter-arrival times are I.I.D. random
variables with a known, common distribution G. For this class of problems, the existence
of an efficient policy and a characterization in terms of the infinitesimal generator is
established in Boshuizen and Gouweleeuw [1993].

Recall that, as we mentioned earlier, although inter-arrival times are independently
distributed random variables, arrival times are correlated in a renewal process. In par-
ticular, the planner’s beliefs about the timing of the next arrival depend on the elapsed
time since the last arrival. Thus, past arrivals do create an informational externality
which vanishes only in the special case of a homogenous Poisson process. Hence, in
such processes the planner continually adjusts her beliefs about the timing of the next
arrival based on the elapsed time since the last arrival - thus past arrivals do create an
informational externality.

Denote by T the elapsed time since the arrival of the last agent. Recall that X(T )
denotes the highest value observed until time T, and note that in a renewal process the
bivariate process (X(T ),T (T )) is Markov. Therefore, the efficient cutoffs v∗T can be
characterized only in terms of T, the time since the last arrival.

Proposition 3 Assume that arrivals are unobservable, that the arrival process is a re-
newal with inter-arrival distribution G , and that the horizon is infinite.

1. The payment for the object given in (3) implements the dynamically efficient allo-
cation. In other words, a subsidy is not needed for efficient implementation.

2. Assume that the inter-arrival distribution G satisfies the NBU property, and let
φ denote its Laplace Transform. Then, charging for the object the constant price
P (t, v, η−i (T ) , T ) = v∗ where v∗ is the unique solution to

v∗ =
φ(δ)

1− φ(δ)

∫ ∞
v∗

(v − v∗)dF (v)

implements the efficient allocation.
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The above Proposition shows that if the arrival process is a renewal, implementation
is possible even if the inter-arrival distribution is not NBU, and hence even if recall is
actively employed in the optimal stopping rule. This permissive result assumed that there
is no deadline before which the object has to be allocated. The following example shows
that if the arrival process is a renewal but there is a deadline, implementation without a
subsidy might be impossible.

Example 2 Suppose the arrival time of the first agent a0 is uniformly distributed on
[0, 2]. Furthermore, assume that arrivals are governed by a renewal process where the
next agent arrives one unit of time later

ai+1 − ai = 1.

Assume that the designer has to allocate the object before time 2. Thus, with probability
1 at most two agents arrive. The agents’ valuations v0, v1 are uniformly drawn from the
interval [0, 1].

If the first agent arrives at a time t1 ≤ 1 the welfare maximizing policy allocates the
object to him if and only if

v1 ≥ E[e−r max{v1, v2}] = e−r
∫ 1

0

max{v1, z}dz = e−r[v21 + (1− v1)
v1 + 1

2
] =

e−r(1 + v21)

2
.

Let v∗ = e−r(1 −
√

1− e−2r) be the smallest valuation such that the first agent gets the
object upon arrival. If the first agent does not get the object, the welfare maximizing
policy waits for the second agent and allocates the object to the first agent whenever the
valuation of the second agent is below the first agent’s valuation.

Restrict attention to winner-pay mechanisms where the agent who does not get the
object makes no payment. Let pi be the price paid by agent i if he gets the object. As
agent i receives no payment if he does not get the object, it follows that he faces a price of
v−i if agent 1 arrives before time t1 = 1and has a value below v∗. As such an agent with
valuation v∗ needs to be indifferent to reporting a marginally lower valuation, it follows
that he needs to face a price p∗ that solves:

v∗ − p∗ = e−rE [max{v∗ − v2, 0}] = e−rv∗(v∗ − v∗

2
) = e−r

(v∗)2

2
⇒ p∗ = v∗ − e−r (v∗)2

2
.

To implement the efficient allocation in a winner-pay mechanism with observable arrivals
the principal thus needs to use the prices

p1 =


p∗ if t1 ≤ 1 and v1 ≥ v∗

v2 if t1 ≤ 1 and v1 < v∗

0 if t1 > 1

p2 = v1 .

Consider now the situation where arrivals are unobservable, and where the first agent
arrives at time one with a valuation v1 < v∗. If he reports his arrival at any later time,
he gets the object earlier, more often and for a lower price. Thus, the efficient allocation
can not be implemented with unobservable arrivals in a winner-pay mechanism.
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6.2 Pure Birth and Non-homogenous Poisson Processes.

A pure birth process is a counting process such that the instantaneous probability that an
agent arrives (arrival rate) only depends on the number of past arrivals and on calendar
time. A special member of this class of arrival processes is the non-homogenous Poisson
process where the arrival rate is a function of calendar time only. Our first Proposition
establishes the existence of a welfare maximizing policy.

An optimal policy that stops almost surely in finite time may not generally exist
because the designer might get more and more optimistic over time. In order to prove
existence we need to bound the expected discounted number of arrivals. The proof
of existence is somewhat involved: it uses a combination of concepts and results from
majorization theory, and from the theory of order statistics.

Proposition 4 Assume that arrivals are governed by a non-homogenous Poisson/pure-
birth process with arrival rate λn(t) such that there exists a non-decreasing function
β(t) with λi(t) ≤ β(t) for all i, t, and such that

∫∞
0
β(t)e−δtdt <∞. Then there exists an

optimal stopping rule for the setting with observable arrivals.

Throughout the rest of the section we are going to maintain the assumptions of Propo-
sition 4 to ensure existence of an optimal policy. Our second proposition shows that, if the
arrival process is a pure birth process, no subsidy is necessary to implement the welfare
maximizing allocation even if arrivals are unobservable.

Proposition 5 Assume that arrivals are governed by a non-homogenous Poisson/pure-
birth process with arrival rate λN (T )(T ). Charging the payment P defined in Equation
3 which implements the efficient allocation with observable arrivals also implements the
efficient allocation when arrivals are unobservable.

The proof of the above result relies on an theorem proven in Gershkov, Moldovanu
and Strack [2014] which establishes that if the policy is monotone in arrival times, the
process is a pure birth process and agents with a valuation of zero get a transfer of zero,
than any policy which is implementable with observable arrivals is implemented by the
same payment with unobservable arrivals. We next derive several more properties of the
payment implementing the efficient policy.

Proposition 6 Assume that arrivals are governed by a non-homogenous Poisson/pure-
birth process with arrival rate λn(T ) such that λ is non-decreasing (non-increasing) in both
elapsed time T and the number of arrivals n = N (T ) up to T. Than the price charged to
the agent for the object is non-decreasing (non-increasing) over time.

As the arrival rate increases (decreases) over time it follows that the continuation
value of the planner increases (decreases) over time. The result follows since the price
charged to the agent equals the continuation value of the planner

Consider now the special case where the arrival rate is increasing over time. In this
case, if the welfare maximizing allocation gives an object to an agent at time t it also
allocates the object to an agent with the same valuation at any earlier point in time,
i.e. no recall is used. As no recall is used the continuation value (and thus the price)
equals the lowest valuation with which an agent would get the object, and we obtain the
following result.
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Corollary 2 Assume that arrivals are governed by a non-homogenous Poisson/pure-birth
process with arrival rate λn(T ) such that λ is non-decreasing in both elapsed time T and
in the number of arrivals n = N (T ) up to T. Than the price charged to the agent at time
T equals the cut-off v∗T (tN (T )) , and no recall is used.

The above result establishes a class of problems where recall is never used. This allows
us to construct an explicitly calculated example by using known results about the optimal
policy for the case where recall is impossible.

Example 3 Assume that the distribution of values is exponential F (v) = 1 − e−v , and
consider a non-homogenous Poisson arrival process with rate λ(t) = δ(t+ 2) ln(t+ 2)− 1.
Observe that λ is positive, increasing in t, and that∫ ∞

0

[δ(t+ 2) ln(t+ 2)− 1]e−δtdt <∞.

By results in Albright [1974] and Gershkov and Moldovanu [2010], the optimal cutoff in
the optimal stopping problem where arriving agents are short lived (no recall) is given by
the differential equation:

y′ − δy = −[δ(t+ 2) ln(t+ 2)− 1]e−y.

The solution y(t) = ln(t + 2) increases in t, and satisfies limt→∞(y(t)e−δt) = 0 and
d(e−δt ln(t+2))

dt
≤ 0 for δ ≥ 1

2 ln 2
= 0.72, and thus by arguments in Albright [1974], it is the

optimal solution for such discount factors. By the argument of the above Proposition,
charging P (t) = ln(t+ 2) implements the efficient dynamic allocation also in the problem
with recall and with unobservable arrivals if the discount factor is high enough.

7 A General Negative Result

Contrasting the above special cases, our last result generalizes the insight at the end
of Section 3, and has a negative flavor: it shows that the efficient allocation cannot
be implemented via winner-pay mechanisms if a later arrival of some agent makes the
designer more pessimistic about future arrivals.

This is in sharp contrast with the very permissive result shown in subsection 6.2: While
for any Markov process the welfare maximizing allocation can be implemented without
subsidies, such an implementation becomes impossible once future arrivals depend only
slightly on the exact timing of arrivals.

Proposition 7 Suppose, the buyers observe the same information as the seller. Consider
an arrival process where the arrival rate at time t given that there were k arrivals before
t , t1 ≤ t2.. ≤ tk ≤ t, is given by a differentiable function λk(t1, t2, ..tk, t) > 0 . Assume
that λk is strictly decreasing in t1, t2, ..tk, k, bounded from below by λ > 0 and from above
by λ, and that there is a finite deadline T <∞ after which no agent arrives. Then, there
is no winner-pay mechanism that implements the dynamically efficient allocation.
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Proof of Proposition 7. As there is a finite deadline T and as λ is bounded from above
there is a strictly positive probability that only finitely many agent arrive. Each agent
who at the time of his arrival has the highest valuation has a strictly positive probability
of getting the object.

Consider first the policy that, at each period of time, allocates the object to the next
agent who arrives, and denote by τ the allocation times of this policy. Let µ =

∫
wf(w)dw

be the average valuation of a random buyer. As the arrival rate is strictly bounded away
from zero, this policy guarantees a strictly positive continuation value. In particular, it
is never optimal to allocate the object to an agent at time t if his valuation is below

v∗(t) := µ

∫ T

t

λe−δs e−λsds = µ
−λ
δ + λ

[
e−(δ+λ)s

]s=T
s=t

= µλ
e−(δ+λ)t − e−(δ+λ)T

δ + λ

As v∗(t) is strictly positive, and as the support of valuations goes to zero, there exist
histories after which an agent does not get the object immediately, but may get the
object with a positive probability in the future. We now show that such an agent i can
deviate from truth telling by reporting an arrival at the first period of time where he
would get the object immediately.

Note that if the agent reports an arrival at the time τi(s, vi) when he would have gotten
the object were he to arrive at time s, then he gets the object immediately because, due
to his later arrival, the continuation value of the principal is lower. The first arrival time
ai where agent i would get the object immediately upon arrival is a stopping time with
respect to the information of the principal. Since the agent and the principal observe
the same information, ai is also a stopping time with respect to the information of the
agent, and thus a feasible deviation in the arrival time dimension. Since payments cannot
be made after allocating the object, revenue equivalence together with the fact that an
agent with valuation of zero does not get the object19 uniquely pin down transfers. Thus,
the information rent of an agent with value vi is given by the integral over the expected
discounted allocation times of lower types

E
[∫ vi

0

e−rτi(ai,z)dz | ti = ai, η−i(ai)

]
.

As the principal gets more pessimistic if the agent arrives later, it follows that his contin-
uation value is lower after every history following the deviation. The principal allocates
the object to the agent whenever the agents valuation exceeds the continuation value,
and hence it follows that the agent gets the object strictly earlier whenever he arrives
later, i.e. for all s < ai, z , the time τi the object is allocated to agent i satisfies

τi(ai, z) ≤ τi(s, z) .

Hence, the agent’s information rent when arriving at time ai satisfies

E
[∫ vi

0

e−rτi(ai,z)dz | ti = ai, η−i(ai)

]
≥ E

[∫ vi

0

e−rτi(s,z)dz | ti = ai, η−i(ai)

]
> E

[∫ vi

0

e−rτi(s,z)dz | ti = s, η−i(ai)

]
.

19Such an agent cannot get any payment due to the winner-pay restriction
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where the second strict inequality follows because it is becomes strictly more likely that
another agent arrives when agent i arrived at time s before ai. Using the law of it-
erated expectations and Doobs Optional Sampling Theorem we obtain that the agent’s
information rent is strictly higher if reports his arrival at time ai instead of s :

E
[∫ vi

0

e−rτi(s,z)dz | ti = s, η−i(s)

]
= E

[
E
[∫ vi

0

e−rτi(s,z)dz | ti = s, η−i(ai)

]
| ti = s, η−i(s)

]
< E

[
E
[∫ vi

0

e−rτi(ai,z)dz | ti = ai, η−i(ai)

]
| ti = s, η−i(s)

]
.

Consequently, it is a profitable deviation for agent i to report his arrival at time ai instead
of s.

8 Conclusion

We have analyzed dynamic allocations in a continuous time, discounted model where ar-
rivals are governed by a general counting process, and where agents are privately informed
both about values and arrival times. Since arrivals may be correlated, the planner learns
along the way about future arrivals. With observable arrivals, the complete information,
dynamically efficient policy can be implemented by an individually rational mechanism
where only the winner of the object pays a price equal to the expected allocative exter-
nality. The same is true even when arrivals are not observable if the arrival process is a
renewal, or a combination of pure-birth/non-homogenous Poisson process with increasing
arrival rate. In general, controlling the informational externalities induced by the learn-
ing process calls for schemes where monetary flows are not tied to physical allocations.
Such schemes are expensive and may create incentives for ”fake” arrivals. We show that
such schemes are indispensable in order to implement the complete information, efficient
policy in situations if late arrivals induce pessimism about future arrivals. For practical
applications, it is of interest to further study ”second-best” policies in such environments.

In addition, our results offers insights for other settings where the designer sequentially
learns from agents’ actions, and where the optimization by agents (who understand how
their actions affect the learning process) may have potentially undesirable consequences.
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9 Appendix

Proof for Example 1. For inter-arrival times that distribute uniformly on [1, 2] and on

[2, 3] the Laplace transforms are, respectively: φ[1,2] (δ) = e−δ−e−2δ

δ
; φ[2,3] (δ) = e−2δ−e−3δ

δ
.

By the strict convexity (in z) of the function e−δz we obtain that

∀δ ∈ (0, 1) , φ[1,2] (δ) > φ[2,3] (δ) .

Under complete information, the optimal cutoff is given by a solution to the equation(
x2 + 1

)
φ[a,b] (δ) = 2x (4)

where φ[a,b] (δ) is relevant Laplace transform. Since for any δ ∈ (0, 1) the Laplace trans-
form lies in the interval (0, 1) , there exists a unique solution to equation (4) which lies
in the relevant interval of agents’ values [0, 1]. This solution is given by

x[a,b](δ) =
1

φ[a,b] (δ)

(
1−

√
1− (φ[a,b] (δ))2

)
which is monotonically increasing in φ[a,b] (δ) . Hence, we obtain that

x[1,2] (δ) > x[2,3] (δ)

Proof of Lemma 1. Assume by contradiction that the optimal policy Υ does not satisfy
IRP. Then there exist some time T , history of the arrivals tN (T ) and X ′(T ) > X (T )
such that Υ prescribes to continue search at state {X ′(T ), T, tN (T )}, while it prescribes
stopping (and accepting X(T )) at state {X(T ), T, tN (T )}.

The expected utility under Υ at state {X ′(T ), T, tN (T )} can be written asX ′(T )α
(
T, tN (T ),Υ

)
+

β
(
T, tN (T ),Υ

)
where α

(
T, tN (T ),Υ

)
is the discounted probability that the object will be

allocated to the agent with value X ′(T ) and where β
(
T, tN (T ),Υ

)
is the discounted ex-

pected utility from all continuations where the object is not allocated to the agent with
value X ′(T ). The probability that the object will be allocated to the agent with value
X ′(T ) is less then one (otherwise it would be optimal to stop at state {X ′(T ), T, tN (T )})
and therefore α

(
T, tN (T ),Υ

)
< 1. Since Υ prescribes to continue search at state {X ′(T ), T, tN (T )},

it must be the case that

X ′(T )α
(
T, tN (T ),Υ

)
+ β

(
T, tN (T ),Υ

)
> X ′(T )

which implies
β
(
T, tN (T ),Υ

)
>
(
1− α

(
T, tN (T ),Υ

))
X ′(T ).

Change now policy Υ into Υ′ where the only difference between the policies is at state
{X(T ), T, tN (T )}. Policy Υ′ continues search at time T and applies the same continuation
policy at state {X(T ), T, tN (T )} as Υ prescribed after the state {X ′(T ), T, tN (T )} (while
allocating the object to the agent with value X (T ) if Υ prescribes to stop and to allocate
the object to an agent with value X ′(T ) ).
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The expected utility generated by Υ′ if state {X(T ), T, tN (T )} was reached isX(T )α
(
T, tN (T ),Υ

)
+

β
(
T, tN (T ),Υ

)
. Since we know that β

(
T, tN (T ),Υ

)
>
(
1− α

(
T, tN (T ),Υ

))
X ′(T ) we ob-

tain

X(T )α
(
T, tN (T ),Υ

)
+ β

(
T, tN (T ),Υ

)
>

X(T )α
(
T, tN (T ),Υ

)
+
(
1− α

(
T, tN (T ),Υ

))
X ′(T ) > X(T ).

That is, there exists a continuation policy applied at state {X(T ), T, tN (T )} that generates
a higher expected utility than X(T ). This contradicts the optimality of stopping at
{X(T ), T, tN (T )}.

Proof of Proposition 2. With a subsidy S(t′), the expected utility of agent i with
type (t, v) who reports type (t′, v′) where t′ ≥ t is given by∫

H−i(t′,v′)

e−δτv′ (t
′,h−i)

[
v − V (t′, 0, ηh−i (τv′(t

′, h−i)) , τv′(t
′, h−i))

]
dµ(h−i/t)

+e−δt
′
S(t′).

Given truthful reporting in the arrival time dimension, the payment scheme of Proposition
1 provides incentives to report truthfully the value of the object. In other words, v ∈
arg maxv′ U(t, t, v) and thus v ∈ arg maxv′ [U(t, t, v) + e−δt

′
S(t′)]. Thus, a function S(t′)

such that U (t, t′, v) + S(t′) is decreasing in t′ for any t ≤ t′ and v induces any agent to
report the earliest possible arrival time, which necessarily coincides with the true arrival
time. Therefore we can implement the efficient allocation.

With the proposed subsidy, the expected utility of an agent that arrives at time t
with value v, but reports arrival time t′ ≥ t and value v′ (optimized given t′) is given by

U (t, t′, v) +M(T − t′)

The result will be proved by showing that U (t, t′, v) + M(T − t′) is decreasing in t′ for
any v, t ≤ t′ . Consider then t′′ ≥ t′ ≥ t .We obtain that

U (t, t′′, v) +M(T − t′′) ≤ U (t, t′, v) +M(T − t′)⇔
U (t, t′′, v)− U (t, t′, v) ≤ M(t′′ − t′)

The last inequality holds by assumed Lipschitz condition. Individual rationality follows
immediately by Proposition 1, and because S(t′) ≥ 0.

Proof of Proposition 3. 1. We show that U (t, t′, v) decreases in t′ for any v and
t ≤ t′ (see Proposition 2 and Remark 1-1). By definition, for any v ≥ 0, U (t, t′, v) ≥ 0,
since reporting the true value guarantees for any t and t′ a non-negative utility.

Consider an agent with true type (v, t) who reports type (v′, t′) where t′ > t and where
v′ is optimized given t′ and (t, v). Such report is relevant only if the agent gets then the
object with positive probability, and if his expected utility is positive.

We claim that a report (v′, t′′) where t ≤ t′′ < t′ leads to a higher expected utility
than a report (v′, t′). Indeed, if an agent with report (v′, t′) gets the object at some time
T , then he should get the object with a report (v′, t′′), t′′ ≤ t′ either at T, or earlier. This
is so because at the time of the allocation the elapsed time from the last arrival must be
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the same, independently of the reported arrival time of that agent. The price charged for
the object depends on the elapsed time since the last arrival, and on the second highest
value reported up to the time of the allocation. Moreover, this price is monotonically
increasing in the second highest reported value. Thus, a later arrival may postpone the
allocation, which increases the probability of new arrivals, which in turn increases the
second highest value and the charged price. Therefore, a report (v′, t′′) with t′′ < t′ leads
to a possible earlier allocation at a possibly lower price, and is thus a more advantageous
deviation than a report (v′, t′). Adjusting the reported value to the earlier arrival further
increases expected utility, which allows us to conclude that U (t, t′, v) ≤ U (t, t′′, v), as
desired.

2. The result follows immediately from point 1 above together with Theorem 1.

Construction of Minimal Subsidy. Assume that time is discrete, t ∈ {0, ..., T}. As
above, the payment scheme is constructed from two elements: the early arrival subsidy
which is independent of the allocation of the object, and the expected externality payment
given in (3). We derive the minimal subsidy by backward induction. Agents that report
their arrival at the last period, gets a subsidy of zero. Consider an agent that arrives
at the penultimate period, T − 1. Since the only deviation such an agent might have
in the time dimension is reporting an arrival at T , the minimal subsidy must equal the
maximal expected utility that can be obtained by reporting an arrival at T , where the
maximum is taken over the values from getting the object. This amount is bounded if
the interval on which values distribute is bounded. Such a subsidy induces all types of
agents that arrive at period T − 1 to report truthfully their arrival times. The proof of
the above Proposition shows that, given truthful reporting in the time dimension, the
expected externality payment provides the correct incentives to report truthfully their
values.

We now proceed one step further, to period T − 2. Given the above constructed
subsidy for period T − 1, we need to consider deviations in the time dimension by agents
arriving at T−2 who can declare arrivals at either T or T−1. The subsidy is the maximum
between the two maximal expected utilities. By construction any lower subsidy will cause
at least some value types of agents that arrive at T − 2 to misreport their arrival time.
Notice that the construction is history independent because the calculations at any period
are conditioned on the fact that the agent for whom the subsidy is calculated arrived at
that period, and because the agent does not observe any previous arrivals.

The minimal subsidy for the continuous time case can be obtained from the above
discrete time case by considering larger and larger sets of possible discrete arrivals. The
bounded variation assumptions made in Proposition 2 ensure that the minimal subsidy
stays finite in this limit process.

Proof of Theorem 5. We first show that an agent who arrives earlier gets the object
earlier. As the assumed arrival process is Markov, the continuation value of a welfare
maximizing planner who observes arrivals and valuations only depends on the number of
prior arrivals and on calendar time. Hence, the threshold at which an object is allocated
to an agent does not depend on his arrival time. Consequently, if the object is allocated
to an agent after a history where he arrived at time t , it is also allocated to this agent
after every history where he arrived earlier.
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Second, we show that in the welfare maximizing allocation rule with payments P , an
agent who has a valuation of zero does not receive any payment from the principal. Never
allocating an object guarantees the principal a welfare of zero, and hence the continuation
value of the welfare maximizing principal is always non-negative. The price charged by
the principal equals the continuation value, and hence the price paid by the agent is
non-negative.

Theorem 12 (page 24) in Gershkov, Moldovanu & Strack [2014] shows that any al-
location rule which is monotone in arrival times, implemented by payments P under
observable arrivals and makes no payment to agents with a valuation of zero is also im-
plemented by the same payments under unobservable arrivals. Hence, P as defined in
Equation 3 implements the welfare maximizing allocation under unobservable arrivals.

For the proof of Proposition 2 we first need the following concepts and results from
majorization theory:

Definition 3 1. For any n−tuple γ = (γ1, γ2, .., γn) let γ(j) denote the jth largest
coordinate (so that γ(n) ≤ γ(n−1) ≤ ... ≤ γ(1)). We say that α is majorized by β
and we write α ≺ β if the following system of n− 1 inequalities and one equality is
satisfied:

α(1) ≤ β(1)

α(1) + α(2) ≤ β(1) + β(2)

... ≤ ...

α(1) + α(2) + ..α(n−1) ≤ β(1) + β(2) + β(n−1)

α(1) + α(2) + ..+ α(n) = β(1) + β(2) + ..+ β(n).

2. A function Ψ : Rn → R is called Schur-convex if α ≺ β ⇒ Ψ(α) ≤ Ψ(β)

Theorem 3 (Marschall and Proschan [1965]) Let X = (X1, ..., Xn) be an n-dimensional
random vector with a permutation invariant joint distribution. Let φ: Rn → R be a
continuous, convex function that is permutation invariant in its arguments. Then the
function Eφ(α1X1, ..., αnXn) is Schur convex, i.e.,

Eφ(a1X1, ..., anXn) ≤ Eφ(β1X1, ..., βnXn).

whenever α ≺ β.

Proof of Proposition 4. 1. It is sufficient to show the existence of an optimal stopping
policy for the process with arrival rate β(t), since then the cutoff that induces stopping
for the process with rate λi(t) exists, and is bounded by the optimal cutoff corresponding
to the arrival rate β(t). To see this, observe that if the planner finds it optimal to stop
under the arrival process with rate β(t), then the value of continuing search is lower then
the value of stopping. This implies that, under the same circumstances, stopping is the
optimal action also under arrival rate λi(t) ≤ β(t).

In order to prove the existence of an optimal stopping rule for the rate β(t), we
consider two auxiliary problems where the planner also wants to maximize the expected
value of the agents from the allocation:
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Problem A: All agents arrive simultaneously, and their number is random. The probability that
k agents arrive equals the probability that in the original dynamic problem with
rate β(t) the discounted number of the agents is between k − 1 and k.20

Problem B: Arrivals are sequential with rate β(t), but the planner is a ”prophet” who observes
at each point in time all future arrivals and their values.

We show first that the planner’s expected utility in Problem A, with a distribution
of the agents that is chosen to mimic that of Problem B, is finite. Afterwards, we show
that Problem A generates a higher expected utility than Problem B. Obviously, Problem
B generates a higher expected utility than the original problem with rate β(t) since in
the latter problem the designer has no information about the future. This will allow us
to conclude that the designer’s expected utility in the original dynamic problem is finite.

We now show that the planner’s expected utility in Problem A is finite. The assump-
tion

∫∞
0
β(t)e−δtdt < ∞ implies that the expected discounted number of arrivals in the

original dynamic problem with rate β(t) is finite. Since Problem A is constructed such
that the expected number of the agents mimics the expected discounted number of agents
in Problem B (up to increasing the realized number of arrivals to the next integer) we
obtain that the expected number of agents in Problem A is finite as well. More precisely,
the expected number of arrivals in Problem A is given by

B =
∞∑
k=0

kP (k) =
∞∑
k=0

(k − 1)P (k) +
∞∑
k=0

P (k) ≤
∫ ∞
0

β(t)e−δtdt+ 1 <∞

where P (k) is the probability of k arrivals in Problem A.
Let X(k) be the highest order statistic out of k I.I.D random variables X1, ..., Xk with

mean µ, representing the agents’ values. Then the designer’s expected utility in Problem
A is given by

∑∞
k=0 P (k)E[X(k)].

21 Since E
[∑k

i=1Xi

]
= kµ, we know that E[X(k)] ≤ kµ.

Hence
∞∑
k=0

P (k)E[X(k)] ≤
∞∑
k=0

P (k)kµ = Bµ <∞

and the designer’s expected utility in Problem A is finite.
b). We now show that for any realizations of arrival times in Problem B, the expected

utility in this problem is lower than the expected utility in Problem A with a correspond-
ing number of agents. That is, if in Problem B the arrival times are (t1, t2, ...), then the
planner’s expected utility is lower than that in Problem A with a number of agents given
by
⌈∑∞

i=1 e
−δti
⌉

where dae denotes the lowest integer greater or equal to a.
For a given realization of arrival times, the planner’s expected utility in Problem B

is given by E[max {α1X1, α2X2, ...}] where αi = e−δti and where ti is the arrival time of
the i−th agent22. If

⌈∑∞
i=1 e

−δti
⌉

is finite then E[max {α1X1, α2X2, ...}] is finite as well.

20The calculation is done as follows: define a reward R (t) = e−δt for an arrival at time t. The
probability assigned to k arrivals is the mass of the set of histories such that the total accumulated
reward is between k − 1 and k. We can restrict attention to histories up to a finite time T since the
reward for later arrivals is negligible.

21We set E[X(0)] = 0.
22For a realization of arrival times where the sum

∑∞
i=1 e

−δtidoes not exists, we consider Problem A
with a number of the agents that goes to infinity.
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To see that observe that

E[max {α1X1, α2X2, ...}] ≤ E
∞∑
i=1

αiXi =

⌈
∞∑
i=1

e−δti

⌉
µ.

For any history where
∑∞

i=1 e
−δti exists, we only need to consider the first K arrivals

(where K may be arbitrarily large) since the effect of further arrivals is negligible. There-
fore, the designer’s expected utility in the corresponding Problem A is given by EX(l)

where l =
⌈∑K

i=1 e
−δti
⌉
.

Since E[max {α1X1, α2X2, ..., αKXK}] is monotone in the αi’s we have

E [max {α1X1, α2X2, ..., αKXK}] ≤ E [max {α̃1X1, α̃2X2, ..., α̃KXK}] (5)

where 1 ≥ α̃i ≥ αi for i ∈ {1, ..., K} and
∑K

i=1 α̃i =
⌈∑K

i=1 αi

⌉
.23

Consider now
∑K

i=1 α̃i = l as above. Since 0 ≤ α̃i ≤ 1 for any i, the vector (α̃1, ..., α̃K)
is majorized by the vector (1, .., 1︸ ︷︷ ︸

l

, 0, ..0︸︷︷︸
K−l

) . Since the Xi’s are I.I.D. , and since the

maximum is a continuous, permutation invariant convex function, we can apply Theorem
3 to obtain

E[max {α̃1X1, α̃2X2, ..., α̃KXK}] ≤ E[max {X1, ..., Xl}] = EX(l). (6)

Inequalities (5) and (6) allow us to conclude that for any realization of the agents’ ar-
rivals, the designer’s expected utility is higher in Problem A than in Problem B with a
corresponding number of the agents.

We have showed that the designer’s expected utility in Problem A is finite, and hence
that the expected utility in the original dynamic problem with rate β(t) is also finite.
Therefore, at each point in time, and for any history, there exists a cutoff such that in
the original problem the planner finds it optimal to stop if the current agent has a value
that exceeds this cutoff.
Proof of Proposition 6. Proposition 4 proved the existence of an optimal stopping
policy in the problem with arrival rate λi(t). The optimal stopping cutoff in this problem
, v∗T (tN (T )), only depends on T and on N (T ), and it is non-decreasing in both these
variables. The monotonicity follows from the fact that the more agents arrived and the
greater t is, the higher is the arrival rate and hence, the higher is the option of continuing.
Therefore, the more agents arrived and the greater t is, the higher is the cutoff that will
induce the planner to stop.
Proof of Corollary 2. If an agent with value v who arrives at t does not get the
object at time t, he can never get the object at a later time. In particular, even if recall
is allowed, it will not be used by the optimal stopping policy. Hence, setting a price
P (t, v, η−i (T ) , T ) = v∗T (N (T )) implements the efficient dynamic policy also under the
setting with unobservable arrivals and recall, since postponing an arrival by a single agent
necessarily leads to either the object being already sold, or to an increase in its price.

23Since αi ≤ 1 and
K∑
i=1

αi ≤ K such α̃is always exist.
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