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Abstract

We study models where two sellers simultaneously decide on their discrete supply of a homoge-

nous good. There is a �nite, not necessarily large, number of buyers who have unit demand and

privately known valuations. In the �rst model, there is a centralized market place where a uniform

auction takes place. In the second model, there are two distinct auction sites, each with one seller,

and buyers decide where to bid. Our results shed some light on the conditions leading to either the

emergence of dominant marketplaces or to the coexistence of several competing sites. Using the

theory of potential games, we show that in the one auction site model there is always an (almost

symmetric) equilibrium in pure strategies. This equilibrium approximates the Cournot outcome

as the number of buyers becomes large. In contrast, if the distribution of buyers values has an

increasing failure rate, and if the marginal cost of production is relatively low, there is no pure

strategy equilibrium where both sellers make positive pro�ts in the competing sites model. We also

identify conditions under which an equilibrium with a unique active site exists. Technically, we

are able to deal with the �nite and discrete models by using several results about order statistics

developed by Richard Barlow and Frank Proschan (1965, 1966, 1975).
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1 Introduction

We study models where two sellers simultaneously decide on their (discrete) supply of a homogenous

good, and where there is a �nite, not necessarily large, number of buyers who have unit demand and

privately known valuations.1 In the �rst model, the sellers bring their supply to a centralized market

place where a uniform auction takes place. Thus, by the intrinsic rules of the mechanism, all sold units

command the same price. In the second model, there are two distinct auction sites, each with one seller.

Before observing their value, but after observing the respective supplied quantities at each site, buyers

decide which auction to attend (again, each auction is a uniform price one). In principle, each auction

may have its own equilibrium price.

Our results shed some light on the conditions leading to either the emergence of one dominant

marketplace or the coexistence of several competing sites. In the one auction site model there is always

an (almost symmetric) equilibrium in pure strategies. This equilibrium approximates the Cournot

outcome as the number of buyers becomes large. In contrast, if the distribution of buyers values has

an increasing failure rate (a condition assumed in most of the literature, which implies that marginal

revenue is decreasing), and if the marginal cost of production is relatively low, there is no pure strategy

equilibrium where both sellers make positive pro�ts in the competing sites model. In other words,

two distinct auction sites cannot coexist in equilibrium under these conditions. Coexistence becomes

possible only if the marginal cost of production is su¢ ciently high. We also identify conditions under

which an equilibrium with a unique active site exists.

Another goal of this paper is to revisit several classical scenarios in monopoly and oligopoly theory.

These theories discard the standard assumption of competitive analysis concerning the large number

of producing �rms (sellers), but they keep the assumption that the number of consumers (buyers) is

large. Our model has both a small number of sellers with endogenous supply, and a small number of

buyers.2 This framework is appealing in many situations, in particular in markets for inputs where both

upstream and downstream markets are relatively concentrated oligopolies. Technically, we are able to

deal with the �nite and discrete models by using several results about order statistics developed by

Richard Barlow and Frank Proschan (1965, 1966, 1975).3

One way to unify the two main models of the paper is in terms of buyers�switching cost. If the

switching cost is high, that is, once buyers decide to place a bid in one auction they cannot switch to

the other, we obtain the model with two competing auction sites. If the switching cost is low, then an

ascending clock auction a la Demange-Gale-Sotomayor (this is a variant with money on Gale-Shapley�s

1Most qualitative results can be generalized to settings with more sellers.
2The parallels between a single-good auction theory and monopoly are well-known - see Bulow and Roberts (1989).

Hansen (1988) studies a model where sellers compete for the right to become the sole supplier to a unique buyer whose

purchase depends on the winning bid.
3For other applications of Barlow and Proschan�s results see Moldovanu, Sela and Shi (2005) and Hoppe, Moldovanu

and Sela (2006).
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deferred acceptance algorithm) where buyers shift demand to the cheaper unit, leads to an e¢ cient

outcome (conditional on supplied quantities). This outcome is equivalent to the one of the uniform

price auction in the single site model - in particular, all units are sold at a single market price.

Viewed in this perspective, the competing auctions model is one where, in the �rst (quantity-setting)

stage, the sellers compete for market share, i.e., for the buyers that will become locked-in at the second

stage (see Klemperer, 1987 for an early analysis of the forces at play in such models). By increasing

quantity, a seller attracts more buyers.

�Lock-ins�appear in many settings and have a variety of reasons such as transaction costs associ-

ated with operating via several technologically di¤erent platforms/clearing houses, uncertainty about

the quality/quantity o¤ered at other marketplaces, �loyalty�contracts with operators, ex-ante market

speci�c investments, and various forms of network externalities.

On the other hand, a model with a centralized auction site and with endogenous supply is better

suited for the study of some modern markets where all transactions are executed at market price, i.e.,

order driven periodic auctions in �nancial markets, or markets for inputs such as electricity or gas.4 At

online auction sites such as eBay there are often several simultaneous auctions for identical commodities

(e.g., CPU�s). Sajid et al. (2004) empirically study such parallel auctions and �nd that a signi�cant

proportion of bidders are indeed active across the competing auctions: they repeatedly place bids in

the auctions with the lowest standing bid. Moreover, prices tended to be uniform across auctions.

In contrast to our paper, most of the papers in the relatively thin literature on competing auctions

consider models with several sellers endowed with a single unit of a homogenous good, and with several

buyers with unit demand who decide which auction to attend. Thus, total demand and supply are

�xed exogenously, whereas total supply is endogenous in our models. Moreover, most of these papers

use some kind of �large market assumption� for their main results (i.e., individual agents ignore the

e¤ect of their own actions on prices) while such an assumption is not needed here. It is not always clear

whether such assumptions are consistent with a limit obtained in small markets of increased size.

Peters and Severinov (2006) consider several sellers who set reserve prices at their own auctions

sites and then conduct second price auctions. A large number of buyers with unit demand can move

among auction sites. The main consequence of this freedom (i.e., absence of switching costs) is that

there exists an e¢ cient equilibrium (conditional on reserve prices). This is consistent with the insight

obtained from the models that mimic features of the Gale-Shapley deferred acceptance algorithm (such

as our model of competing sellers at a unique auction site) and should be contrasted with earlier models

such as McAfee (1993)5 or Peters and Severinov (1997) where buyers can place only one bid, thus

4Lengwiler (1999), Back and Zender( 2001) and McAdams (2006) analyze endogenous supply in monopolistic models

where the seller adjusts supply after seeing the realization of demand, and where bidders demand several units. LiCalzi

and Pavan (2006) allow the monopolist to ex-ante commit to a supply function. This is in the spirit of Klemperer and

Meyer (1989) who study supply-function equilibria in oligopoly with demand uncertainty.
5He considers several sellers o¤ering auctions at �xed sites (each seller at another site). His analysis assumes that the
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leading to an ine¢ ciency stemming from the coordination problem.

The role of a unique marketplace is also the theme of Moreno and Ubeda (2006) who introduce

an explicit element of price formation in the traditional Cournot oligopoly story (while keeping the

assumption that there is a large number of buyers). Their starting point is the classical paper by

Kreps and Scheinkman (1983) who study a two stage game, with capacity choice in the �rst stage, and

Bertrand competition in the second stage. Kreps and Scheinkman show that the unique equilibrium

coincides with the Cournot outcome. Moreno and Ubeda (2006) look at the two stage model where

�rms �rst choose capacity and then set reservation prices at which they are willing to sell their entire

capacity. The ensuing supply function is used to clear the market. The main di¤erence to the Kreps

and Scheinkman analysis is that all supply is sold at market price whereas, in Kreps and Scheinkman�s

model each �rm charges its own price. This allows them to avoid several di¢ culties appearing in the

Kreps-Scheinkman model.6

If we introduce reserve prices in our model of competing sellers at one auction site, and if we let the

number of buyers go to in�nity (which is the standard assumption in the literature) it can be shown

that, if quantity is optimally adjusted to the number of buyers, the marginal gain from a reserve price

goes to zero.7 The limit outcome is then the classical Cournot one - corresponding to the main result

of Moreno and Ubeda (2006).

An interesting strand that allows for both a small number of buyers and a small number of sellers

is the literature on the so-called strategic market games, following the pioneering work by Shapley and

Shubik (1975). In these models both buyers and sellers bid quantities, and transactions are cleared

at a price equal to the ratio of demand to supply (thus, commodities are allocated in proportion to

bids). Almost the entire literature identi�es the number of trading sites (or �posts�) with the number

of traded commodities. In other words, there is a unique trading site for each traded commodity where

all demand and supply of that commodity is cleared. A notable exception is Koutsougeras (2003) who

allows for two separate trading sites for the same good. In his model traders can send quantity bids

to either one, or to both sites. He shows via an example that the �Law of One Price�need not hold

in equilibrium. Although di¤erent trading prices open up arbitrage opportunities for agents who can

shift their demand/supply (which seems inconsistent with the equilibrium idea), these opportunities

economy is large, and therefore it ignores the e¤ects of individual buyers on prices. In particular, it ignores the fact that

a change in one seller�s mechanism a¤ects the distribution of buyers at his own and at other sites.
6The K-S result critically depends on a particular rationing rule used when capacity is binding. Davidson and Deneckere

(1986) show that the Cournot outcome cannot be the equilibrium of the two stage game for any other rationing rule.

Moreover, for a wide range of capacity choices, the equilibrium at the price competition stage is in mixed strategies,

leading to ex-post regret.
7This result is based on an analogous observation for a monopolistic �rm that optimally adjusts quantity in response to

a varying number of buyers. Since an increase (decrease) in quantity causes a decrease (increase) in price, a binding reserve

price becomes super�uous as an instrument to control price. This should be contrasted to what happens if competing

sellers have only one unit to sell (Burguet and Sakovics, 1999)
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disappear when individual agents (who have, relatively speaking, a �large� impact if the number of

traders is small) try to take advantage of them. Such phenomena, which also appear in our model,

nicely illustrate the caution that needs to be employed when dealing with models with a small number

of traders. In particular, market structure may matter a lot: in our model, even mere equilibrium

existence is a¤ected by it.

Our model of competing auction sites with two possibly distinct prices is related to that of Ellison,

Fudenberg and Mobius (2004). These authors study a situation where both sellers and buyers (each

with unit demand/supply) simultaneously choose one of two auction sites.8 Thus, both buyers and

sellers are locked-in at their respective sites, and both total supply and demand in the market are �xed.

Prices are determined by uniform-price auctions at each site (and thus by the ratio of buyers to sellers

at each location).9 Their elegant analysis ignores the integer constraints, and some results hold only for

markets with large numbers of traders.10 Ellison et al. focus on the conditions leading to the existence

of equilibria where two auction sites of unequal size can coexist. Their solved examples involve the

uniform and exponential distributions of values � thus both display an increasing failure rate. Their

coexistence results should be contrasted to ours under this assumption. The di¤erence is mainly due

to the endogenous supply feature in our model.

In a di¤erent vein, Neeman and Vulkan (2001) study the coexistence of two forms of trade: direct

bilateral negotiations and centralized markets.11 In their model, buyers with a high willingness to pay

and sellers with low costs prefer to trade through a centralized market. This leads to an unraveling of

direct negotiations, so that ultimately, all traders opt for trading through the centralized market. Their

analysis uses a reduced form formulation and depends on the assumption that there are large numbers

of traders.

The present paper is organized as follows. In Section 2 we describe the basic model ingredients

and introduce useful de�nitions and notation. In Section 3 we study the case of one auction site. In

Subsection 3.1 we start with a monopolistic seller using a uniform price auction. We focus on the optimal

supplied quantity, and we show that it increases in the convexity of the distribution function of buyers�

valuations. This allows us to derive optimal quantity estimates for large, non-parametric families of

distributions (i.e., with monotone hazard rates, concave, convex) . In subsection 3.2 we remain in the

single auction-site model, but add competition among sellers: each of two ex-ante symmetric sellers

provides the auctioneer with several units of a homogenous good, and the auctioneer sells the total

quantity via a uniform price auction. With a large number of buyers, this is equivalent to classical

Cournot competition. Using the potential game approach (due to Monderer and Shapley, 1996) we

8This is an application of a more general framework developed by Ellison and Fudenberg (2002)
9We could have also presented our model by assuming that: 1) every unit is owned by a di¤erent seller; 2) the operator

of each auction site restricts entry of sellers in order to maximize total pro�t at the site.
10Anderson et al. (2005) retake this analysis while incorporating the integer constraints since ignoring them may lead

to inconsistent results.
11Genesove (1995) o¤ers an insightful study of such an arrangement in the New England �sh industry.
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prove the existence of pure-strategy Nash equilibria for any constant marginal cost. Moreover, we show

that an �almost� symmetric equilibrium, where the supplied quantities di¤er by at most one unit,

always exists. Finally, we use the above described estimates in the monopoly case to give estimates for

the total quantity under competition. In Subsection 3.3 we o¤er an example illustrating that a merger

of auction sites may not be pro�table if sellers optimize supply before and after a merger (although

a merger is always e¢ ciency increasing). This contrasts an earlier insight due to Schwartz and Ungo

(2002) who considered sellers with exogenously given quantities.

In Section 4 we turn to the model with two distinct auction sites, each with one seller: First, the

two sellers simultaneously choose the number of units supplied in their respective auctions. Before

they learn their valuations, but after they observe the sellers�decisions, buyers choose which auction

to attend. In the last stage, each buyer learns his valuation and submits a bid in his selected auction.

In Subsection 4.1 we study the possibility of coexistence of two auction sites. A main result is that if

the marginal production cost is low enough, and if the distribution of buyers�values has an increasing

hazard rate then there is no pure strategy equilibrium in which both sellers are active and make positive

pro�ts. The reason is that each seller continually increases supply in order to snatch buyers from the

other site. A coexistence equilibrium is possible only if the marginal cost of production is high enough.

Then, the unilateral incentives to increase supply are capped by the production cost. In Subsection 4.2

we study equilibria where only one auction site is active (i.e., the other seller prefers to stay out). Such

an equilibrium is possible if the optimal monopolistic quantity produced by the active seller is high

enough to deter entry � this happens, for example, if the distribution of buyers�values is su¢ ciently

convex, and if the marginal cost is not too high.

In Section 5 we compare the equilibrium quantities and prices across three di¤erent models (monopoly,

competition at one auction site, and two competing auction sites) under the assumption that there is

a large number of buyers. We show that, under a mild condition, the monopoly model has the highest

price and lowest quantity in equilibrium. Furthermore, if the equilibrium supply is relatively high (e.g.,

if the production cost is low and the distribution of buyers�valuations is su¢ ciently convex), the model

with two auction sites is more competitive than the model with one auction site: the equilibrium price

is lower and the equilibrium quantity is higher in the former model. Finally, if the equilibrium supply

is relatively low, then the reverse is true.

Section 6 contains several concluding comments. Appendix A contains several useful results from

the literature on order statistics. Appendix B contains all proofs.
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2 The Model

There are two competing sellers and n � 2 buyers. The sellers can each produce several units of a

homogenous good. Each buyer has unit demand. The valuation of buyer j for a unit of the good is

private information to j: Valuations are drawn independently of each other from the interval [0; T ] ; T �

1; according to a distribution function F that is common knowledge.

We consider two di¤erent competition models among the sellers:

1. One auction site: Sellers 1 and 2 simultaneously provide k1 and k2 units to the auctioneer,

respectively. Then the auctioneer sells the (k1 + k2) units via a uniform price auction. The revenue of

each seller is the product of the equilibrium price and his supplied quantity.

2. Two competing auction sites: In the �rst stage, sellers 1 and 2 simultaneously choose the

number of objects for sale ki, i = 1; 2; in their own auctions. In the second stage, before they learn

their valuations, but after they know the decision made by the sellers in the �rst stage, buyers choose

whether to attend auction 1 or 2. In the third and last stage, each buyer learns his valuation and

submits a bid in his selected auction (each of the two auctions is a uniform price auction). The revenue

of each seller is the product of his supplied quantity and equilibrium price in his own auction.

2.1 Notation

We use the following notation: Xk;n denotes k-th order statistic out of n independent valuations dis-

tributed according to F (note that Xn;n is the highest order statistic, and so on..). The distribution

Fk;n and the density fk;n of Xk;n are given by

Fk;n(x) =

nX
j=k

�
n

j

�
F (x)j [1� F (x)]n�j

fk;n(x) =
n!

(k � 1)!(n� k)!F (x)
k�1[1� F (x)]n�kf(x)

We denote by EXk;n the expected value of Xk;n.

The failure rate (or hazard rate) of a distribution F is de�ned by:

� (x) =
f (x)

1� F (x)

A distribution function F has an increasing failure rate (IFR) if its failure (or hazard) rate, � (x) ;

is increasing. Analogously, F has an decreasing failure rate (DFR) if � (x) is decreasing. Note that

convexity of F implies IFR , while DFR implies concavity. The only distribution that is both concave

and convex is the uniform, while the only distribution that is both IFR and DFR is the exponential.

A distribution function F is star-shaped on [0; T ] if F (x)=x is increasing in x. Let X(Z) have

distributions F (G) such that F (0) = G(0) = 0: Distribution F is star-shaped with respect to G if the

function G�1F (x) is star-shaped. Notice that :
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1. If F (0) = 0 = G (0) ; G�1F convex implies G�1F star-shaped.

2. If G is the exponential distribution, then G�1F convex is equivalent to F being IFR.

3. If G is uniform, then G�1F convex is equivalent to F is convex.

3 One Auction Site

We discuss �rst the model of a uniform price multi-object auction with n buyers and a single, monopolist

seller with variable supply. The derived insights will be repeatedly used in the analysis of competition

among sellers below.

3.1 Monopoly seller

The seller decides on the supply k , and then the buyers decide what to bid in an uniform price auction

for k units. We do not explicitly analyze here the use of exclusion tools such as reserve prices and entry

fees. Thus all n buyers have an incentive to participate in the auction. Note that in an auction with

endogenous quantity and large number of buyers, the marginal gain from setting optimal reserve price

is small if quantity is optimally set. The intuition is provided by the fact that the realizations of Xn�k:n

are very close to EXn�k;n if n is large. The seller can control EXn�k;n by varying the quantity k: If

the reserve price is binding and enhancing revenue, the seller can always set the quantity to k0 such

that, approximately, EXn�k0;n = r: After this adjustment, the reserve price is redundant.

We assume �rst that the seller has a zero cost of producing the object. If the seller o¤ers k > n

objects, it is obvious that the equilibrium price is zero, and the seller has zero pro�t. Thus, without

loss of generality, we restrict attention to the case k � n: In the auction, each of the k highest buyers

wins a single unit, and pays the equilibrium price Xn�k;n. In expectation, the seller�s maximization

problem is given by

max
k
R (k; n) = max

k
kEXn�k;n

The relation between the optimal number of objects and the distribution of the buyers�valuation is

as follows:

Proposition 1 Consider two distributions G;F leading to optimal supplies k�G(n) and k
�
F (n) , respec-

tively, when there are n buyers. If G�1F is star-shaped then k�G(n) � k�F (n):

Proposition 1 implies the following two corollaries:

Corollary 1 If F is IFR (DFR), and n is large, then k�F (n); the optimal supply in an auction with n

buyers satis�es k�F (n) � (�) n
e ; where e is the natural logarithm basis.
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Corollary 2 If F is convex(concave), then k�F (n); the optimal supply in the auction with n buyers

satis�es k�F (n) � (�) n2 :

The following result considers the function k�F (n) that relates the optimal supply to the number of

buyers. It shows that the �slope�of this function is less than unity if F is IFR (thus, the di¤erence

n� k�(n) weakly increases in n)

Proposition 2 Let k�F (n) be the optimal number of objects in the auction with n buyers. If F is IFR,

then, for all n; k�F (n+ 1)� k�F (n) � 1:

Remark 1 When n is large we have the approximation

EXn�k;n � F�1
�
n� k
n

�
Hence, the seller�s revenue in our auction is

R1 (k; n) = kEXn�k;n � kF�1
�
n� k
n

�
= kF�1

�
1� k

n

�
Consider now a monopolist seller facing n buyers, each with unit demand and valuation distribution F:

The monopolist chooses p to maximize his expected revenue.

R2 (p; n) = np [1� F (p)]

Setting k = n [1� F (p)] ; or equivalently p = F�1
�
1� k

n

�
; we see that the monopoly and auction models

are equivalent if the number of buyers is su¢ ciently large. In particular, p�; the limit equilibrium price

in a single auction with endogenous quantity and a su¢ ciently large number of buyers is given by

�(p�) =
f (p�)

1� F (p�) =
1

p�

Note that an increase of the distribution of the buyers�valuations in the hazard rate order (which implies

�rst-order stochastic dominance) yields a higher equilibrium price.

Example 1 Let F (x) = x1=a (a > 0) with support [0; 1] : When n is large, the seller�s revenue if he

sells k objects is

R (k; n; a) = kEXn�k;n � kF�1
�
n� k
n

�
= k

�
n� k
n

�a
The optimal k is

k�F (n) =
1

a+ 1
n

and we have k�F (n; a)
� < n=2 if a > 1 and k�F (n; a) > n=2 if a < 1: The limit equilibrium price is

p�(a) = ( a
a+1 )

a:

9



Assume now that the seller faces a constant marginal cost of producing one unit, and denote this

cost by c � 0: The seller�s maximization problem is

max
k
� (k; n) = max

k
R (k; n)� ck = max

k
k(EXn�k;n � c)

The marginal revenue from an additional object is given by R(k + 1; n) � R(k; n): The following

result follows from the observation that the marginal revenue is decreasing in the number of objects if

F is IFR.

Proposition 3 If F is IFR, the optimal number of units k�F (n; c) decreases in c for �xed n:

3.2 Competition among sellers at a unique auction site

We consider now two sellers competing to sell units to n buyers through a single, uniform-price auction.

Sellers 1 and 2 provide k1 and k2 objects to the auctioneer, respectively. Then the auctioneer sells

(k1 + k2) through the uniform price auction. Throughout of this section, we assume for simplicity that

c = 0: All main results can be immediately extended to the case of positive marginal costs. Moreover,

the main result, existence of equilibria of pure strategies generalizes to a setting with several sellers.

If (k�1 ; k
�
2) is an equilibrium, then for all s 2 f�k�i ; :::; n� k�i � k�j g it must hold:

k�iEXn�k�i�k�j ;n � (k
�
i + s)EXn�k�i�k�j�s;n � 0 , i = 1; 2 (1)

The following example illustrates several interesting phenomena: 1) Symmetric and asymmetric

pure strategy equilibria may coexist; 2) Symmetric pure strategy equilibria may not exist;12 3) As the

number of buyers gets large, all equilibria converge to the symmetric one.

Example 2 Suppose that F is uniform. Given k2; �rm 1 chooses k1 to maximize

R1 = k1EXn�(k1+k2);n =
k1 (n� k1 � k2)

n+ 1

If k1 is optimal, then for any s = �k1; :::; n� k1 � k2

k1 (n� k1 � k2)� (k1 + s) (n� k1 � k2 � s) � 0

s (s� n+ 2k1 + k2) � 0

Setting s = 1;�1; we get
1

2
(n� k2 � 1) � k1 �

1

2
(n� k2 + 1) (2)

Similarly, if k2 is optimal for �rm 2; we obtain:

1

2
(n� k1 � 1) � k2 �

1

2
(n� k1 + 1) (3)

12Amir and Lambson (2000) exibit a su¢ cient condition for the existence of a unique equilibrium in the standard model

of Cournot competition.
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Combining equation (2) and (3), we get

k1 � 1

2
(n� k2 � 1) �

1

2

�
n� 1

2
(n� k1 + 1)� 1

�
) k1 �

1

3
(n� 3)

k1 � 1

2
(n� k2 + 1) �

1

2

�
n� 1

2
(n� k1 � 1) + 1

�
) k1 �

1

3
(n+ 3)

Therefore,

n

3
� 1 � k1 �

n

3
+ 1 (4)

n

3
� 1 � k2 �

n

3
+ 1

1) If n = 3m there are three possible pure strategy equilibria (see details in the Appendix)

k�1 = m+ 1; k�2 = m� 1

k�1 = m� 1; k�2 = m+ 1

k�1 = k�2 = m

2) If n = 3m+ 1; there are also three pure-strategy equilibria

k�1 = m+ 1; k�2 = m

k�1 = m; k�2 = m+ 1

k�1 = k�2 = m

3) If n = 3m+ 2; there are only two asymmetric pure strategy equilibria

k�1 = m; k�2 = m+ 1

k�1 = m+ 1; k�2 = m

We turn now to a proof of existence of pure-strategy Nash equilibria. Since the strategy spaces are

discrete and since the payo¤ functions are not continuous, it is obvious that the standard approach

cannot work. Fortunately, it turns out that our game is an ordinal potential game in the sense of

Monderer and Shapley (1996). Thus it possesses a Nash equilibrium in pure strategies, corresponding

to a maximizer of the potential function. The next two results hold also for the case where c > 0.

Theorem 1 A pure strategy Nash equilibrium always exists in the competition model with one auction

site.

By taking a closer look at the potential function, we also get the existence of an �almost�symmetric,

pure-strategy Nash equilibrium:

De�nition 1 An equilibrium (k�1 ; k
�
2) is quasi-symmetric if

jk�1 � k�2 j � 1:
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Theorem 2 A pure strategy, quasi-symmetric Nash equilibrium always exists in the competition model

with one auction site.

Remark 2 Consider now a large number of buyers. If the sellers supply k1 and k2 units, respectively,

the revenues are approximated by

�i = kiEXn�(ki+kj);n � kiF�1
�
n� ki � kj

n

�
= kiF

�1
�
1� ki + kj

n

�
This is equivalent to a standard Cournot model where the inverse demand function is given by

P (k1 + k2) = F
�1
�
1� k1 + k2

n

�
In particular, under the conditions of Amir and Lambson(2000), in the limit as n gets large, there exists

a unique symmetric equilibrium.

We conclude this Section with the following equilibrium characterization result:

Proposition 4 1) Let F be convex (concave). Then, in any equilibrium, the total supplied quantity is

higher (lower) than 2
3n: In particular, if the distribution of buyers�valuations is uniform, then the total

supplied quantity is 2n
3 units. 2) If F is IFR (DFR) , and if n is large, then in any equilibrium, the

total supplied quantity is higher (lower) than 2
1+en: In particular, if the distribution of buyers�values is

exponential, the supplied quantity is 2
1+en units.

3.3 Merging auction sites

Schwartz and Ungo (2002) consider a model where two monopolistic auction houses with separate sets

of buyers decide to merge, and show that such a merger always increases total revenue (it is obvious

that a merger increases total welfare since it yields an overall e¢ cient allocation of the units). In their

model, the supplied quantities before the merger are exogenous, and the merged entity simply o¤ers the

sum of the ex-ante quantities to the united set of buyers. In other words, the sellers do not optimize

their supply, and, moreover, do not adjust it after the merger. In the following example, we look at the

case of two separate auction sites, each with one seller. After a merger of the auction sites, the sellers

remain separate and compete by optimizing the quantity supplied to the merged site. We show that,

unless the number of buyers is small, the post-merger total revenue goes down, which implies that at

least one of the sellers loses from the merger. Thus, e¢ ciency gains are per-se, not enough to explain

mergers of auction sites if we assume that multiple competing sellers use the merged site and that

the site operator earns a �xed fraction of revenue. This conforms to the usual intuition from Cournot

analysis, but our results also identi�es the role played in this argument by a large number of buyers.

Example 3 Assume that F is uniform on [0; 1] and assume that, before a merger, the two auction sites

face n1 = n2 buyers. For the uniform distribution we know that the optimal supply at each site is ni
2 ;
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i = 1; 2: Thus total pro�t is given by:

�1 + �2 =
n21=4

n1 + 1
+
n22=4

n2 + 1
=

n21
2 (n1 + 1)

After the merger, the unique auction site faces 2n1 buyers. For the uniform distribution, we know that

the equilibrium total supply in the competition model equals 4n13 ; two-thirds the number of buyers. Thus,

total revenue is

�c1 + �
c
2 =

4

3
n1
2n1 � 4

3n1

2n1 + 1
=

8n21
9 (2n1 + 1)

The revenue di¤erence is

�c1 + �
c
2 � (�1 + �2) =

8n21
9 (2n1 + 1)

� n21
2 (n1 + 1)

= n21
7� 2n1

18 (2n1 + 1) (n1 + 1)

Thus, if n1 � 4; total revenue after the merger is lower.

Our next result generalizes the above observation to any distribution, as long as the number of

buyers is su¢ ciently large.

Proposition 5 Assume that two separate auction sites, each with one seller and ni = m buyers, merge,

and assume that the two sellers subsequently compete in a unique auction with 2m buyers. If m is large

enough, total revenue goes down.

4 Competition among auction sites

We now consider two competing, uniform price, multi-unit auctions. The two sellers simultaneously

choose the number of units for sale ki, i = 1; 2 in their respective auctions. The buyers observe the

respective supplies at each site, and then decide where to bid, and what bid to place. Since each auction

is uniform, the bidding part of the decision is simple, and of no further concern: each bidders places

a bid equal to his valuation. Assume then that n1 buyers compete in auction 1 for k1 units, while n2

buyers compete in auction 2 for k2 units, where k1 + k2 < n = n1 + n2:

De�nition 2 A pro�le (n�1; k
�
1 ;n

�
2; k

�
2) is an equilibrium of the competing auctions model if :

(i) k�i maximizes seller i
0s revenue given k��i:; n

�
1; n

�
2: That is, no seller wishes to adjust supply.

(ii) Given (k�1 ; k
�
2) and given all other buyers� decisions, no buyer h has an incentive to switch to

another auction site.

Note that in an equilibrium with positive pro�ts at two auction sites we cannot have k�1 + k
�
2 = n:

In that case, the supply at one auction site (at least) is no less than the number of buyers , and the

respective price is then zero.

The unit price in auction i is given by EXn�i�k�i ;n�i : The following Lemma gives a condition on the

prices at the two sites that must hold in equilibrium:

13



Lemma 1 Consider any �xed strategy pro�le for the two sellers and for all buyers except h. Then,

it is optimal for h to join the auction with the lower expected price. Moreover, in any equilibrium,

(n�1; k
�
1 ;n

�
2; k

�
2) it must hold that

EXn�i�k�i ;n�i � EXn�j�k�j ;n�j ) EXn�i�k�i ;n�i � EXn�j+1�k�j ;n�j+1

In other words, in equilibrium, it cannot be pro�table for a buyer in the auction with a higher

expected price to move to the other auction. Thus, while equilibrium prices at the two auction sites

need not be strictly equal, there are no arbitrage opportunities.

4.1 Equilibrium coexistence of two auction sites

Our main result in this section is that two auction sites yielding positive pro�ts for the respective sellers

cannot coexist in equilibrium if the distribution of buyers�values is IFR; and if the marginal production

cost, c; is su¢ ciently low. The proof is based on the following Lemma which has some independent

interest. It shows that, for any pro�le of buyers�actions, at least one of the sellers has an incentive to

increase supply if F is IFR:

Lemma 2 1. Consider any con�guration (n1; k1;n2; k2) where n1; n2 > 0; k1; k2 > 0 and k1+k2 < n;

and assume that buyers play a best response to any announcement of quantities. If EXni�ki;ni �

EXnj�kj ;nj ; i; j = 1; 2; then seller i can attract at least one more buyer by supplying one additional

unit.

2. Assume that F is IFR; and that c = 0: For any con�guration (n1; k1;n2; k2) where n1; n2 > 0;

k1; k2 > 0 and k1 + k2 < n, one of the sellers can increase his pro�t by supplying one additional

unit.

3. If F is IFR; and if c = 0; then �R(k; n) = R(k + 1; n + 1) � R(k; n), the marginal revenue of

seller whose supply increases from k to k + 1 while the number of buyers attending his auction

increases from n to n+ 1, decreases in k for a �xed n:

The Lemma yields:

Theorem 3 Assume that F is IFR: Then, for su¢ ciently small marginal production costs c; there is

no equilibrium in which both sellers are active and make positive pro�ts. In particular, if

c <
n

2
EX1;n2+1 � (

n

2
� 1)EX1;n2 (5)

there is no symmetric equilibrium with positive pro�ts.

If the IFR condition is not satis�ed, or if the cost is high enough (in contrast to the assumptions

of the above Proposition) an equilibrium where two auction sites are active, and where both sellers

14



make positive pro�ts may then exist. We look �rst at an example where F does not satisfy the IFR

condition:

Example 4 Let F (x) = x1=2; and let c = 0: Then:

�R (ki; ni) =
(ki + 1)(ni � ki + 1)(ni � ki)

(ni + 2)(ni + 3)
� ki(ni � ki + 1)(ni � ki)

(ni + 1)(ni + 2)

=
(ni � ki)(ni � ki + 1)(ni + 1� 2ki)

(ni + 1)(ni + 2)(ni + 3)

Note that �R (ki; ni) � 0 if ki � ni+1
2 : Letting k1 = k2 = 2 and n1 = n2 = 3; it is clear that no seller

has an incentive to increase supply . Assume then that seller 1, say, lowers supply to one unit. Then a

buyer attending his auction has an incentive to switch to the other auction since there the price will be

EX2;4 < EX2;3: Therefore no seller has an incentive to deviate, and we obtain a symmetric equilibrium

in which every seller sells two units and makes a positive pro�t:13

Next we look at situations where the marginal cost c is su¢ ciently high, Then, sellers do not want

to increase their supply above a certain level (since the price drops below cost), and an equilibrium may

exist.

If, in a symmetric equilibrium, a seller sells k� units, he should have no incentive to increase supply

to k� + 1. Then, for F which is IFR; we have the necessary condition14

p = EXn
2�k�;

n
2
> c > (k� + 1)EXn

2�k�;
n
2+1

� k�EXn
2�k�;

n
2

(6)

where the left inequality indicates that a seller makes a positive pro�t by selling k� units to half the

number of buyers, and the right inequality indicates that a seller has no incentive to increase the number

of supplied units from k� to k� + 1 if by doing so the number of buyers attending his auction increases

from n
2 to

n
2 + 1.

The following proposition provides a su¢ cient condition for existence of a symmetric equilibrium

with the maximal supply value for which both sellers make positive pro�ts.

Proposition 6 Assume that F is IFR. If

(
n

2
� 1)EX(2;n2+1) � (

n

2
� 2)EX(2;n2 ) > c >

n

2
EX(1;n2+1) � (

n

2
� 1)EX(1;n2 ) (7)

then the pro�le where each seller sells n
2 � 1 objects to

n
2 buyers constitutes a symmetric equilibrium.

4.2 A unique auction site as the outcome of competition

We now focus on equilibria where only one auction site is active, and where only one seller makes a

positive pro�t. Roughly speaking, such an equilibrium may exist if the optimal monopolistic quantity

13 In this example there is also a symmetric equilibrium where each seller supplies three units, and where pro�ts are

zero.
14 If F is IFR; by lemma 2 the RHS of (6) is always positive.
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for the unique active seller is high enough. Then, the other seller cannot convince enough buyers to

switch to his own auction, and thus prefers to stay out.

Formally, an equilibrium with the form (n�1 = n; k
�
1 > 0; n

�
2 = 0; k

�
2 = 0) exists if and only if:

1.

k�1 = argmax
k
k(EXn�k;n � c) > 0 (8)

and

2. For all k2 � n� k�1 ; either the set M =M(k2) = fm j m � n� k�1 ^ EXm�k2;m � cg is empty or

EXen2�k2;en2 > EXn�en2+1�k�1 ;n�en2+1 (9)

where en2 = en2(k2) is the minimal element in M:
Condition (8) requires that seller 1 optimizes his (monopolistic) supply and makes a positive pro�t,

given that seller 2 is not active. In condition (9), en2 is the minimal number of buyers for which selling
k2 units is pro�table for seller 2. Note that if condition (9) holds and if n2 > en2 , we also get

EXn2�k2;n2 > EXen2�k2;en2 > EXn�en2+1�k�1 ;n�en2+1 = EXn�n2+(n2�en2+1)�k�1 ;n�n2+(n2�en2+1)
The �rst inequality follows by repeated application of the known relation EX(i+1;n+1) � EX(i;n);

and the second inequality is condition (9). That is, condition (9) guarantees that if n2 > en2 buyers
attend auction 2, at least (n2 � en2 + 1) buyers will want to switch to auction 1. Thus, seller 2 must
remain inactive, and earns zero pro�t.

Proposition 7 1. Assume that k�1 = argmaxk k(EXn�k;n � c) is su¢ ciently large (For example,

assume that F is su¢ ciently convex and that c is su¢ ciently small). Then there exists an asymmetric

equilibrium with a unique active seller.

2. Assume that k�1 = argmaxk k(EXn�k;n � c) < n
2 : (For example, assume that F is su¢ ciently

concave) Then there exists no equilibrium with a unique active seller.

The following examples illustrates the result.

Example 5 Let c = 0; n = 4 and let F be uniform on [0; 1]. By Corollary 2 the optimal supply for

a monopolistic seller 1 is k�1 = 2. The only alternative for seller 2 that leads to a positive pro�t is to

supply one unit. Since EX1;2 � EX4�1�2;4�1 = EX1;2 � EX1;3 > 0 , condition (9) is satis�ed. Seller

2 cannot attract more than one buyer to his auction, and he therefore prefers to stay out.
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5 Comparison among models

How do the models analyzed in this paper (and in particular the competition models with either one or

two auctions sites) compare in terms of equilibrium prices and quantities ? In this section we answer

this question under the assumption that the number of buyers is large. We consider the following:

� Monopoly (M): one auction site with one seller and n buyers;

� Competition among sellers at one auction site (C1): two competing sellers at one auction site

with n buyers;

� Competing auctions (C2): two sellers running separate auctions, competing to attract n buyers.

For the results below we assume that a symmetric equilibrium exists in this model.

Proposition 8 Assume that F; the distribution of buyers� values, is IFR. Assume total equilibrium

supply in all three models is at least n
3 + 2: (This happens, for example, if either F is convex enough

with respect to the exponential distribution, or if the marginal cost is not too high). Then the following

hold:

(1) The equilibrium price under monopoly is higher than the prices in symmetric equilibria of the

competition models.

(2) If total supply is higher (lower) than n
2 + 2; then the equilibrium price in the competition model

with one auction site is higher (lower) than the equilibrium price in the competition model with two

auction sites.

6 Concluding remarks

We have studied competition among two sellers who optimize their respective supply in markets with a

�nite, not necessarily large, number of buyers. We studied a model where all transactions take place at

price determined in one auction, and another where there two separate auction sites may operate side

by side. A uni�ed perspective on both models can be obtained by considering buyers�switching costs.

Whereas an equilibrium where both sellers make pro�ts always exists in the �rst model (one auction

site), this is not the case in the second model (two auction sites) under ubiquitous conditions on the

demand function (decreasing marginal revenue) and on the supply functions (su¢ ciently low marginal

costs). In markets with sinking production (or trading) costs, our results suggest a movement towards

dominant market places featuring several competing suppliers. Ebay is an obvious example. Instead

of a competition mode characterized by poaching business from competitors, we currently observe a

move towards consolidation also in the trading of securities.15 For example, on October 17th 2006 the

Chicago Mercantile Exchange agreed to buy the Chicago Board of Trade, thus aiming to create the

15See "The Big Squeeze", The Economist, October 7th, 2006, pp. 83.
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world�s biggest �nancial marketplace.16 Similarly, the Deutsche Börse has long argued for the need of a

pan-European exchange, and tried (unsuccessfully) to buy the London Stock Exchange �which is now

on NASDAQ�s buying list.

Finally, we hope that the mathematical methods used in this paper will prove to be useful in a

variety of other competition models with a small number of traders.

7 Appendix A

Barlow and Porschan (1966) proved the following 5 results about order statistics:

Lemma 3 Assume that F (0) = 0: If F is convex (concave) then (n+ 1)EXi;n=i is decreasing (in-

creasing) in i and increasing (decreasing) in n.

Lemma 4 Let G�1F be star-shaped on the support of F and assume F (0) = G (0) = 0: Then

EXin=EYin is decreasing in i:

Lemma 5 If F is IFR(DFR) and if F (0) = 0; then
Pr

1(n � i + 1)(Xi;n � Xi�1;n) is stochastically

increasing (decreasing) in n � r:

Lemma 6 If F is IFR (DFR) and if F (0) = 0; then (n� i+ 1) (Xi;n �Xi�1;n) is stochastically in-

creasing (decreasing) in n � i for �xed i:

Lemma 7 If F is IFR (DFR) and if F (0) = 0; then (n� i+ 1) (Xi;n �Xi�1;n) is stochastically de-

creasing (decreasing) in i � n for �xed n:

8 Appendix B

Proof of Proposition 1:

If the distribution of buyers�valuations is F; the seller�s revenue when he sells k units is

kEXn�k;n = (n� r)EXr;n where r � n� k

Suppose that r� = n� k�F (n) is optimal: selling k�F (n) is always better than selling k0 > k�F (n): Letting

r0 = n� k0 < r�; we obtain

(n� r�)EXr�;n � (n� r0)EXr0;n ,
EXr�;n
EXr0;n

� n� r0
n� r� (10)

16See "Chicago Bulls", in The Economist, October 21th, 2006. pp. 88. In another instance, also in October, three

North European share exchanges uni�ed their listings.
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For distribution is G; the seller�s revenue when he sells k units is

(n� k)EYn�k;n = (n� r)EYr;n where r � n� k

Suppose that k�G(n) units are now optimal. In order to show that k�G(n) � k�F (n); it is su¢ cient to

show that under distribution G; the seller�s revenue of selling k�F (n) units is always larger than when

selling k0 > k�F (n): That is, we need to show that, for r
� > r0

(n� r�)EYr�;n � (n� r0)EYr0;n ,
EYr�;n
EYr0;n

� n� r0
n� r�

Given condition (10) ; it is su¢ cient to show that

EYr�;n
EYr0;n

� EXr�;n
EXr0;n

, EXr�;n
EYr�;n

� EXr0;n
EYr0;n

By Lemma 4 in Appendix A, EXin=EYin is decreasing in i . Since r� > r0; the last inequality holds.

Q.E.D.

Proof of Corollary 1:

When n is large, the optimal number of objects k�G(n) for the exponential distribution G is

k�G(n) 2 argmax
k
kEXn�k;n � argmax

k
kG�1

�
n� k
n

�
= argmax

�
k ln

n

k

�
) k�G(n) �

n

e

F (0) = G (0) = 0 and G�1F convex imply together that G�1F star-shaped. If G is the exponential

distribution, G�1F convex (where �nite) is equivalent to F being IFR. Thus, applying proposition 1,

we obtain that k�F (n) � n=e if F is IFR: The reverse inequality holds for F which is DFR. Q.E.D.

Proof of Corollary 2:

If G is uniform distribution, the optimal number of objects k�G(n) is

k�G(n) 2 argmax kEXn�k;n = argmax
k (n� k)
n+ 1

) k�G(n) =
n

2

Applying proposition 1, we obtain that k�F (n) � (�) n2 if F is convex (concave) Q.E.D.

Proof of Proposition 2:

By Lemma 6 in Appendix A, if F is IFR(DFR); then (n� i+1)(EXi;n�EXi�1;n) is stochastically

increasing (decreasing) in n � i for �xed i: Thus, if F is IFR we obtain:

(n� i+ 2)(EXi;n+1 � EXi�1;n+1) > (n� i+ 1)(EXi;n � EXi�1;n)
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This implies that

(n� i+ 1)EXi;n+1 � (n� i+ 2)EXi�1;n+1 + EXi;n+1 > (n� i)EXi;n � (n� i+ 1)EXi�1;n + EXi;n

Since EXi;n+1 < EXi;n we obtain

(n� i+ 1)EXi;n+1 � (n� i+ 2)EXi�1;n+1 > (n� i)EXi;n � (n� i+ 1)EXi�1;n

Letting i = n� k in the inequality yields

(k + 1)EXn+1�(k+1);n+1 � (k + 2)EXn+1�(k+2);n+1 > kEXn�k+;n � (k + 1)EXn�(k+1);n

Thus, if it is pro�table to decrease the number of objects from k+1 to k when the number of buyers

is n; then it is also pro�table to decrease the number of objects from k + 2 to k + 1 when the number

of buyers is n+ 1: In particular, k�F (n+ 1) � k�F (n) + 1: Q.E.D.

Proof of Proposition 3:

By Lemma 7 in Appendix A, if F is IFR, then (n � i + 1)(EXi;n � EXi�1;n) is stochastically

decreasing in i � n for �xed n: Thus, if F is IFR we obtain:

(n� i+ 1)(EXi;n � EXi�1;n) > (n� (i+ 1) + 1)(EXi+1;n � EXi;n)

Letting k = n� i in the the last inequality yields:

kEXn�k;n � (k + 1)EXn�(k+1);n + EXn�k;n > (k � 1)EXn�(k�1);n � kEXn�k;n + EXn�(k�1);n

Since EXn�k;n < EXn�(k�1);n we obtain

kEXn�k;n � (k � 1)EXn�(k�1);n > (k + 1)EXn�(k+1);n � kEXn�k;n

The last inequality indicates that the marginal revenue of a seller is decreasing in the number of

objects and this property implies the desired result. Q.E.D.

Derivations for Example 2: 1) If n = 3m; where m is an integer, inequality 4 becomes,

m� 1 � k1 � m+ 1) k1 = m� 1; m; or m+ 1

Suppose k�1 = m� 1; then

�2 =
k2 (n� k1 � k2)

n+ 1
=
k2 (2m+ 1� k2)

3m+ 1
) k�2 = m; or k

�
2 = m+ 1

But if k�2 = m; the best response of seller 1 is k1 = m: Therefore, k�1 = m � 1 and k�2 = m is not an

equilibrium pro�le. If k�2 = m + 1; the best response for �rm 1 is k1 = m; or m � 1: Thus, there are
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three possible pure strategy equilibria

k1 = m+ 1; k2 = m� 1

k1 = m� 1; k2 = m+ 1

k1 = k2 = m

2) If n = 3m+ 1; where m is an integer, inequality 4 becomes,

m� 2
3
� k1 � m+

4

3
) k1 = m; or m+ 1

Suppose k�1 = m; then

�2 =
k2 (n� k1 � k2)

n+ 1
=
k2 (3m+ 1�m� k2)

n+ 1
=
k2 (2m+ 1� k2)

3m+ 2
) k�2 = m or m+ 1

Suppose k�1 = m+ 1; then

�2 =
k2 (n� k1 � k2)

n+ 1
=
k2 (3m+ 1�m� 1� k2)

n+ 1
=
k2 (2m� k2)
3m+ 2

) k�2 = m

Again, there will be three pure-strategy equilibria

k1 = m+ 1; k2 = m

k1 = m; k2 = m+ 1

k1 = k2 = m

3) If n = 3m+ 2; where m is an integer, inequality 4 becomes

m� 1
3
� k1 � m+

5

3
) k1 = m; or m+ 1

Suppose k�1 = m; then

�2 =
k2 (n� k1 � k2)

n+ 1
=
k2 (3m+ 2�m� k2)

n+ 1
=
k2 (2m+ 2� k2)

3m+ 2
) k�2 = m+ 1

Therefore, there will be two asymmetric pure strategy equilibria

k1 = m; k2 = m+ 1

k1 = m+ 1; k2 = m

Q.E.D.

Proof of Theorem 1: Since pro�ts are zero if the produced quantity is larger than the number of

bidders, we can assume without loss of generality that the sellers choose quantities out of a �nite set of

integers: 
 = f0; 1; 2; :::;Kg ; K <1: Given k2; seller 1 chooses k1 2 
 to maximize the payo¤ function

R1 (k1; k2) = k1EXn�(k1+k2);n:
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and given k1; seller 2 chooses k2 2 
 to maximize the payo¤ function

R2 (k1; k2) = k2EXn�(k1+k2);n

Let � denote the above described two-person game, and de�ne

P (k1; k2) = k1k2EXn�(k1+k2);n

We now verify that P is an ordinal potential of �:17 We need to check that:

8k2 > 0; R1 (k1; k2)�R1 (k01; k2) > 0, P (k1; k2)� P (k01; k2) > 0

8k1 > 0; R2 (k1; k2)�R2 (k1; k02) > 0, P (k1; k2)� P (k1; k02) > 0

The above conditions become

k1EXn�(k1+k2);n � k01EXn�(k01+k2);n > 0, k1k2EXn�(k1+k2);n � k01k2EXn�(k01+k2);n > 0

k2EXn�(k1+k2);n � k02EXn�(k01+k2);n > 0, k1k2EXn�(k1+k2);n � k1k02EXn�(k01+k2);n > 0

which trivially hold.

Since both k1 and k2 are chosen from a �nite set 
; it is obvious that the potential P has a maximum

on 
�
: (Note that the maximum need not be unique). The existence result follows now directly from

the following result:

Lemma 8 (Lemma 2.1, Monderer and Shapley, 1996) Let P be an ordinal potential function for

�: Then the equilibrium set of � (R1; R2) coincides with the equilibrium set of � (P; P ) : That is,

(k1; k2) 2 
� 
 is an equilibrium point for � if and only if for every i 2 f1; 2g ;

P (ki; k�i) � P (k0i; k�i) for every k0i 2 
:

Consequently, if P admits a maximal value in 
�
; then � (R1; R2) possesses a pure strategy equilib-

rium.

Q.E.D.

Proof of Theorem 2: By the above proof, the potential P has a maximum. Suppose that this

maximum is achieved at (k�1 ; k
�
2) : We need to show that jk�1 � k�2 j � 1: Assume, by contradiction, that

the opposite holds:

jk�1 � k�2 j > 1

, jk�1 � k�2 j � 2
17 If the �rms face a marginal cost c > 0; de�ne the potential P (k1; k2) = k1k2(EXn�(k1+k2);n� c): This and the next

proof proceed then in an analogous fashion yielding the respective results.
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Without loss of generality assume that

k�1 � k�2 + 2: (11)

Consider now (k01; k
0
2) in 
� 
 de�ned by

k01 = k�1 � 1

k02 = k�2 + 1

and observe that k01 + k
0
2 = k

�
1 + k

�
2 : We obtain then that

P (k01; k
0
2)� P (k�1 ; k�2)

= (k�1 � 1) (k�2 + 1)EXn�(k�1+k�2);n � k
�
1k
�
2EXn�(k�1+k�2);n

= (k�1 � k�2 � 1)EXn�(k�1+k�2);n > 0

where the last inequality follows by (11). This yields a contradiction to the assumption that P achieves

a maximum at (k�1 ; k
�
2) : Thus, jk�1 � k�2 j � 1 as desired. Q.E.D.

Proof of Proposition 4:

1) Suppose F is convex. Given k2; seller 1 chooses k1 to maximize

R1 = k1EX(n�k2)�k1;n

By Corollary 2, if F is convex, k1 � 1
2 (n� k2) : Analogously, we have k2 �

1
2 (n� k1) : Combining the

two inequalities, it follows that

k1 + k2 �
2

3
n

The opposite inequality holds for concave F:

2) Now suppose F is IFR and n is large. Given k2; seller 1 chooses k1 to maximize

R1 = k1EX(n�k2)�k1;n

By Corollary 1, we have k1 � 1
e (n� k2) : Similarly, we have k2 �

1
e (n� k1) : Therefore,

k1 + k2 �
2

1 + e
n

The proof for the DFR case is analogous. Q.E.D.

Proof of Proposition 5: Suppose that m = n1 = n2 is large enough. Total revenue before the

merger is

�1 + �2 = 2max
k
kF�1

�
m� k
m

�
Let k� 2 argmax kF�1

�
m�k
m

�
:
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In the post merger competition the revenues are given by:

�c1 = �
c
2 = max

ki
kiF

�1
�
2m� ki � k�i

2m

�
We focus on the (quasi) symmetric equilibrium in the post merger games (which always exists by

Proposition 2). The potential function is

P (k1; k2) = k1k2F
�1
�
2m� k1 � k2

2m

�
Since jkc1 � kc2j � 1, the pro�le (kc1; kc2) that maximizes the potential must satisfy

kci 2 argmax (k)
2
F�1

�
m� k
m

�
; i = 1; 2

One implication is that

kc1 62 argmax kF�1
�
m� k
m

�
The change in total revenue is:

�c1 + �
c
2 � (�1 + �2)

= 2kc1F
�1
�
m� kc1
m

�
� 2k�F�1

�
m� k�
m

�
< 0

because k� 2 argmax kF�1
�
m�k
m

�
: Thus, a merger reduces total revenue. Q.E.D.

Proof of Lemma 1: Fix a strategy pro�le for all agents except buyer h; and assume that in this

pro�le the respective quantities and number of bidders at each site are k1; k2; n1; n2; where n1 + n2 =

n� 1: Denote by X the random variable representing bidder h�s valuation. If h joins site i; i = 1; 2; his

expected payo¤ is given by

PrfX � EXni+1�ki;ni+1gE[X � EXni+1�ki;ni+1 j X � EXni+1�ki;ni+1]; i = 1; 2

It is immediate that the above expression is higher for i = argmin fEXn1+1�k1;n1+1; EXn2+1�k2;n2+1g;

thus it is optimal for bidder h to join the site with the lower expected price. The second argument

follows then immediately by the de�nition of equilibrium. Q.E.D.

Proof of Lemma 2:

1) Suppose without loss of generality that EXn1�k1;n1 � EXn2�k2;n2 . Since

EXn1+1�(k1+1);n1+1 = EXn1�k1;n1+1 < EXn1�k1;n1

we obtain

EXn1+1�(k1+1);n1+1 < EXn2�k2;n2
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The last inequality provides a su¢ cient condition for a buyer to move from auction 2 to auction 1 if

seller 1 increases the supplied quantity by one unit while all other agents stay put.

2) Let n1 = m: By Lemma 5 in Appendix A, if F is IFR then
Pr

1(m� i+ 1)(EXi;m � EXi�1;m)

is stochastically increasing in m � r: Let r = 1; then

mEX1;m < (m+ 1)EX1;m+1

Since EX1;m+1 < EX1;m; we have

(m� 1)EX1;m < mEX1;m+1

Similarly, by Lemma 5

EX1;m + (m� 1)EX2;m < EX1;m+1 +mEX2;m+1

Since EX2;m+1 < EX2;m; we have

(m� 2)EX2;m < (m� 1)EX2;m+1

By induction, for all 1 � i < m;

(m� i)EXi;m < (m� i+ 1)EXi;m+1

Letting i = m� k; we get

kEXm�k;m < (k + 1)EXm�k;m+1

The last inequality implies that a seller increases his revenue by attracting one more buyer from the

other site.

3) Suppose that the number of buyers in the auction is m: By Lemma 6, if F is IFR(DFR) then

(m� i+ 1)(EXi;m � EXi�1;m) is stochastically increasing (decreasing) in m � i for �xed i: Thus,

(m� i+ 2)(EXi;m+1 � EXi�1;m+1) > (m� i+ 1)(EXi;m � EXi�1;m)

This implies that

(m� i+ 2)EXi;m+1 � (m� i+ 1)EXi;m > (m� i+ 2)EXi�1;m+1 � (m� i+ 1)EXi�1;m

Since EXi;m+1 < EXi;m we obtain

(m� i+ 1)EXi;m+1 � (m� i)EXi;m > (m� i+ 2)EXi�1;m+1 � (m� i+ 1)EXi�1;m

Letting i = m� k; we get

(k + 1)EXm�k;m+1 � kEXm�k;m > (k + 2)EXm�k�1;m+1 � (k + 1)EXm�k�1;m
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The last inequality implies that the marginal revenue of a seller that attracts one more buyer by

supplying one more unit is decreasing in k. Q.E.D.

Proof of Theorem 3:

As mentioned in the text, if both sellers make a pro�t in equilibrium, we must have k�1 + k
�
2 < n:

Assume that

c � min
s2[1;n�1]; k2[0;s�1]

f(k + 1)EXs�k;s+1 � kEXs�k;sg

Then, no matter how many units are supplied, and how many bidders attend, it is always pro�table

for a seller to increase supply by one unit if he attracts one more buyer. By Lemma 2-3, we know that

marginal revenue is decreasing if F is IFR: Then, for each s; the minimum in the above condition is

achieved for k = s� 1 , and it is su¢ cient to assume that

c � min
s2[1;n�1];

fsEX1;s+1 � (s� 1)EX1;sg

Suppose now, by contradiction, that (n�1; k
�
1 ;n

�
2; k

�
2) is an equilibrium, where n

�
1; n

�
2 > 0; n

�
1+n

�
2 = n;

k�1 ; k
�
2 > 0 and k

�
1+k

�
2 < n. Suppose also, without loss of generality, that seller 1 faces the lower expected

auction price. Then this seller can increase the number of supplied units to (k�1 + 1) : By Lemma 2, at

least one buyer will want to switch to his auction, and, by the assumption on the marginal cost c; this

constitutes a pro�table deviation. More buyers switching is even more pro�table since the price further

increases. Therefore, (n�1; k
�
1 ;n

�
2; k

�
2) cannot be an equilibrium.

Lemma 2 and condition (5) imply that a seller selling ki � n
2 �1 objects to

n
2 bidders has incentive to

increase his supply. But, if both sellers together sell n objects, they cannot both make positive pro�ts.

Q.E.D.

Proof of Proposition 6:

Under condition (7) both sellers have an incentive to increase supply from n
2 � 2 to

n
2 � 1; but no

seller has an incentive to increase supply from n
2 � 1 to

n
2 if by doing so only one more buyer will be

attracted. If a seller sells n
2 � 1 units, at least

n
2 � 1 buyers will attend his auction. Thus, no seller

can attract more than one buyer by increasing the number of supplied units beyond n
2 � 1: Finally, no

seller has an incentive to decrease supply from k�i =
n
2 � 1 since a decrease by k units induces at least

k buyers to switch to the other auction. Q.E.D.

Proof of Proposition 7:

1) Assume that seller 1 sets k1 = n� 1: In that case, at least n1 = n� 1 will always attend auction

1, and the price in auction 1 is at most EX1;n . Seller 2 has no way of ensuring an equal or lower price.

Thus, no matter what seller 2 does, he cannot attract enough buyers, and entry is not pro�table.
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Assume next that seller 1 sets k1 = n � 2: Given that at least n1 = n � 2 buyers always attend

auction 1, the only way in which seller 2 can make a pro�t is by auctioning one unit to 2 buyers. In

that case the price is EX1;2: By switching to auction 1, one of these two buyers will face a price of

EX1;n�1 < EX1;2: Thus, switching is pro�table, and seller 2 can never make a pro�t by entry.

Continuing in this way, let ek1 be the minimal k1 such that for all k2 < n� ek1, and for all n2; k2 <
n2 < n� ek1; it holds that

EXn2�k2;n2 > EXn�n2+1�fk1;n�n2+1 > 0
Assume then that k�1 � ek1; and assume that selling k�1 is pro�table for seller 1 (condition (8)) .Then,

the above inequality implies condition (9), and thus the existence of an equilibrium with a unique active

site.

The assumptions in the statement are satis�ed for su¢ ciently convex F and su¢ ciently small c by

Proposition 1.

2) Assume that k�1 <
n
2 : Setting k2 = k

�
1 ; we obtain:

EXn2�k2;n2 � EXn�n2+1�k�1 ;n�n2+1 = EXn2�k�1 ;n2 � EXn�n2+1�k�1 ;n�n2+1

= EXn2�k�1 ;n2 � EXn2�k�1+(n�2n2+1);n2+(n�2n2+1) < 0

This follows because n� 2n2+1 > 0 (k2 = k�1 implies n1 = n2) and because EXi;j < EXi+a;j+a for all

i < j and a > 0: In particular, condition (9) cannot be satis�ed. Thus, by replicating seller 1�s strategy,

seller 2 can sustain a positive pro�t, and an asymmetric equilibrium with a unique active seller does

not exist.

The assumption k�1 <
n
2 is clearly satis�ed if F is su¢ ciently concave � see Proposition 1 and

Corollary 2. Q.E.D.

Proof of Proposition 8: Assume that total supply in monopoly is 2k units. Denote by g(x) =

(F�1)0(x): Then, the marginal revenue obtained by supplying an additional unit is given by:

MRM (k) = (2k + 1)EXn�(2k+1);n � 2kEXn�2k;n

= EXn�(2k+1);n � 2k
�
EXn�2k;n � EXn�(2k+1);n

�
� F�1

�
n� 2k � 1
n+ 1

�
� 2k

�
F�1

�
n� 2k
n+ 1

�
� F�1

�
n� 2k � 1
n+ 1

��

� F�1
�
n� 2k � 1
n+ 1

�
�
2kg

�
n�2k
n+1

�
(n+ 1)

For the competition model with one auction site and total supply of 2k; the marginal revenue of a
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seller is:

MRC1 (k) = (k + 1)EXn�(2k+1);n � kEXn�2k;n

= EXn�(2k+1);n � k
�
EXn�2k;n � EXn�(2k+1);n

�
� F�1

�
n� 2k � 1
n+ 1

�
� k

�
F�1

�
n� 2k
n+ 1

�
� F�1

�
n� 2k � 1
n+ 1

��

� F�1
�
n� 2k � 1
n+ 1

�
�
kg
�
n�2k
n+1

�
(n+ 1)

For the competition model with two sites and total supply 2k; assume that a seller attracts s

additional bidders by increasing supply by one unit. Then his marginal revenue is:

MRC2 (k) = (k + 1)EX(n2+s)�(k+1);
n
2+s

� kEXn
2�k;

n
2

By the assumption that equilibrium supply is at least n3 +2 units, and by Lemma 9 below, we get that

s = 1: This yields:

MRC2 (k) = (k + 1)EXn
2�k;

n
2+1

� kEXn
2�k;

n
2

= EXn
2�k;

n
2+1

� k
�
EXn

2�k;
n
2
� EXn

2�k;
n
2+1

�
� F�1

� n
2 � k
n
2 + 2

�
� k

�
F�1

� n
2 � k
n
2 + 1

�
� F�1

� n
2 � k
n
2 + 2

��
� F�1

�
n� 2k
n+ 4

�
� kg

� n
2 � k
n
2 + 1

�� n
2 � k
n
2 + 1

�
n
2 � k
n
2 + 2

�

= F�1
�
n� 2k
n+ 4

�
�
kg
�
n�2k
n+2

�
(n+ 2)

(n� 2k)�
n
2 + 2

�
For large n we have

F�1
�
n� 2k � 1
n+ 1

�
� F�1

�
n� 2k
n+ 4

�
kg
�
n�2k
n+2

�
(n+ 2)

�
kg
�
n�2k
n+1

�
(n+ 1)

Therefore, we obtain

MRM (k) < MRC1 (k) and MRM (k) < MRC2 (k) for all k:18

On the other hand, note that
(n� 2k)�
n
2 + 2

� > 1, k <
n

4
+ 1:

Thus, we have: 8<: MRC2 (k) < MRC1 (k) if k < n
4 + 1

MRC2 (k) > MRC1 (k) if k > n
4 + 1

:

18Note that the comparison among MRM (k) and MRC1(k) hold always, i.e., without any additional assumptions about

the number of bidders, supply, etc..
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If the distribution F has an increasing hazard rate, then by Lemma 2, the marginal revenueMRC2(k)

is decreasing in k. Note also that

MRM (k) = EXi;n � (n� i+ 1) (EXi;n � EXi�1;n) where i = n� 2k

MRC1 (k) =
1

2
EXi;n +

1

2
EXi�1;n �

1

2
(n� i+ 1) (EXi;n � EXi�1;n) where i = n� 2k

By Lemma 7, both MRM (k) and MRC1 (k) are decreasing in k if F is IFR.

Since the marginal cost is assumed to be the same across models, the equilibrium quantity is lowest

and the price is the highest under monopoly. If marginal cost is relatively low, and assuming that an

equilibrium exists in the competition model with two sites, this situation is more competitive than the

one with one site. The opposite occurs for high marginal cost. Q.E.D.

When deriving the marginal revenue in the competition model with two auction sites, we assumed

that the additional number of bidders that a seller can attract by increasing supply by one unit is one.

The following lemma gives a mild condition under which this is indeed the case: It will be satis�ed as

long as c is not too large, such that the equilibrium supply of each seller satis�es k > n
6 +1: Analogous,

weaker conditions can be derived whenever the number of attracted bidders is �nite and small relative

to the equilibrium quantity k:

Lemma 9 Consider the competition model with two auction sites (C2) for a large number of buyers n.

Suppose that the marginal cost c satis�es

c < (
n

6
+ 2)EX(n3�1;

n
2+1)

�
�n
6
+ 1
�
EX(n3�1;

n
2 )

(12)

Then, if a seller increases (decrease) supply by one unit, he attracts (looses) exactly one buyer;

Proof of Lemma 9: By the necessary condition for a symmetric equilibrium (6), and condition

(12), we obtain that k� > n
6 + 1 where k

� denotes the equilibrium supply of each seller (otherwise, a

seller always has incentive to increase quantity by one).

1) Suppose �rst that seller 1 increases supply by one unit. Lemma 2 shows that he can attract at

least one more bidder. Therefore, we only need to show that he cannot attract two more bidders. That

is, we need to show that

EXn
2+2�(k�+1);

n
2+2

> EXn
2�1�k�;

n
2�1:

For large n; this is equivalent to showing

F�1
� n
2 + 1� k

�

n
2 + 3

�
> F�1

� n
2 � 1� k

�

n
2

�
,

n
2 + 1� k

�

n
2 + 3

>
n
2 � 1� k

�

n
2

,

k� >
n

6
+ 1:
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2) Suppose seller 1 decreases his supply by one. We show �rst that he will lose at least one bidder,

and then we show that he will not lose more than one bidder.

(i) In order to show seller 1 will lose at least one bidder, it is su¢ cient to show

EXn
2�(k��1);

n
2
> EXn

2+1�k�;
n
2+1

which holds trivially.

(ii) In order show seller 1 will not lose more than one bidder, it is su¢ cient to show

EX(n2�1)�(k��1);
n
2�1

< EXn
2+2�k�;

n
2+2

:

For large n; this is equivalent to

F�1
� n
2 � k

�

n
2

�
< F�1

� n
2 + 2� k

�

n
2 + 3

�
,

n
2 � k

�

n
2

<
n
2 + 2� k

�

n
2 + 3

,

k� >
n

6
:

Q.E.D.
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