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Abstract

We study the revenue maximizing allocation of several heterogeneous, commonly

ranked objects to impatient agents with privately known characteristics who arrive

sequentially. There is a deadline after which no more objects can be allocated.

We first characterize implementable allocation schemes, and compute the expected

revenue for any implementable, deterministic and Markovian allocation policy. The

revenue-maximizing policy is obtained by a variational argument which sheds more

light on its properties than the usual dynamic programming approach. Finally, we

use our main result in order to: a) derive the optimal inventory choice; b) explain

empirical regularities about pricing in clearance sales.

We study the following dynamic mechanism design problem in continuous time: a

designer has to allocate (or assign) a finite set of heterogeneous objects with known

characteristics to a stream of randomly arriving, impatient agents with privately known

characteristics. There is a deadline by which all objects must be sold.1 The objects

are substitutes, and each agent derives utility from at most one object. Moreover, all
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agents rank the available objects in the same way, and values for objects have a multi-

plicative structure involving the agents’ and objects’ types. Under the assumption that

monetary transfers are feasible, we characterize the dynamic revenue-maximizing policy

and the associated dynamic pricing scheme. We also show how important features of the

revenue maximizing policy can be used to yield a straightforward solution to the larger

optimization problem where the designer also chooses the size and quality composition

of its inventory.

Dynamic pricing and assignment problems appear in numerous frameworks such as

the retail of seasonal and style goods, the allocation of fixed capacities in the travel

and leisure industries (e.g., airlines, trains, hotels, rental cars), the allocation of a fixed

inventory of equipment in a given period of time (e.g., equipment for medical procedures),

the assignment of personnel to incoming tasks.

The main trade-off in our paper is as follows: assigning an object today means that

the valuable option of assigning it in the future - possibly to an agent who values it more-,

is foregone; on the other hand, since the arrival process of agents is stochastic, and since

there is a deadline, the "future" may never materialize. The revenue maximizing policy

needs to define prices for each available objects such that, at each point in time, this

trade-off is optimally taken into account.

The paper’s main contributions are:

1. By allowing for heterogeneous objects, we can combine quantity/quality optimiza-

tion with the pricing considerations that have been traditionally the focus of the

literature (in Economics and Management Science) analyzing optimization under

stochastic demand conditions2.

2. We introduce to the above literature a new technical method which has two com-

ponents: a) A focus - inspired by the "mechanism design philosophy" and the

payoff/revenue equivalence principle - on implementable allocation policies rather

than on prices; b) A variational method that yields somewhat more insight than

the traditional dynamic programming/Bellman’s equation (e.g., we obtain new re-

sults even for the much studied case of dynamic revenue-maximization for identical

goods).

2In the Management Science literature this is called revenue or yield management.
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3. Our analysis yields testable implications about the pattern of prices in relevant

situations exhibiting fixed inventories of substitute goods that need to be sold by a

deadline. An example concerning clearance sales for apparel is provided here.

Whereas the large literature on yield or revenue management has directly focused

on revenue-maximizing pricing (mostly for the special case of our model where agents

have linear, private values for identical objects) our approach starts by a characterization

of all dynamically implementable, non-randomized allocation policies. Such policies are

described by partitions of the set of possible agent types: an arriving agent gets the best

available object if his type lies in the highest interval of the partition, the second best

available object if his type lies in the second highest interval, and so on... These intervals

may depend on the point in time of the arrival, and on the composition of the set of

available objects at that point in time. For implementable allocation policies we derive

the associated menus of prices (one menu for each point in time, and for each subset

of remaining objects) that implement it, and show that these menus have an appealing

recursive structure: each agent who is assigned an object has to pay the value he displaces

in terms of the chosen allocation.

We next turn to revenue-maximization. Using several basic results about the Poisson

stochastic process, we first compute the revenue generated by any individual-rational,

non-randomized, Markovian and implementable allocation policy. Then, we can directly

use variational arguments in order to characterize the revenue-maximizing allocation

policy. The associated optimal prices are of "secondary importance" since they are com-

pletely determined by the implementation conditions.

Whereas the optimal prices necessarily depend on the composition of inventory, our

main result is that, at each point in time, the revenue maximizing allocation policy

depends only on the size of the available inventory, but not on its exact composition.

To understand the meaning of this result, consider the same model, but with identical

objects. Then, for each size of available inventory, and for each point in time, the revenue

maximizing allocation policy is characterized by a single cut-off type: only an arriving

agent with type above that cut-off obtains one of the objects. In contrast, when objects

are heterogeneous, the revenue maximizing policy is, at each point in time, and for each

subset of available objects, characterized by several cut-off types which determine if the

arriving agent gets the best available object, the second best, etc... Our result says that
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for any subset of k available heterogeneous objects, and for any point in time, the highest

cut-off coincides with the optimal cut-off in a situation with one available object, the

second-highest cut-off coincides with the optimal cutoff in a situation with two identical

objects, and so on till the lowest cut-off which coincides with the optimal cut-off in a

situation with an inventory of k identical objects.

The last part of the paper is devoted to two applications that use the characterization

result described above:

1. We embed revenue maximization in the larger optimization problem where, before

sales begin, the seller chooses the size and composition of the inventory. A good

recent illustration is offered by the move of several US supermarket chains to reduce

"shrink" - the amount of fresh food that needs to be dumped since it is not sold

by expiration date. Obviously, both the amount and variety of food on display,

and the temporal pricing pattern will affect shrink. Although some "intentional"

waste is part of revenue maximization, the US shrink rate is twice as big as that of

European retailers, suggesting that at least one of them may not be optimal.3

We show how the formulae we derived for revenue maximization (together with

information about marginal costs) immediately yield a set of intuitive equations

that characterize the optimal number of objects and their qualities.

2. We derive some testable implications about the pattern of observed prices for differ-

ent qualities in clearance sales, and confront them with available data. Compared

to standard models that only consider identical objects, our analysis offers a some-

what more convincing explanation for several well-known observed regularities. For

example, we explain why the average clearance mark-down (in percentage terms) is

higher for the higher quality, more expensive product lines, as empirically observed

in a variety of settings (see literature review below)

The rest of the paper is organized is follows: In the remainder of this Section we

review the related literature.

In Section 2 we present the continuous-time model of sequential assignment of het-

erogeneous objects to randomly arriving, privately informed agents. Section 3 focuses

3The estimate is that $20 billion worth of shrink is wasted annually in the US, about 10% of sales.

See "Shrink rapped", The Economist, May 17, 2008, p.75.
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on a characterization of implementable policies, and of the associated menus of dynamic

prices that implement such policies.

In Section 4 we study the revenue maximizing policy. We obtain a general expression

for expected revenue given any Markovian, non-randomized allocation policy, and we

use a variational argument in order to derive functional equations that characterize the

revenue maximizing allocation policy and the expected revenue generated by this policy.

In Section 5 we exhibit two applications of our main result: In Subsection 5.1 we

embed our revenue maximization in a larger maximization problem where the designer

also chooses the size and composition of the inventory. In Subsection 5.2 we derive several

empirically testable implications and show how these can be used to explain observed

phenomena.

Section 6 concludes. Proofs are relegated to an Appendix.

Related Literature

Cyrus Derman, Gerald J. Lieberman and Sheldon M. Ross (1972) introduced an

elegant discrete-time model where a set of distinct, commonly ranked objects needs to

be assigned to a set of sequentially arriving agents that have a multiplicative utility

function involving their type and the object’s properties. They analyze the dynamic,

welfare-maximizing allocation under a complete information assumption about the agents’

valuations, and characterize it in terms of cutoffs. These cutoffs do not depend on the

objects’s properties4. Christian S. Albright (1974) extended the Derman-Lieberman-

Ross model and characterization to the continuous-time framework with random arrivals

of agents. We add incomplete information to their basic framework, and focus here on

revenue maximization. Incomplete information in a similar, but static model with non-

random demand is introduced in the classic paper by Michael Mussa and Sherwin Rosen

(1978) who focused on a monopolist’s price/quality decisions.

There are very large theoretical and applied literatures on dynamic pricing of invento-

ries (sometimes called revenue or yield management) both in Economics and in the fields

of Management and Operations Research. The general goal in this literature is revenue

maximization. We refer the reader to the excellent literature surveys and discussions of

4Similar analytical methods - involving dynamic programming and optimal stopping - have been

fruitfully used in the large literature on search- see for example the surveys of Lippman, Steven, and

John J. McCall (1981) and Dale T. Mortensen (1986).
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involved issues by Gabriel R. Bitran and René Caldentey (2003) and Wedad Elmaghraby

and Pinar Keskinocak (2003), and to the comprehensive book by Kalyan T. Talluri and

Garrett J. van Ryzin (2004). Preston McAfee and Vera te Velde (2007) survey the ap-

plications to the airline industry who has pioneered many of the modern practices in

revenue management.

John Riley and Richard Zeckhauser (1983) considered a single object revenue-maximizing

procedure where there is learning about the distribution of the agents’ values. In their

model, the optimal mechanism is a sequence of take-it-or-leave-it offers. Edward P. Lazear

(1986) offers a theory of clearance sales that allows for several identical units. In his model

all customers have the same value, and the seller learns about this value over time. It

is shown that a pattern of decreasing prices is optimal. B. Peter Pashigian (1988), B.

Peter Pashigian and Brian Bowen (1991), and B. Peter Pashigian, Brian Bowen and Eric

Gould (1995) test some of the empirical implications of Lazear’s analysis based on data

obtained from several industries

In a continuous-time framework with stochastic arrivals of agents, Wilfred M. Kincaid

and Donald A. Darling (1963), and Guillermo Gallego and Garrett van Ryzin (1994) use

dynamic programming in order to characterize - implicitly via Bellman’s equations - the

revenue maximizing pricing policy for a set of identical objects that need to be sold

before a deadline. A main result is that the expected revenue in the optimal policy -

which is characterized for each size of inventory by a single posted price - is increasing

and concave both in the number of objects and in the length of time left till the deadline.

Moreover, each relevant cutoff price drops with time as long as there is no sale, but jumps

up after each sale5. These authors were able to calculate in closed form the solution for

what amounts (in our terms) to an exponential distribution of agents’ values. McAfee

and te Velde (2008) find an explicit solution for a Pareto distributions of agents’ values,

and show that it coincides with the welfare maximizing policy. Generally, a closed form

solution is not available, and even the expression of expected revenue as a function of the

optimal cutoff prices is not available in the literature.

Michael A. Arnold and Steven A. Lippman (2001), Gopal Das Varma and Nikolaos

Vettas (2001) and Jérémie Gallien (2006) consider the same basic problem as above,

5Gabriel R. Bitran and Susana V. Mondschein (1997) obtain similar results in a discrete time frame-

work.
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but in a framework with an infinite horizon and discounting. In this case, the revenue

maximizing posted prices - again one price for each size of inventory -, turn out to be

stationary: they do not depend on time.6 This stationarity allows Gallien to offer a

reasonable sufficient condition ensuring that all sales occur immediately upon arrival,

even if the arriving agents can strategically delay their purchase. Also in an infinite

horizon model, Ruqu Wang (1993) compares a posted-price regime with an auction one.

In his framework, the auction option is costly.

Lazear (1986) argues that delayed purchases by strategic consumers is not likely to

be significant if the number of consumers is large, but a more recent, still small, strand

of the literature focuses on strategic buyer behavior in models with fixed inventories.7

Volker Nocke and Martin Peitz (2007) exhibit conditions for a decreasing price path to

be optimal even if consumers are strategic about the timing of purchases in a model with

identical units and fixed demand. These authors do not consider pricing policies that

condition on past realized sales. Yossi Aviv and Amit Pazgal (2008) assume that prices

must be declining (which is not innocuous) in a two-period model with stochastic arrivals,

but derive analytic results only for a policies that do not depend on past realized sales.

Xuanming Su (2007) allows more general policies, but assumes a deterministic demand

flow.

To conclude, as Bitran and Caldentey (2003) noted, due to the technical complexity,

the literature on dynamic revenue maximization with stochastic demand has focused

on models with identical objects, contrasting the present framework.8 Moreover, no

solution is yet available to the Gallego and van Ryzin (1994) type of models with strategic

customers.

6Das Varma and Vettas consider a model with discrete time and deterministic arrivals, whereas Gallien

and Arnold and Lippman have continuous time models with stochastic arrivals. The latter authors

assume (rather than derive) the stationarity of posted prices, and also compare these to reservation

prices in a model where arriving agents announce bids.
7This should be contrasted with the earlier literature on the so-called "Coase Conjecture" where the

inventory can be replenished. Preston McAfee and Thomas Wiseman (2008) show that the introduction

of capacity costs counters the Coasian insight. For other papers that examine the relationship between

limited inventories and pricing schemes see Milton Harris and Artur Raviv (1981) and Charles A. Wilson

(1988).
8See Gallego and Van Ryzin (1997) for an exception. Some models assume that customers belong to

several known classes which allows the use of third-degree price discrimination.
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I. The Model

There are n items (or objects) that need to be allocated to arriving agents before a

deadline T > 0. Each item i is characterized by a "quality" qi. Agents (or buyers)

arrive according to a Poisson process with intensity λ, and each can only be served upon

arrival (i.e., agents are impatient). Upon arrival, each agent observes the set of available

objects. After an item is assigned, it cannot be reallocated in the future. Each agent j

is characterized by a "type" xj. An agent with type xj who obtains an item with quality

qi enjoys a utility of qixj. The designer (or seller) seeks to maximize expected revenue.

While the items’ types 0 ≤ qn ≤ qn−1 ≤ ... ≤ q1 are assumed to be known con-

stants, the agents’ types are assumed to be represented by independent and identically

distributed random variables Xi on [0,+∞) with common twice differentiable c.d.f. F (f

denotes the corresponding density function). The realization of Xi is private information

to agent i. We assume that each Xi has a finite mean, denoted by µ, and a finite variance.

Moreover, we assume that f (x) < ∞ and that x− 1−F (x)
f(x)

increases for any x ∈ [0,∞).9

The multiplicative structure employed above is restrictive: it is one of the simplest

structures allowing a meaningful treatment of several qualities while allowing the mod-

eling of private information as a one-dimensional variable. The present formulation is

standard in the relevant literature, following the seminal static analysis in Mussa and

Rosen (1978).

Another restrictive assumption pertains to the fact that agents are infinitely impatient.

In particular, strategic considerations about the moment of purchase do not play a role

in our present analysis.(This is not a constraint in the discounted infinite horizon model

presented in Section 4.1 because of the stationarity of the optimal policies there- see also

Gallien (2006).) Alternatively, we could assume that agents bear a high enough cost of

waiting per unit of time.

II. Implementable Policies

Without loss of generality, we restrict attention to direct mechanisms where every agent,

upon arrival, reports his characteristic xi and where the mechanism specifies an allocation

9The expression x − 1−F (x)
f(x) is the so-called virtual valuation of the buyer of type x. For a detailed

discussion see Roger B. Myerson (1981) and Jeremy Bulow and John Roberts (1989).

8



(which item, if any, the agent gets) and a payment. The schemes we develop also have an

obvious and immediate interpretation as indirect mechanisms, where the designer sets a

time-dependent menu of prices, one for each item, and where arriving agents choose out

that menu.

An allocation policy is called non-randomized and Markovian if, at any time t, and

for any possible type of agent arriving at t, it uses a non-random allocation rule that only

depends on the arrival time t, on the declared type of the arriving agent, and on the set

of items available at t, denoted by Πt. Thus, the policy depends on past decisions only via

the state variable Πt. We also restrict attention to interim-individually rational policies,

where no agent ever pays more than the utility obtained from the physical allocation.

Denote by Qt : [0,+∞) × 2Π0 → Π0 ∪ ∅ a non-randomized Markovian allocation

policy for time t with an additional requirement that for any A ⊆ 2Π0 and x ∈ [0,+∞),

Qt(x, A) ∈ A ∪ ∅. That is for any set of the available objects, the allocation policy will

assign either one of the available objects or no object at all. Denote by Pt : [0,+∞) ×

2Π0 → R the associated payment rule and by kt the cardinality of set Πt. Finally, denote

by q(j:Πt) the j’th highest element of the set Πt.

The next Proposition shows that a non-randomized, Markovian allocation policy is

implementable if and only if it is based on a partition of the agents’ type space.10 In

other words, implementability reduces here to setting a menu of prices, one for which

object, from which the arriving agent has to choose.

Proposition 1 Assume that Πt is the set of objects available at time t, and assume that

qj �= qk for any qj , qk ∈ Πt, j �= k.

1. A non-randomized, Markovian policy Qt is implementable if and only if there exist

kt + 1 functions ∞ = y0,Πt (t) ≥ y1,Πt (t) ≥ y2,Πt (t) ≥ · · · ≥ ykt,Πt (t) ≥ 0, such that

x ∈ [yj,Πt (t) , yj−1,Πt (t)) ⇒ Qt (x,Πt) = q(j:Πt) and x < ykt,Πt (t) ⇒ Qt (x,Πt) =

∅.11

10The result holds for any deterministic policy. But, since the rest of the analysis focuses on the

Markov case, and in order to save on notational complexity, we consider only this case here.
11Types at the boundary between two intervals can be assigned to either one of the neighbor-

ing elements of the partition. That is, if xi ∈ {ykt,Πt (t) , ykt−1,Πt (t) , ..., y2,Πt (t) , y1,Πt (t)}, then

Qt (yi,Πt (t) ,Πt) ∈
{
q(i:Πt), q(i+1:Πt)

}
, i = 1, 2, .., kt.
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2. The associated payment scheme is given by Pt (x,Πt) =
∑kt

i=j(q(i:Πt)−q(i+1:Πt))yi,Πt (t)+

S(t) if x ∈ [yj,Πt (t) , yj−1,Πt (t)) where S(t) is some allocation- and type-independent

function.12

Proof. See Appendix.

The payment scheme has an intuitive interpretation: assume for a moment that the

analyzed setup is the static one with kt objects and kt + 1 agents where, in addition to

an agent with type x, there are kt other "dummy" agents with types y1,Πt (t) , y2,Πt (t) , · ·

·, ykt,Πt (t). The payment for the object with the j-highest quality,
∑kt

i=j(q(i:Πt)−q(i+1:Πt))yi,Πt (t) ,

represents the externality imposed by the agent with type xi on the dummy agents in the

corresponding efficient allocation.

III. Dynamic Revenue Maximization

In this section we solve the dynamic revenue maximization problem. A main feature that

differentiates our analysis from previous ones is the fact that we use themechanism design

approach developed in Section 4, and the insight behind the celebrated payoff/revenue

equivalence theorem. Thus, we focus on the dynamic allocation policy that underlies rev-

enue maximization, while pricing plays only a "secondary" role since, once the allocation

is fixed, it is automatically induced by the implementation requirements.

Without loss of generality, we can restrict attention to Markovian, non-randomized

policies where the state includes the set of available objects Πt, the period of time t , and

the type of the agent that arrives at t. The optimality of Markovian, possibly randomized,

policies is standard for all models where, as is the case here, the instantaneous rewards

and transition probabilities are history-independent - see for example Theorem 11.1.1 in

Martin L. Puterman, (2005) which shows that, for any history-dependent policy, there

is a Markovian, possibly randomized, policy with the same payoff.13 Given a Markovian

12If there are some identical objects, there exist implementable policies that do not take the form

of partitions. But, for each such policy, there exists another implementable policy that is based on a

partition, and that generates the same expected utility for all agents and for the designer.
13If the optimal policy is non-Markov, there are different histories after which the state is the same

but the taken action differs.For each state s and for any history H, let p (H|s) be the ex-ante probability

that history H occurs, conditional on the reached state being s. Modify now the policy in the following

way: at time t the new policy uses a lottery where the action used in the original policy after history
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policy, at each period t the designer’s problem is equivalent to a static problem where

one object out of a given inventory needs to be allocated to a privately informed agent,

and where the seller has different salvage values for the remaining possible inventories

(the salvage values correspond to the various continuation values in the dynamic case).

Analogously to Myerson (1981), the static revenue-maximization problem has a non-

randomized solution as long as the agent’s virtual valuation is increasing (as assumed

here): if at all, the agent should get the object for which virtual valuation plus salvage

value is highest.14 Thus, at each period t in the dynamic problem the seller has a non-

randomized optimal policy as well.

We first calculate the expected revenue for any given Markovian, non-randomized

allocation policy, and then we use a variational argument to derive the cut-off curves

describing the revenue-maximizing dynamic policy.

Recall from Proposition 1 that, in order to implement a Markovian, non-randomized

allocation which is given by ∞ = y0,Πt (t) ≥ y1,Πt (t) ≥ y2,Πt (t) ≥ · · · ≥ ykt,Πt (t) > 0,

∀t, the price at period t for the object with the j-th highest characteristic (among the

remaining objects) needs to be

P
(j)
t (Πt) =

kt∑

i=j

(q(i:Πt) − q(i+1:Πt))yi,Πt (t) + S(t). (1)

In any interim individually rational mechanism we must have S (t) ≤ 0 for any t, and, in

order to maximize the revenue, we must clearly have S (t) = 0.

After using simple properties of sampling out of Poisson processes (see the Proof of

Proposition 7 in the Appendix), the expected revenue at time t where Πt �= ∅ takes the

form

R (Πt, t) =
kt∑

i=1

∫ T

t

(
P (i)
s (Πt) +R

(
Πt\{q(i:Πt)}, s

))
hi,Πt (s) ds

where

hi,Πt (s) = λ [F (yi−1,Πt (s))− F (yi,Πt (s))] e
−

∫ s
t
λ[1−F (ykt,Πt (z))]dz

H is taken with probability p (H|s). If the original policy was optimal, then it need to be incentive

compatible for any history H. By construction, the modified policy will be incentive compatible as well.
14The expected revenue from any incentive compatible mechanism in the static problem is given by

∫ ∑
qi∈Πt∪∅

Pri (x)
[
qi

(
x− 1−F (x)

f(x)

)
+ SV (Πt\qi)

]
dx where Pri (x) is the probability that the designer

assigns to type x the object of quality qi , and where SV (Πt\qi) is the salvage value of the set of objects

Πt\qi .
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is the density of the waiting time till the first arrival of an agent with a type in the

interval [yi,Πt (s) , yi−1,Πt (s)) given that no arrival that leads to a sale (e.g., type above

ykt (s)) has occurred.

Recall that a Markovian, non-randomized policy must specify an allocation decision

for each possible state, i.e., for each possible subset of object Πt �= ∅ available at time

t. Moreover, for each state, the policy consists of kt = |Πt| cut-off curves that describe

the partition of the set of agents’ types - generally these curves depend on the precise

composition of the set Πt. The number of needed curves if there are n objects is
n∑

k=1

k
(
n

k

)
=

n2n−1. This yields 4 cut-off curves for two objects, 12 curves for three objects, 32 curves

for 4 objects, and so on... In order to save on notation and to keep the somewhat

involved proofs more transparent, we assume below that there are only two objects with

characteristics q1 ≥ q2. But we will describe the completely analogous solution to the

revenue maximization problem for the general case with any number of distinct objects.

A main result is that the dynamic revenue maximizing policy for n (possibly distinct)

objects is, in fact, completely described by only n cutoff curves. In particular, it shows

that this policy is independent of the characteristics of the available objects.

With slight abuse of notation, we write "2" instead of Πt = {q1, q2} at the second

subscript of the allocation functions yi,Πt (t) whenever kt = 2. This should not lead here

to any confusion.

Proposition 2 The dynamic revenue maximizing allocation policy is independent of the

qualities of available objects q1 and q2. In particular, we have:

1. y1,q1(t) = y1,q2(t) = y1,2(t) := y1(t) where y1(t) is a solution of

y1(t) =
1− F (y1(t))

f (y1(t))
+ λ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds

2. y2,2(t) := y2(t) is a solution of

y2(t) =
1− F (y2(t))

f (y2(t))
+ λ

∫ T

t

[1− F (y2(s))]
2

f (y2(s))
ds−R (1, t)

where

R (1, t) = λ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds

is the expected revenue at time t if there is one available object with q = 1 and the

optimal policy will be followed from time t on.
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Proof. See Appendix.

Remark 1 Let us explore in some detail the intuition for the result whereby the optimal

cutoffs do not depend on qualities. Assume that there are two available objects q1 > q2,

and that at time t the cutoffs are yo1 > yo2. Consider the effect of small shift in the

highest cut-off from yo1 to yo1 + ǫ. This shift has any effect only if some agent arrives at t.

Moreover, the shift has no effect on the expected revenue if the arriving agent has value

below yo1. If at time t an agent with value yo1 arrives, then the shift switches the object he

gets from q1 to q2 - which implies that he has to pay P
(2)
t ({q1, q2}) instead of P

(1)
t ({q1, q2})

- and also switches the object that remains available for the future allocation from q2 to

q1. The infinitesimal effect is

f (yo1)
(

P
(2)
t ({q1, q2}) + q1R (1, t)− P

(1)
t ({q1, q2})− q2R (1, t)

)

= (q1 − q2) f (y
o
1) (R (1, t)− yo1) .

The equality in the above equation follows here from the fact that in any incentive com-

patible mechanism we must have P
(2)
t ({q1, q2})−P

(1)
t ({q1, q2}) = (q2 − q1) y

o
1. Recall also

that P
(1)
t ({q1, q2}) = (q1 − q2) y

o
1 + q2y

o
2. Therefore, the shift increases the price that will

be charged to all agents with type above yo1+ ǫ, since supporting a more conservative allo-

cation of the best available object requires charging a higher price to all types that should

get this object. Therefore, increasing the cut-off yo1 also yields a higher revenue if an agent

with value above yo1 + ǫ arrives. This effect is

(1− F (yo1 + ǫ)) ((q1 − q2) (y
o
1 + ǫ) + q2 (y

o
2 +R (1, t)))

− (1− F (yo1 + ǫ)) ((q1 − q2) y
o
1 + q2 (y

o
2 +R (1, t)))

= (q1 − q2) (1− F (yo1 + ǫ)) ǫ

For an infinitesimal change, this effect becomes (q1 − q2) (1− F (yo1)). To sum up, the

total effect of the shift on expected revenue is

(q1 − q2) [(1− F (yo1))− f (yo1) (y
o
1 −R (1, t))].

The expression is linear in the difference (q1 − q2) and the optimal yo1 - where the total

effect of the shift should be equal to zero - does not depend on the characteristics of the

available objects.
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Remark 2 The equations for the revenue maximizing cutoff curves have an intuitive

interpretation. Assume first that only one object with q = 1 is available. The allocation

policy is described by the equation

y1(t)−
1− F (y1(t))

f (y1(t))
= λ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds = R(1, t).

On the left hand side, we have the virtual valuation of an agent with type y1(t). As Claim

1 showed, the right hand side represents the expected revenue from time t on if the object

is not sold at t, given that an optimal allocation policy is followed from time t on. Since

the seller is able to extract as revenue only the virtual valuation of an arriving buyer, the

equation shows that the optimal cut-off curve satisfies an indifference condition between

immediate selling and a continuation that uses the optimal policy.

In the general case, if there are kt = |Πt| available objects, then, no matter what their

types are, the i’th cut-off curve, 1 ≤ i ≤ kt, in the dynamic revenue-maximizing policy is

given by

yi(t)−
1− F (yi(t))

f (yi(t))
+ λ

∫ T

t

[1− F (yi−1(s))]
2

f (yi−1(s))
ds = λ

∫ T

t

[1− F (yi(s))]
2

f (yi(s))
ds (2)

or, equivalently, by

yi(t)−
1− F (yi(t))

f (yi(t))
+R(1i−1, t) = R(1i, t) (3)

where 1i is the set of 1′s of cardinality i and

R(1j , t) = λ

∫ T

t

[1− F (yj(s))]
2

f (yj(s))
ds (4)

is the expected revenue at time t from the optimal cut-off policy if j identical objects with

q = 1 are still available. Since there will be sales only to the agents with positive virtual

valuations, equation (3) implies that R(1i, t) > R(1j , t) for any i > j ≥ 0 and t < T .

While equation (3) has been obtained for the case of identical objects in the revenue-

management literature (see for example Gallego and van Ryzin (1994), and Bitran and

Mondschein (1997) for a discrete time model), the explicit expression in (4) is new, a

by-product of our analysis that focused on the allocation policy rather than on prices.

For the general case with several distinct objects, note also that, if an object is sold

at time t, then the lowest among the current optimal cut-off curves becomes irrelevant

regardless of the characteristic of the sold object, while all the other kt − 1 cutoff curves

14



do not change and remain relevant for the future allocation decisions. That is, the optimal

cutoff curves depend only on the cardinality of Πt, kt. For any two sets of available objects

Π1t and Π2t with k1t = |Π
1
t | and k2t = |Π

2
t | , and for any 1 ≤ i ≤ min {k1t , k

2
t } it holds that

yi,Π1t (t) = yi,Π2t (t).

If Πt is a set of identical objects, then only the lowest cut-off curve ykt(t) where kt = |Πt|

is relevant for the allocation decision.

Note that in the optimal mechanism prices for the remaining objects increase after

each sale. This follows because: 1) The invariance property implies that the allocation

policy after a sale of any of k available objects will be based on the k− 1 pre-sale highest

cutoffs. This more conservative allocation is implemented via higher prices for all objects.

2) Each sale increases the difference between the remaining qualities, which, in turn, leads

to an increase in the prices of all objects with qualities higher than the one just sold. As a

consequence, arriving buyers do not necessarily have an incentive to delay their purchase

because the average price may well go up for a period of time, before inevitably going

down if the good is not sold and the deadline approaches.

A. Infinite Horizon with Discounting

In this subsection we very briefly present the characterization of the dynamic revenue

maximizing allocation scheme in an infinite horizon setting. We assume here that the

utility of the designer from a payment at time t is discounted at rate e−αt , where α > 0

is a discount factor. For the case of identical objects, Gallien (2006) has shown that the

optimal cutoff curves are stationary (i.e., time independent).

We show below that the revenue maximizing allocation policy for several distinct

objects does not depend on the characteristics of the available objects. The analysis of

the discounted, infinite-horizon case is similar and easier than the one we performed for

the deadline case, and we omit the proof of the next Proposition.

Proposition 3 The dynamic revenue- maximizing policy consists of n+1 constants yn ≤

yn−1... ≤ y1 ≤ y0 ≡ ∞ that do not depend on the q’s such that:

1. If an agent with type x arrives at a time t, it is optimal to assign to that agent the

j’th highest element of Πt if x ∈ [yj , yj−1), and not to assign any object if x < ykt

, where kt = |Πt| .

15



2. The constants yj satisfy:

yj −
1− F (yj)

f (yj)
+

λ

α

[1− F (yj−1)]
2

f (yj−1)
=

λ

α

[1− F (yj)]
2

f (yj)

where

R (1j) =
λ

α

[1− F (yj)]
2

f (yj)

is the expected revenue at time t if j identical objects with q1 = q2 = ... = qj = 1 are

available at time t, given that the designer uses the optimal allocation policy from

time t on.

Since in the infinite horizon model prices only go up while the inventory is gradually

depleted, buyers do not have here an incentive to delay their purchase after the arrival

time.

IV. Applications

A. Dynamic Pricing and Optimal Inventory Choice

The entire above analysis was based on the assumption that the inventory’s size and

composition was exogenously given. In this Subsection we show how our previous insights

can be immediately used as a building block for a more general analysis where the seller

can choose both the number of objects and the spectrum of offered qualities before sales

start. This timing assumption is appropriate in cases where the necessary production

lead-times are significant in comparison to the retail period. Our present treatment

extends the seminal Mussa-Rosen (1978) analysis to the framework with random arrivals.

Gallego and van Ryzin (1994) characterized the optimal inventory size in a model with

deterministic demand, and showed that the solution coincides with the optimal size of the

inventory in the original problem if the horizon goes to infinity. In contrast, we are able

to characterize the optimal inventory size (and its composition) in the original problem

for any finite horizon.

Since our analysis identified an invariant of the optimal selling scheme - the allocation

policy - we can easily solve the larger problem backwards and characterize the optimal

quality choice. Formally, the decision of the monopolist is to choose the optimal package

of qualities Π0 :

max
Π0

R(Π0, 0)− C (Π0)

16



where C (Π) denotes cost of producing the package of qualities Π. It is plausible to

assume that the cost function is convex and symmetric (symmetry means here that the

cost of producing any permutation of a given package of qualities is the same as the

cost of producing the original package). Note that any convex and symmetric function

is Schur-convex.15 We assume below a very simple, separable form of Schur-convexity

for the cost function, but the reader will have no difficulty adding the technical details

needed for the more general result that does not assume separability.

Proposition 4 Let y = {yi(t)}
n
i=1 denote the allocation underlying the revenue maxi-

mizing policy with n objects, and assume that, for all n and for all vectors of qualities

(q1, q2, ..qn), C(q1, q2, ..qn) =
∑n

i=1 φ(qi) ,where the function φ : R → R is strictly increas-

ing, convex and satisfies φ(0) = 0. Then :

1. The optimal number of objects n∗ is characterized by16

φ
′

(0) ∈ (yn∗+1 (0)−
1− F (yn∗+1 (0))

f (yn∗+1 (0))
, yn∗ (0)−

1− F (yn∗ (0))

f (yn∗ (0))
] (5)

2. The optimal qualities q∗i are given by:

φ
′

(q∗i ) = yi (0)−
1− F (yi (0))

f (yi (0))
, i = 1, ..., n∗ (6)

Proof. See Appendix.

The above proposition and its analog for welfare maximization can be used to compare

the quality/quantity optimal choices under the two regimes. For example, it is intuitive

that a revenue maximizing monopolist will produce lower qualities than a welfare maxi-

mizing one, as in the Mussa-Rosen framework. Note though that some insights will differ

from Mussa and Rosen’s due to a difference in timing: while we assume that qualities

are produced in advance - before buyers’ characteristics get revealed - Mussa and Rosen

implicitly assume that quality can be produced contingent on these. For instance, in our

setup there is a distortion even in the quality provided to the highest type.

15Schur-convexity guarantees here that a higher marginal revenue is associated with a higher chosen

quality for the respective object.
16It should be obvious how to adjust the formula in order to deal with the extreme cases where

n∗ = 0,∞
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B. The Pattern of Prices in Clearance Sales

Our characterization generates a wealth of empirically testable implications about the

pattern of observed prices associated with the revenue maximizing policy. These im-

plications can be compared to available data for relevant situations. For example, an

important finding in the well-known empirical study of clearance sales for apparel con-

ducted by Pashigian and Bowen (1991) p.1018 is that :

"More expensive apparel items within each product line are frequently sold at a higher

average percentage markdown".

Pashigian and Bowen attempt to explain this phenomenon by using Lazear’s (1986)

theory of retail pricing and clearance sales. Lazear’s theory only deals with the sale of a

homogenous products and it cannot incorporate the parallel sale of several substitutes,

as is common practice in most stores. Thus, the offered theoretical explanation for the

empirical finding is not entirely convincing.17 The next result shows how the empirical

observation agrees with a fairly general prediction of our model that holds for any two

different qualities, for any positive levels of inventories before and after the clearance sale,

and for any distribution of values.

Proposition 5 Assume that the seller uses the revenue maximizing policy in a situation

where at time t = 0 there are n1 > 0 items of quality q and n2 > 0 items of quality s,

s < q. Assume also that at time t = T there are 0 < l1 ≤ n1 items of quality q , and 0 <

l2 ≤ n2 items of quality s left unsold. Then the percentage markdown - defined as the

difference between the prices of the same product at t = 0 and t = T divided by the price

at t = 0 - is always higher for the higher quality.

Proof. See Appendix.

We conclude this subsection with another related observation that can also be taken

to the data:

Proposition 6 Consider the revenue maximizing policy. Then, at any point in time t

where two different qualities are available, the price of the higher quality decreases quicker

than the price of the lower quality.

17For some special forms of the distribution of values, Lazear’s theory predicts that increasing the

dispersion in values for the product will lead to an increased markdown. Pashigian and Bowen identify

more expensive items (which contain more elements of fashion and style) with an increased dispersion.
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Proof. See Appendix.

V. Conclusion

We have studied the dynamic, revenue maximizing allocation of finite inventories consist-

ing of substitute qualities to a stream of privately informed agents that arrive randomly

before a deadline. The paper’s main contributions were:

1. The integrated model allowed us to add quantity/quality decisions to the traditional

pricing considerations for identical objects.

2. We have introduced a new method - based on a combination of the payoff equiv-

alence principle and a variational argument - to the analysis of inventory pricing

under random, sequential demand.

3. The analysis yields clear, testable implications about the pattern of optimal evolu-

tion of prices over time. These predictions can be taken to the data.

An important assumption has been that agents’ purchase decisions are not strategic in

their time dimension.18 Of course, if all agents can delay their purchase till the deadline

without cost, the optimal mechanism will be an auction that gathers all potential buyers

- this is the opposite extreme assumption to the one made in this paper where buyers

are infinitely impatient. It is of major theoretical and applied interest to study revenue

maximizing schemes that take into account the agents’ incentives to possibly delay their

transactions in less extreme cases. Since, as sales occur, prices may go up and inventories

get depleted, the decision whether to delay purchase to a later time is complex. The

same applies to the seller’s reaction to such buyer behavior which may need to include

mechanisms that are more complex than menus of posted prices or standard auctions.

Other major - but also difficult - generalizations would be the introduction of hetero-

geneous objects that are not necessarily similarly ranked by all buyers, or the introduction

of multi-unit demand. The latter would allow the study of dynamic bundling policies.

Such models need a multi-dimensional specification of private information.

18Recall that the model with infinite horizon is immune to this restriction.
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Finally, our analysis has considered a monopolist seller, but it would be very inter-

esting to characterize dynamic pricing equilibria among oligopolists that face randomly

arriving buyers who can decide where to buy.
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Appendix

Proof of Proposition 1. :

=⇒ If two reports of the agent that arrives at t lead to the same physical allocation,

then, in any incentive compatible mechanism, the associated payments should be the same

as well. Denote by Pj the payment that will be charged for the object with quality qj. A

direct mechanism is equivalent to a mechanism where the agent arriving at time t chooses

an object and a payment from a menu (qj , Pj)
kt
j=1. If some type x prefers the pair (qk, Pk)

over any other pair (ql, Pl) with qk > ql, then any type x̃ > x also prefers (qk, Pk) over

(ql, Pl). This implies that Qt (x̃,Πt) ≥ Qt (x,Πt) for any t and Πt. Finally, noting that

Qt (x,Πt) = ∅ is equivalent to allocating an object with quality equal to zero, implies that

an agent who arrives at time t gets object q(k) if he reports a type contained in the interval

(yk,Πt (t) , yk−1,Πt (t)). A similar argument shows that Qt (yi,Πt (t) ,Πt) ∈
{
q(i+1:Πt), q(i:Πt)

}

for i ∈ {1, 2, ..., kt}.

⇐= The proof is constructive: given a partition-based policy, we design a payment

scheme Pt (x,Πt) that, for any j ∈ {1, ..., kt}, induces type x ∈ [yj,Πt (t) , yj−1,Πt (t)) to

choose the object with type q(j:Πt). Without loss of generality, we assume that an agent

whose type is on the boundary between two intervals in the partition chooses the item

with higher type. Consider then the following payment scheme

Pt (x,Πt) =
kt∑

i=j

(q(i:Πt) − q(i+1:Πt))yi,Πt (t) + S(t) if x ∈ [yj,Πt (t) , yj−1,Πt (t)) (A1)

where S(t) is is some allocation- and type-independent function. Note that type x =

yj,Πt (t) is indifferent between
(
q(j:Πt), Pj

)
and

(
q(j+1:Πt), Pj+1

)
. Moreover, any type above

yj,Πt (t) prefers
(
q(j:Πt), Pj

)
over

(
q(j+1:Πt), Pj+1

)
, while any type below prefers

(
q(j+1:Πt), Pj+1

)

over
(
q(j:Πt), Pj

)
. Therefore, any type x ∈ [yj,Πt (t) , yj−1,Πt (t)) prefers

(
q(j:Πt), Pj

)
over

any other pairs in the menu.

Proof of Proposition 2: The proof proceeds by a sequence of three arguments:

first, we derive the expected revenue for any Markovian, non-randomized allocation policy

(Proposition 7); second, we derive the revenue-maximizing cutoff curves when only one

object remains (Claim 1); finally, we derive the revenue maximizing allocation policy if

two objects are left (Claim 2).

Proposition 7 Assume that
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1. If kt = 2, the designer uses the dynamic allocation cutoff-curves y2,2 (t) ≤ y1,2 (t),

i.e., the agent that arrives at time t gets: the object with quality q1 if his type is

xi ≥ y1,2 (t); the object with quality q2, if his type is xi ∈ [y2,2 (t) , y1,2 (t)); no object

if xi < y2,2 (t).

2. If kt = 1, the designer uses the dynamic cutoff—curves y1,qj (t), i.e., the agent that

arrives at time t gets the remaining object with characteristic pj if xi ≥ y1,qj (t) ,

and no object otherwise.

Then, the expected revenue from this policy is given by

∫ T

0

(q2y2,2 (t) +R (q1, t))λ (1− F (y2,2 (t))) e
−

∫ t
0
λ(1−F (y2,2(s)))dsdt +

∫ T

0

((q1 − q2) y1,2 (t) +R (q2, t)−R (q1, t)) ·

λ (1− F (y1,2 (t))) e
−

∫ t
0
λ(1−F (y2,2(s)))dsdt

where

R (qj , t) = qj

∫ T

t

y1,qj (s)λ(1− F (y1,qj (s))e
−

∫ s
t
λ[1−F (y1,qj (z))]dzds (A2)

is the expected revenue at time t if only one object with quality qj remains, given

that the dynamic allocation function y1,qj is used from t on.

Proof of Proposition 7. If only one object with characteristic qi is available at time

t, then the expected revenue is given by

qi

∫ T

t

y1,qi(s)h1,qi(s)ds

where h1,qi(s) represents the density of the waiting time till the first arrival of an agent

with a value that is at least y1,qi(s). Note that this density is equal to the density of

the first arrival in a non-homogenous Poisson process with rate λ(s)(1− F (y1,qi(s)). The

density of the time of the n−th arrival in a non-homogenous Poisson process with rate

δ(s) is given by (see Ross (1983))

gn(s) = δ(s)e−m(s)
m(s)n−1

(n− 1)!
, where m(s) =

∫ s

t

δ(z)dz (A3)

Thus, in our case, we obtain

h1,qi(s) = λ(s)(1− F (y1,qi(s))e
−

∫ s
t
λ(z)[1−F (y(z))]dz for t ≤ s ≤ T
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and (A2) follows.

If two objects are still available, the expected revenue is given by

∫ T

0

[
P
(2)
t ({q1, q2}) +R (q1, t)

]
h2,2(t)dt+

∫ T

0

[
P
(1)
t ({q1, q2}) +R (q2, t)

]
h1,2(t)dt (A4)

Here h1,2(t) represents the density of the waiting time till the first arrival of an agent

with a value that is at least y1,2 (t) if no arrival of an agent with value in the interval

[y2,2 (t) , y1,2 (t)) has occurred. Similarly, h2,2(t) represents the density of the waiting time

till the first arrival of an agent with a value in the interval [y2,2 (t) , y1,2 (t)) if no arrival of

an agent with value in the interval [y1,2 (t) ,∞) has occurred. Since the arrival processes

of agents with types in the intervals [y2,2 (t) , y1,2 (t)) and [y1,2 (t) ,∞), respectively, are

independent non-homogenous Poisson processes (see Proposition 2.3.2 in Ross (1983)),

using (A3) we obtain

h1,2(t) = λ (1− F (y1,2 (t))) e
−

∫ t
0
λ[1−F (y1,2(s))]dse−

∫ t
0
λ[F (y1,2(s))−F (y2,2(s))]ds

= λ (1− F (y1,2 (t))) e
−

∫ t
0
λ[1−F (y2,2(s))]ds

and

h2,2(t) = λ (F (y1,2 (t))− F (y2,2 (t))) e
−

∫ t
0
λ[F (y1,2(s))−F (y2,2(s))+1−F (y1,2(s))]ds

= λ (F (y1,2 (t))− F (y2,2 (t))) e
−

∫ t
0
λ[1−F (y2,2(s))]ds

Finally, recall that incentive compatibility implies that

P
(2)
t ({q1, q2}) = q2y2,2(t) and P

(1)
t ({q1, q2}) = q2y2,2(t) + (q1 − q2) y1,2(t),

Plugging the expressions for P
(2)
t ({q1, q2}) , P

(1)
t ({q1, q2}) , h1,2(t) and h2,2(t) into the ex-

pression for expected revenue (A4) yields the required formula.

Claim 1 If only one object remains, the dynamic revenue maximizing allocation curve

y1(t) solves

y1(t) =
1− F (y1(t))

f (y1(t))
+ λ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds. (A5)

The expected revenue at time t where Πt = qj is given by R (qj , t) = qjR (1, t) where

R (1, t) = λ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds (A6)
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Proof of Claim 1. If only the object with characteristic qj is available, it follows from

Proposition 7 that the expected revenue at time t is given by

R (qj, t) = qj

∫ T

t

y1,qj (s)λ(1− F (y1,qj (s))e
−

∫ s
t
λ[1−F (y1,qj (z))]dzds.

Let H(s) =
∫ s
t

λ[1− F (y1,qj (z))]dz. Then, we obtain

R (qj, t) = qj

∫ T

t

F−1

[
1−

H ′(s)

λ

]
H ′(s)e−H(s)ds.

This expression for revenue is appropriate for using a variational argument with respect

to the function H. The corresponding necessary condition for the variational problem

(i.e., the Euler-Lagrange equation) is

− (H ′(s))
2
+ 2H ′′(s) +

H ′(s)H ′′(s)f ′
(

F−1
(
1− H′(s)

λ

))

(
f
(
1− H ′(s)

λ

))2 = 0

Plugging back the expression for H(s) gives

−λ[1− F (y1,qj (s))]
2 − 2f(y1,qj (s))y

′

1,qj
(s)−

[1− F (y1,qj (s))]f
′(y1,qj (s))y

′

1,qj
(s)

f(y1,qj (s))
= 0

This implies that for any s ∈ [0, T ], the solution y1,qj (s) should satisfy

−y′1,qj (s)− y′1,qj (s)

(
1 +

(
1− F (y1,qj (s))

)
f ′(y1,qj (s))(

f(y1,qj (s))
)2

)
= λ

(
1− F (y1,qj (s))

)2

f(y1,qj (s))
(A7)

Since for any t , and for any differentiable y (t) it holds that

−y′ (t)

(
1 +

(1− F (y (t))) f ′(y (t))

(f(y (t)))2

)
=

d

dt

(
1− F (y (t))

f(y (t))

)
,

we can rewrite the necessary condition as

y′1,qj (s) + λ

(
1− F (y1,qj (s))

)2

f(y1,qj (s))
=

d

ds

(
1− F (y1,qj (s))

f(y1,qj (s))

)

Taking now the integral between t and T yields

∫ T

t

y′1,qj (s) ds+ λ

∫ T

t

(
1− F (y1,qj (s))

)2

f(y1,qj (s))
ds

=

∫ T

t

d

ds

(
1− F (y1,qj (s))

f(y1,qj (s))

)
ds

This is equivalent to:

24



y1,qj (T )− y1,qj (t) + λ

∫ T

t

(
1− F (y1,qj (s))

)2

f(y1,qj (s))
ds

=
1− F (y1,qj (T ))

f(y1,qj (T ))
−
1− F (y1,qj (t))

f(y1,qj (t))

Together with the boundary condition

y1,qj (T )−
1− F (y1,qj (T ))

f(y1,qj (T ))
= 0

we get (A5). The assumptions of increasing virtual type and finite density ensure that a

solution to (A5) exists for any t.

To complete the proof and obtain the expression for revenue (A6), note that the

expected revenue is given by R (qj , t) = qjR (1, t) where

R (1, t) =

∫ T

t

y1 (s)λ(1− F (y1 (s))e
−

∫ s
t
λ[1−F (y1(z))]dzds

Differentiating the above with respect to t gives

R′ (1, t) = λ(1− F (y1 (t)) (R(1, t)− y1 (t))

It is then straightforward to verify that the function
∫ T
t

[1−F (y1(s))]
2

f(y1(s))
ds satisfies the above

differential equation with the boundary condition R (1, T ) = 0.

We proceed now to characterize the revenue-maximizing allocation policy if there are

two objects left.

Claim 2 If two objects remain, the dynamic revenue maximizing policy is characterized

by two cutoff curves, y1 (t) and y2(t), where y1 (t) satisfies equation (A5) and where y2(t)

satisfies:

y2(t) =
1− F (y2(t))

f (y2(t))
+ λ

∫ T

t

[1− F (y2(s))]
2

f (y2(s))
ds−R (1, t) (A8)

Moreover, the expected revenue at time t for the case Πt = {1, 1} is given by

R({1, 1}, t) = λ

∫ T

t

[1− F (y2(s))]
2

f (y2(s))
ds. (A9)

Proof of Claim 2. We split the proof into two cases I. We consider first the case

where q1 > q2. That is, the seller needs to specify two different prices, and hence two
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different cutoff curves, y1,2(t) and y2,2(t). We can re-write the expected revenue given by

Proposition 7 as

∫ T

0

(
q1F

−1

(
1−

H ′(t)

λ

)
+ q2R(1, t)

)
H ′(t)e−H(t)dt

+(q2 − q1)

∫ T

0

[
F−1

(
1−

G′(t)

λ

)
−R(1, t)

]
G′(t)e−H(t)dt

where

∫ t

0

λ [1− F (y2,2(s))] ds : = H(t)

∫ t

0

λ [1− F (y1,2(s))] ds : = G(t).

The necessary conditions for the variational problem (i.e., the Euler-Lagrange equation)

with respect to the functions H(t) and G(t), respectively, are:

− (q2 − q1)G
′(t)

[
F−1

(
1−

G′(t)

λ

)
−R(1, t)

]
− q1

1
λ
(H ′(t))2

f
(

F−1
(
1− H′(t)

λ

))

−2q1
1
λ
H ′′(t)

f
(

F−1
(
1− H ′(t)

λ

)) + q2R
′(1, t)− q1

1
λ2

H ′(t)H ′′(t)f ′
(

F−1
(
1− H′(t)

λ

))

[
f
(

F−1
(
1− H′(t)

λ

))]3 = 0

and

−
2 1
λ
G′′(t)

f
(

F−1
(
1− G′(t)

λ

)) −R′(1, t)−

1
λ2

G′(t)G′′(t)f ′
(

F−1
(
1− G′(t)

λ

))

[
f
(

F−1
(
1− G′(t)

λ

))]3

−H ′(t)


−

1
λ
G′(t)

f
(

F−1
(
1− G′(t)

λ

)) + F−1

(
1−

G′(t)

λ

)
−R(1, t)


 = 0.

Plugging the expressions for H(t) and G(t) allows us to write the necessary conditions in

the following way:

− (q2 − q1)λ [1− F (y1,2 (t))] (y1,2 (t)−R(1, t))− q1
λ [1− F (y2,2 (t))]

2

f (y2,2 (t))
(A10)

−2q1y
′

2,2 (t)− q2R
′(1, t)− q1

y′2,2 (t) [1− F (y2,2 (t))] f
′ (y2,2 (t))

[f (y2,2 (t))]
2 = 0

and

[1− F (y2,2 (t))]

[
1− F (y1,2 (t))

f (y1,2 (t))
− y1,2 (t) +R(1, t)

]
− 2y′1,2 (t) (A11)

−R′(1, t) +
y′1,2 (t) [1− F (y1,2 (t))] f

′ (y1,2 (t))

[f (y1,2 (t))]
2 = 0
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Next, we show that a solution to the system of differential equations A10 and A11

is given by y1,2(t) = y1 (t) and y2,2(t) = y2 (t) where y1(t) and y2(t) solve the system of

equations:

y1 (t) =
1− F (y1(t))

f (y1(t))
+ λ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds (A12)

y2 (t) =
1− F (y2(t))

f (y2(t))
+ λ

∫ T

t

[1− F (y2(s))]
2

f (y2(s))
ds−R (t) . (A13)

Again, the assumptions of increasing virtual types and finite density guarantee the ex-

istence of solutions for (A12) and (A13). Note also that, since R(t) ≥ 0, we must have

y2 (t) ≤ y1 (t) , ∀t.

Differentiation of (A12) with respect to t gives

2y′1 (t) = −y′1 (t)
[1− F (y1 (t))] f

′ (y1 (t))

[f (y1 (t))]
2 − λ

[1− F (y1 (t))]
2

f (y1 (t))
.

Plugging the above expression into (A11), and using the fact that

R′(1, t) = −y1(t)λ (1− F (y1(t))) + λ (1− F (y1(t)))R(1, t) (A14)

yields

[
λ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds−R(1, t)

]
[λ (1− F (y1(t)))− (1− F (y2,2 (t)))] = 0

where last equality follows from Claim 1. Thus, we have showed that y1,2(t) = y1(t)

solves (A11) for any y2,2(t). We still need to show that y1,2(t) = y1(t) and y2,2(t) = y2(t)

solve equation A10. Differentiation of (A13) with respect to t gives

2y′2 (t) = −y′2 (t)
[1− F (y2 (t))] f

′ (y2 (t))

[f (y2 (t))]
2 − λ

[1− F (y2 (t))]
2

f (y2 (t))
−R′(1, t).

Plugging this equality into (A10), we have to show that

− (q2 − q1)λ [1− F (y1,2 (t))] (y1,2 (t)−R(1, t))− (p2 − p1)R
′(1, t) = 0.

For y1,2 (t) = y1(t), this equality holds by (A14).

II. We now consider the case with q1 = q2 = q. Since R (q, t) = qR(1, t), Proposition

7 implies that we can rewrite the expected revenue as

q

∫ T

0

(y2,2 (t) +R (1, t))λ (1− F (y2,2 (t))) e
−

∫ t
0
λ(1−F (y2,2(s)))dsdt.
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The proof that the revenue maximizing cutoff curves are given by y1(t) and y2(t) is

analogous to the above case, and we omit it here.

Proposition 7 implies then that

R({1, 1}, t) =

∫ T

t

(y2(s) +R (1, s))λ (1− F (y2(s))) e
−

∫ s
t
λ(1−F (y2(z)))dzds.

Differentiation with respect to t yields

R′({1, 1}, t) = λ (1− F (y2(t))) (R({1, 1}, t)− y2(t)−R (1, t)) . (A15)

Recall that y2(t) solves

y2(t) + R (1, t) =
1− F (y2(t))

f (y2(t))
+ λ

∫ T

t

[1− F (y2(s))]
2

f (y2(s))
ds (A16)

Using equation (A16), it is easy to verify that R({1, 1}, t) given by equation (A9) satisfies

differential equation (A15) with the boundary condition R({1, 1}, T ) = 0.

To complete the proof of the Proposition we have to show that the resulting cutoffs

are implementable, i.e. y2 (t) ≤ y1 (t) for any t ≤ T . Note that (A12) and (A13) imply

that y1 (t) is the solution to y (t) = H(y(t)) while y2 (t) is the solution to y (t) = G(y(t)).

Since G(y) ≤ H(y) holds for any y, the result follows.

Proof of Proposition 4. We start by showing that the expected revenue from the

optimal mechanism is linear in the q’s. That is, if at time t ≤ T the set Πt of the object

is still available, then the expected revenue is given by

R(Πt, t) =
kt∑

i=1

q(i:Πt)

(
yi (t)−

1− F (yi (t))

f (yi (t))

)
.

Our first step toward the above mentioned result consists of showing, by induction on the

number of objects, that there exist factors that depend on time but not on the qualities,

a1 (t) , ..., akt (t), such that

R(Πt, t) =
kt∑

i=1

q(i:Πt)ai (t) . (A17)

When only one object of quality q is available, the price for the object is given by qy1 (t)

and from Claim 1 it follows that the expected revenue is given by

R(q, t) = qλ

∫ T

t

[1− F (y1(s))]
2

f (y1(s))
ds.

Assume then that if at time t there are k objects with qualities Πt = (q1, q2, ...qk), the

expected revenue is given by

R(Πt, t) =
kt∑

i=1

q(i:Πt)ai.
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and consider now a situation with k + 1 objects at time t. Recall that

R (Πt, t) =
kt∑

i=1

∫ T

t

P i
s (Πt) hi,Πt (s) ds+

kt∑

i=1

∫ T

t

R
(
Πt\{q(i:Πt)}, s

)
hi,Πt (s) ds.

The second element of the sum is linear in qualities by the induction argument, while the

first element is linear by the definition of P i
s (Πt) (see equation (1)).

To see that ai (t) = yi (t) −
1−F (yi(t))
f(yi(t))

, note that, since ai (t) does not depend on Πt,

equations (A17) and (3) imply that

ai (t) = R (1i, t)−R (1i−1, t) = yi (t)−
1− F (yi (t))

f (yi (t))

The above argument shows that, at time t = 0, the marginal returns to qualities are

ordered, with the i−highest produced quality having also the i−highest marginal return

yi (0) −
1−F (yi(0))
f(yi(0))

. By the convexity of φ, the i−highest quality will have the i−highest

marginal cost as well, and the characterization of the optimal produced qualities follows.

As soon as the marginal return drops below φ′(0), the cost of producing another object

with a positive quality cannot be recovered, and this determines the optimal number of

produced objects.

Proof of Proposition 5. Denote by y = {yi}
n1+n2
i=1 the optimal policy given the

inventory in period t = 0. Our previous results imply that

P
(l1+l2)
T (ΠT ) = syl1+l2(T ); P

(n1+n2)
0 (Π0) = syn1+n2(0)

P
(l1)
T (ΠT ) = syl1+l2(T ) + (q − s)yl1(T ); P

(n1)
0 (Π0) = syn1+n2(0) + (q − s)yn1(0)

We obtain the following chain:

P
(n1)
0 (Π0)− P

(l1)
T (ΠT )

P
(n1)
0 (Π0)

≥
P
(n1+n2)
0 (Π0)− P

(l1)
T (ΠT )

P
(n1+n2)
0 (Π0)

⇔

P
(l1)
T (ΠT )

P
(n1)
0 (Π0)

≤
P
(l1)
T (ΠT )

P
(n1+n2)
0 (Π0)

⇔

syl1+l2(T ) + (q − s)yl1(T )

syn1+n2(0) + (q − s)yn1(0)
≤

syl1+l2(T )

syn1+n2(0)
⇔

qyl1+l2(T )

syn1+n2(0) + (q − s)yn1(0)
≤

yl1+l2(T )

yn1+n2(0)
⇔

q

syn1+n2(0) + (q − s)yn1(0)
≤

1

yn1+n2(0)
⇔

qyn1+n2(0) ≤ syn1+n2(0) + (q − s)yn1(0)⇔

(q − s)yn1+n2(0) ≤ (q − s)yn1(0)⇔ yn1+n2(0) ≤ yn1(0)
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The third line uses Proposition 1 and Remark 2 . The fourth line uses the fact that

for all 1 ≤ i, j ≤ n1 + n2 , yi(T ) = yj(T ) which is a consequence of equation 2. The last

inequality follows from Proposition 1.

Proof of Proposition 6. Assume that the inventory at time t is Πt, and consider two

different qualities q(j1:Πt) and q(j2:Πt) such that q(j1:Πt) > q(j2:Πt). Recall that the prices

associated with each quality satisfy

P
(jl)
t (Πt) =

kt∑

i=jl

(q(i:Πt) − q(i+1:Πt))yi,Πt (t) , l = 1, 2

where y denotes the (quality independent) revenue maximizing allocation policy. Thus,

P
(j1)
t (Πt) = P

(j2)
t (Πt) +

j2−1∑

i=j1

(q(i:Πt) − q(i+1:Πt))yi,Πt (t)

which implies

dP
(j1)
t (Πt)

dt
=

dP
(j2)
t (Πt)

dt
+

d[
∑j2−1

i=j1
(q(i:Πt) − q(i+1:Πt))yi,Πt (t)]

dt
.

Lemma 1 (proven below) yields that

dyi,Πt (t)

dt
≤ 0, ∀i

which implies

dP
(j1)
t (Πt)

dt
≤

dP
(j2)
t (Πt)

dt

Since these last derivatives are negative (which is implied again by Lemma 1 ) the result

follows.19

Lemma 1 In the revenue maximizing mechanism, the cutoffs determining the allocation

policy are decreasing with time. That is

y′i(t) ≤ 0 for i ∈ {1, ..., kt} and t ∈ [0, T ).

Proof. We prove the result by induction on the number of the available objects kt. If

kt = 1, differentiating (A5) w.r.t. t gives

y′1(t)
∂

∂y1(t)

(
y1(t)−

1− F (y1(t))

f (y1(t))

)
= −λ

[1− F (y1(t))]
2

f (y1(t))
.

19The same argument also shows that the difference between the two prices is monotonically decreasing.
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The result follows then since the r.h.s. is negative, and since the virtual valuation is

assumed to be increasing. Assume then that the statement holds for kt = l, and consider

the case where kt = l + 1. The properties of the revenue maximizing mechanism imply

that l highest curves yi(t) coincide with those relevant for the case where kt = l. Thus

y′i(t) ≤ 0 for i ∈ {1, ..., l} . Differentiating w.r.t. t the expression (2) for yl+1(t) gives

y′l+1(t)
∂

∂yl+1(t)

(
yl+1(t)−

1− F (yl+1(t))

f (yl+1(t))

)
= λ

[
[1− F (yl(t))]

2

f (yl(t))
−
[1− F (yl+1(t))]

2

f (yl+1(t))

]
.

(A18)

Proposition 1 implies that yl+1 (t) ≤ yl (t) for any t ∈ [0, T ). There are two cases:

1. There exists t ∈ [0, T ) such that yl+1(t) = yl(t). Then, (A18) implies that y′l+1(t) =

0.

2. For any t ∈ [0, T ) we have yl+1 (t) < yl (t). Notice that the function [1−F (y)]2

f(y)
is

decreasing if and only if the virtual valuation is increasing. Therefore, an in-

creasing virtual valuation implies that the r.h.s. of (A18) is negative and that

∂
∂yl+1(t)

(
yl+1(t)−

1−F (yl+1(t))

f(yl+1(t))

)
> 0. This yields y′l+1(t) < 0, and completes the

proof.
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