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1 Introduction

Signals play an important role whenever agents need to form matches. In virtually every
real-life matching situation, be it in the labor, the marriage, or the education market,
agents use signals in order to transmit information about their own quality. In addition
to their signal value, such investments also yield direct utility to the matched partner.
Flashy facilities built by universities or firms are signals of quality that also create direct
benefits for future students or employees, while individuals’ investments in education
and training signal underlying ability and are also valued directly by universities or
prospective employers.

We study two-sided matching contests with arbitrary numbers of participants and
with an NTU (nontransferable utility) matching market. The investments used by agents
to signal information about privately known, complementary productive types also ben-
efit the match partner.

The bilateral external benefits induce a feedback cycle that may cause agents to
invest much more than they would if signals were completely wasteful. Increased sig-
naling on one side of the market (more precisely, larger differences between the invest-
ments of different types) intensifies the competition among agents on the other side,
causing them to invest more, which in turn intensifies again the competition on the first
side, and so on...

In this paper, we shed light on how the feedback cycle works in finite markets with
incomplete information, under the standard assumption that agents on each side of the
market are ex-ante symmetric. In particular, we quantify how the feedback cycle de-
pends on the numbers of agents on both sides of market, and we examine how it affects
agents’ equilibrium behavior and interim expected utilities.

Our focus is on finite markets since many real life examples, be it the marriage
market in a rural area, or the labor market for specialized workers, are best modeled by
assuming a moderate market size. Also standard market experiments in the laboratory
focus on markets of intermediate size.

Both functions of pre-match investments have been emphasized in the literature.
Hoppe, Moldovanu and Sela (2009, henceforth HMS) analyze signaling behavior when
the signals are completely wasteful as in Spence (1973). In this case, the investment
feedback effect does not exist. On the other hand, in the important papers by Peters
and Siow (2002), Peters (2007) and Bhaskar and Hopkins (2016), an agent’s pre-match
investment benefits his or her partner directly (so that feedback effects are present) but
it has no signaling effect. Arguably, most pre-match investments observed in reality
have both a signaling and a productive function (Hopkins 2012), which motivates our

2



setting.
Our two-sided matching contest model combines the signaling model of HMS and

the investment model of Peters (2007), and has the following main features:

1. There is a finite number of agents on either side of the market. Agents are called
men and women, respectively. Men and women are characterized by privately
known, linearly ordered types that are complementary in the production of out-
put. Consequently, the matching that maximizes aggregate output is positively
assortative in types. Signaling can be sustained, as in HMS, without assuming
heterogeneity in investment costs. Types are drawn i.i.d. from two commonly
known distributions. We study equilibria in which all agents on the same side
of the market use the same, strictly increasing investment strategy, so that pos-
itively assortative matching based on observable investments implies positively
assortative matching of types.

2. In contrast to the HMS model, signals are not completely wasteful: they generate
benefits for partners that are increasing in the level of investment. As in the
complete information setting of Peters (2007), we assume that these benefits enter
agents’ utilities additively.

In a market with finitely many participants, agents face uncertainty about the types
of competitors. They are also uncertain about the actual types and investments of po-
tential partners. These uncertainties differentiate our model from standard pre-match
investment models with a continuum of heterogeneous agents, in which each agent
knows exactly where he or she is ranked in the competition, and what he or she will get
in return for any particular investment. Relative to a continuum economy, the finiteness
of the market and the resulting uncertainties dampen the investment feedback effect. We
quantify how the strength of the feedback effect depends on the numbers of men and
women, and we identify the largest eigenvalue of a particular matrix as the key measure
for the dampening of the feedback loop. More precisely, we derive sharp conditions
for the existence of side-symmetric, strictly separating equilibria that only depend on
this feedback coefficient (which is smaller than 1 in any finite market, while it is equal
to 1 in a continuum economy) and on the parameters describing the marginal external
benefits and the marginal costs of the investments. If the product of marginal external
benefits is too high compared to the product of marginal costs and if competition is
too intense, the feedback process can become self-perpetuating and push investments
beyond any bounded multiple of the pure signaling investments.1 For the case in which

1This is similar to the occurrence of “ruinous” gift exchanges, as documented in the anthropological
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the external benefits to partners are linear functions of the investments, we also find the
unique side-symmetric, separating equilibrium in closed form. For most practical cases
existence is not an issue, but the increases in investment needed to signal small quality
differences may be very large even in markets of moderate size. A related phenomenon
currently seems to arise in the case of US colleges. The New York Times speaks of a
‘paradox’ which in our model, however, occurs in equilibrium:

“Typically, fierce market competition leads to lower prices, but among elite
schools, the opposite occurs, paradoxically. They often find that raising
prices enables them to offer greater benefits to the most coveted poten-
tial students. (It also allows them to take part in the amenities race: nicer
dorms, better food, a climbing wall: things that are regarded as essential to
attracting those coveted students.)”2

Investments into students’ amenities (and students’ fees) thus steeply increase across
competitors in order to signal (probably much smaller) differences in quality.

Computing the feedback coefficient explicitly (in closed form for balanced or slightly
unbalanced markets, numerically for all other markets) allows us to obtain detailed qual-
itative and quantitative insights into how the strength of the feedback cycle depends on
market size. For example, entry of additional agents on the short side of the market or
simultaneous entry on both sides intensify the feedback cycle while, somewhat surpris-
ingly, entry on the long side only generally weakens it. In particular, this implies that
some of the main entry-related comparative statics results in HMS do not extend to the
case of partially wasteful signals.

Our results also produce some interesting bounds on under-investment for environ-
ments in which investments are “truly” productive in the sense that all Pareto efficient
and individually rational investments for a given pair of agents are strictly positive (i.e.,
exceed the privately optimal investments). These bounds provide quantitative informa-
tion about the extent to which competition can rule out extreme under-investment in
small markets with productive investments.

For matching contests in which investments are partially wasteful, we identify the
exact asymptotic behavior of equilibrium utilities as the numbers of men and women go
to infinity. In this case, equilibrium utilities converge to those in the unique equilibrium
of a continuum model, for which the return to any possible investment is certain. In

literature following Boas (1897) and Mauss (1935): “A gives 10 blankets to B; after an interval of time
B gives 20 blankets to A... and so it goes on with the number of blankets being given increasing at a
geometric rate” (see Gregory, 1980).

2Davidson, Adam (2015): Is College Tuition Really Too High? In: New York Times, 08 Sept 2015.
https://www.nytimes.com/2015/09/13/magazine/is-college-tuition-too-high.html
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particular, this shows that, even though investments are only partially wasteful, the
entire difference between aggregate match surplus and aggregate information rents gets
dissipated through competition.

If the marginal benefit from investment is constant and equal to the marginal cost
(called below the transferable utility or TU investment case), the continuum model
does not admit a side-symmetric strictly separating equilibrium: the intense competition
together with the certainty of returns drive investments to infinity. However, such an
equilibrium exists in any finite market with the same characteristics and we are able to
characterize the limit behavior of equilibrium utilities: in large, balanced markets, the
difference between aggregate match surplus and aggregate information rents is always
shared fifty-fifty between men and women, irrespectively of other economic aspects
such as the shares governing the division of physical surplus in each matched pair and
the distributions of types.

Related Literature

Considering one side of the market only, our agents are in a contest situation (see e.g.
the survey of Konrad 2007): they compete by means of sunk investments for heteroge-
neous “prizes,” which correspond to matches with the various potential partners. Recog-
nizing this analogy, a sizeable literature has studied pre-match investment problems as
matching contests, where agents on both sides of a two-sided market make observable
investments and are then matched positive assortatively on the basis of these invest-
ments. In these papers, positively assortative matching based on investments is typi-
cally assumed, but it also corresponds to the stable outcome of a frictionless matching
market (post-investment) with nontransferable utility. This is the case for the complete
information models of Peters and Siow (2002), Peters (2007), and Bhaskar and Hopkins
(2016), in which an agent who invests more generates higher benefits for partners, and
also (in equilibrium) for the signaling model of HMS.

The challenges of analyzing non-cooperative equilibria of two-sided matching con-
tests with a finite number of participants when external benefits generate feedback ef-
fects are succinctly described in Peters (2007).3 With a few important exceptions (Pe-
ters 2007, 2011; Bhaskar and Hopkins 2016; Cole, Mailath and Postlewaite 2001b;
Felli and Roberts 2016), the literature on pre-match investment problems has circum-
vented this difficulty by focusing on continuum models in which agents behave com-
petitively (e.g., Cole, Mailath and Postlewaite 2001a; Peters and Siow 2002; Nöldeke

3Most of the contracting literature has focused on one pair in isolation, e.g. Che and Hausch (1999)
who study the hold-up problem in a bilateral contracting situation with cooperative investments that
benefit the partner.
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and Samuelson 2015; Dizdar 2017).
The work of Peters (2007, 2011) demonstrates that non-cooperative equilibrium in-

vestments in very large (but finite) two-sided matching contests can be quite different
from the investments predicted by a continuum model with competitive agents. More
precisely, for models without signaling concerns and with productive investments, Pe-
ters shows that equilibrium investments in unbalanced matching contests generally do
not converge to competitive (or hedonic) equilibrium investments as the numbers of
men and women go to infinity. In particular, agents at the bottom of the distributions
generally over-invest. Our results and techniques do not allow new insights about equi-
libria in very large markets with truly productive investments, but the arguments in
Peters (2011) imply that qualitative results similar to those in his paper, with additional
over-investment due to signaling, must hold in our model for this case (compare the
discussion in Section 4). We focus instead on a much more detailed analysis of the
feedback cycle due to external benefits in a model where investments also serve as sig-
nals.

Bhaskar and Hopkins (2016) study a model with an NTU matching market and
noisy investments, building on the tournament model of Lazear and Rosen (1981) rather
than on the literature on all-pay contests. Moreover, they assume complete information
and that agents on either side of the market are ex-ante symmetric. They prove the
existence of a unique equilibrium and show that agents over-invest unless the two sides
of the market are completely symmetric. While their main focus is on the analysis of
a continuum model, they also show (under certain conditions) that the corresponding,
unique equilibrium is the limit of the non-cooperative equilibria for a finite model.4

Olszewski and Siegel (2016) characterize asymptotic bidding behavior in one-sided
all-pay contests with many agents and many prizes. Their general results allow for
complete or incomplete information and for ex-ante asymmetric agents, but because
the prize structure is given exogenously these findings cannot be applied to character-
ize equilibrium behavior in environments with bilateral investments and with external
benefits. Moreover, their results only hold for very large contests where particular ap-
proximation techniques can be applied.

4Cole, Mailath and Postlewaite (2001b) and Felli and Roberts (2016) are less directly related to the
present study because they analyze models with a TU matching market (i.e., the division of joint surplus is
fully flexible) and complete information. Cole, Mailath and Postlewaite (2001b) provide a (non-generic)
condition on the ex ante heterogeneity of agents that ensures the existence of a Pareto efficient equi-
librium, and they study potential coordination failures due to a form of market incompleteness. Felli
and Roberts (2016) characterize the inefficiencies that arise, due to hold-up and coordination problems,
when Cole, Mailath and Postlewaite’s condition is violated, and when the matching is determined (post-
investment) by a particular bidding game.
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Outline

The paper is organized as follows. In Section 2, we introduce the model and define vari-
ous pieces of notation. Section 3 presents the basic equilibrium characterization and our
main results about the investment feedback effect, including the closed form solution
for the case of linear external benefits and several illustrations. Section 4 contains the
results for large markets with partially wasteful or TU investments. All proofs are in an
Appendix.

2 Model

We consider a matching market with n men and k women, where n≥ k≥ 2. If n = k, we
say that the market is balanced. Otherwise, it is unbalanced. Each man is characterized
by a privately known type m ∈ [m,m], and each woman is characterized by a privately
known type w ∈ [w,w], where 0 ≤ m < m < ∞ and 0 ≤ w < w < ∞. Types are drawn
independently from two commonly known, continuous distributions F (for men) and G

(for women) with densities f and g that are strictly positive and continuous on [m,m]

and [w,w], respectively.
All agents simultaneously make costly investments. Men and women are then

matched positive assortatively according to their investments: the man with the highest
investment is matched to the woman with the highest investment, the man with the sec-
ond highest investment is matched to the woman with the second highest investment,
and so on. Ties are broken randomly.

The net utility of a man with type m and investment βM ∈ R+ who is matched to a
woman with type w and investment βW ∈ R+ is

γMmw+δM(βW )−βM,

and the net utility of the woman in this match is

γW mw+δW (βM)−βW .

Here, γM > 0 and γW = 1−γM > 0 are constants, and δM :R+→R+ and δW :R+→R+

are non-decreasing, concave, twice continuously differentiable and satisfy δM(0) = 0
and δW (0) = 0.5 The net utility of an unmatched man (woman) with investment βM

5Large parts of our basic equilibrium characterization, including the sufficient condition for existence
in Theorem 2 (if the condition about limits is replaced by an analogous condition about limit superiors)
apply for arbitrary non-decreasing functions δM and δW , but as all our other quantitative results pertain
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(βW ) is given by −βM (−βW ).
Note that agents’ utility functions are strictly supermodular in their own type and

their partner’s type, so that investments serve as costly signals in an environment satisfy-
ing the standard single-crossing property. HMS’s model of assortative matching based
on completely wasteful signaling corresponds to the case δM = δW ≡ 0. Following the
complete information models of Peters (2007) and Bashkar and Hopkins (2016), the ex-
ternal benefits enter agents’ utilities additively, and are modeled via the non-decreasing
and type-independent functions δM and δW .6

2.1 Notation

R+ (R++) denotes the set of non-negative (strictly positive) real numbers. We represent
vectors in a Euclidean space Rl , l ∈ N, with respect to a fixed orthonormal basis, and
we label the coordinates 0, ..., l− 1. Il is the identity on Rl , and · is the standard inner
product: for u,v ∈ Rl , u · v = ∑

l−1
i=0 uivi. For u ∈ Rl , ||u||∞ and ||u||1 denote the vector’s

l∞-norm and l1-norm, respectively.7 u > 0 (u≥ 0) means that all entries of u are strictly
positive (non-negative). Similarly, for a real matrix A, A > 0 (A ≥ 0) means that all
entries of A are strictly positive (non-negative). For a square matrix A ∈ Rl×l , ρ(A) is
the spectral radius of A, i.e.,

ρ(A) := max{|λ | : λ ∈ C is an eigenvalue of A},

and |||A|||∞ := maxu6=0
||Au||∞
||u||∞ denotes the matrix norm that is induced by || · ||∞.

We let
M1:n ≤M2:n ≤ ...≤Mn:n

and
W1:k ≤W2:k ≤ ...≤Wk:k

denote the order statistics of men’s and women’s types and write Fi:n (Gi:k) and fi:n (gi:k)
for the c.d.f. and p.d.f. of Mi:n (Wi:k). Thus,

Fi:n(m) =
n

∑
l=i

(
n
l

)
F(m)l(1−F(m))n−l, (1)

to linear or concave benefits, we focus on this case from the outset.
6We could easily replace γMmw and γW mw by arbitrary smooth and strictly supermodular functions.

Such a generalization would require only minor changes to the present analysis. By contrast, weakening
additive separability would substantially reduce the analytical tractability of the model.

7That is, ||u||∞ = maxi∈{0,...,l−1} |ui| and ||u||1 = ∑
l−1
i=0 |ui|.
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and
fi:n(m) = n

(
n−1
i−1

)
F(m)i−1(1−F(m))n−i f (m), (2)

and Gi:k and gi:k are given by analogous formulas. For convenience, we also define
M0:n ≡ 0 and W0:k ≡ 0 , so that F0:n = G0:k is the c.d.f. of a Dirac measure at 0.

Next, we define G : R→ Rk as

G j(w) :=

G j:k−1(w) if j ∈ {1, ...,k−1}

0 if j = 0.

For a woman with type w ∈ [w,w], G j:k−1(w) is the probability that j or more out of the
k−1 other women have a type below her own. The entry G0(w)≡ 0 will be convenient
for representing the fact that women do not have to compete for a match with the k-th
highest type of man. Similarly, we define F : R→ Rn as

F j(m) :=

Fj:n−1(m) if j ∈ {1, ...,n−1}

0 if j = 0.

For any function h : R→ R, we define ∆h
M ∈ Rn as the vector with entries

∆
h
M,i = E[h(Mi+1:n)−h(Mi:n)] for i ∈ {0, ...,n−1}.

Similarly, ∆h
W ∈ Rk is the vector with entries

∆
h
W,i = E[h(Wi+1:k)−h(Wi:k)] for i ∈ {0, ...,k−1}.8

3 Equilibrium Characterization

In this section, we provide our main results about how the strength of the investment
feedback effect depends on the numbers of men and women, including our closed-
form solution for the case of linear benefits. We also illustrate several implications for
equilibrium investments in small markets, highlighting differences to HMS’s analysis
for the case where investments are completely wasteful.

We focus on side-symmetric, strictly separating Bayes-Nash equilibria, i.e., equilib-
ria where all men use the same, strictly increasing strategy and all women use the same,

8We suppress the dependence on n and k in the notation for various quantities, such as ∆h
M and ∆h

W .
We will add superscripts in Section 4, where we study sequences of matching contests of different sizes.
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strictly increasing strategy.9 Any such equilibrium implements the surplus-maximizing,
positive assortative matching of types. We denote equilibrium strategies by bM : [m,m]→
R+ (for men) and bW : [w,w]→ R+ (for women).

We first discuss some basics of the equilibrium characterization. Suppose that all
women use the same, strictly increasing strategy bW . Then, the investment game among
men is equivalent to an all-pay auction with incomplete information, n ex-ante symmet-
ric bidders and k heterogeneous prizes. If n = k, every man is guaranteed to get at least
a match with the worst-ranked partner. For a man with type m, the expected utility from
this match (the “k-th prize”) is

γMmE[W1:k]+E[δM(bW (W1:k))].

The matches with the better-ranked partners then correspond to the k− 1 prizes that
men actually compete for. In particular, for a man with type m the increase in expected
utility associated with getting a match with the partner of type Wi+1:k rather than with
Wi:k, i ∈ {1, ...,k−1}, is

γMmE[Wi+1:k−Wi:k]+E[δM(bW (Wi+1:k))−δM(bW (Wi:k))],

which is strictly increasing in m (strict single crossing). Note how the prizes here are
endogenous and depend on the strategy employed by women. This is the defining char-
acteristic of two-sided contests with investments that generate external benefits.

If n> k, men also have to compete for the “k-th prize”. In either case, existing results
for all-pay auctions with incomplete information and with ex-ante symmetric bidders
imply that the contest among men has a unique symmetric equilibrium. Moreover, the
strictly increasing, differentiable equilibrium strategy can be derived by the standard
first-order approach.10 An analogous argument applies for women, who are guaranteed
to get at least a match with the k-th ranked man, Mn−k+1:n.

Thus, a side-symmetric, strictly separating equilibrium of the matching contest cor-
responds to a pair of functions: bM is the symmetric equilibrium strategy of the all-pay
auction among men for which the prizes are determined by the order statistics induced
by G and by the women’s strategy bW , and bW is the symmetric equilibrium strategy of
the all-pay auction among women for which the prizes are induced by the order statis-
tics of F and by the men’s strategy bM. In equilibrium, the types are matched positive

9If n > k, strict supermodularity and the fact that men want to avoid staying unmatched ensures that
all side-symmetric equilibria are strictly separating (given that positive assortative matching is assumed
as part of the game). If n = k, there is also a side-symmetric equilibrium in which nobody invests.

10For details on sufficiency, see Moldovanu and Sela (2001), Appendices A and C.
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assortatively: for i ∈ {1, ...,k}, the man with type Mn−k+i:n is matched to the woman
with type Wi:k.

A man with type m gets the worst possible match with probability 1 in equilibrium,11

which implies bM(m) = 0.12 Similarly, bW (w) = 0.13 For a man with type m > m who
assumes that all other agents use strictly increasing, differentiable strategies bM and bW ,
the problem of maximizing his expected utility is to choose an s∈ [m,m] that maximizes

k−1

∑
j=0

Fn−k+ j(s)E[γMm(Wj+1:k−Wj:k)+δM(bW (Wj+1:k))−δM(bW (Wj:k))]−bM(s)

= F̂ (s) · (γMm∆
I1
W +∆

δM◦bW
W )−bM(s), (3)

where we have used the following notation.

Definition 1. For u ∈ Rn, let û ∈ Rk denote the vector with entries

ûi = un−k+i for i ∈ {0, ...,k−1}.

In equilibrium, the first order condition must be satisfied at s = m, i.e.,

b
′
M(m) = F̂ ′(m) · (γMm∆

I1
W +∆

δM◦bW
W ).

Integrating the above, we obtain

bM(m) = γMaM(m)+ F̂ (m) ·∆δM◦bW
W , (4)

where
γMaM(m) = γM

(
mF̂ (m)−

∫ m

m
F̂ (s)ds

)
·∆I1

W

is men’s equilibrium strategy in the HMS special case where women’s investments cre-
ate no benefits for them (δM ≡ 0). In the sequel, we often refer to γMaM as men’s pure

signaling investments. An analogous derivation yields

bW (w) = γW aW (w)+G (w) · ∆̂δW ◦bM
M , (5)

where
aW (w) =

(
wG (w)−

∫ w

w
G (s)ds

)
· ∆̂I1

M.

11If n = k, he is matched to the woman with type W1:k. If n > k, he stays unmatched.
12If bM(m) were strictly positive, type m could decrease his investment without changing his expected

match.
13If w > 0, we also formally set bW (0) = 0 (so that bW (W0:k) = 0).
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In particular, using (4) we have for all i ∈ {0, ...,n−1}:

∆
δW ◦bM
M,i = E[δW (γMaM(Mi+1:n)+ F̂ (Mi+1:n) ·∆δM◦bW

W )

−δW (γMaM(Mi:n)+ F̂ (Mi:n) ·∆δM◦bW
W )]. (6)

Similarly, (5) implies for all i ∈ {0, ...,k−1}:

∆
δM◦bW
W,i = E[δM(γW aW (Wi+1:k)+G (Wi+1:k) · ∆̂δW ◦bM

M )

−δM(γW aW (Wi:k)+G (Wi:k) · ∆̂δW ◦bM
M )]. (7)

Defining T : Rk
+→ Rn

+ and S : Rk
+→ Rk

+ via

Ti(y) := E[δW (γMaM(Mi+1:n)+ F̂ (Mi+1:n) · y)−δW (γMaM(Mi:n)+ F̂ (Mi:n) · y)],

Si(x) := E[δM(γW aW (Wi+1:k)+G (Wi+1:k) · x)−δM(γW aW (Wi:k)+G (Wi:k) · x)],

we obtain the following fixed point characterization of side-symmetric, strictly separat-
ing equilibria of the matching contest.14

Lemma 1. The mapping ι : bW 7→∆
δM◦bW
W is a bijection between the set of side-symmetric,

strictly separating equilibria and the set of fixed points of S◦ T̂ .15

The logic behind this fixed point argument is as follows. The equilibrium strategies
determine the vectors of increments in the matching benefits ∆

δM◦bW
W and ∆̂

δW ◦bM
M . Con-

versely, these increment vectors are sufficient to recover the strategies through (4) and
(5). This is due to the fact that the increment vector of each market side determines the
“prize structure” of the all-pay auction played by the other market side. In particular,
the mappings S and T̂ capture how any increment vector for one market side pins down
a unique increment vector for the other side. In equilibrium, the pair of male and female
increment vectors must be consistent with each other. In other words, ∆

δM◦bW
W is a fixed

point of S◦ T̂ and ∆̂
δW ◦bM
M is a fixed point of T̂ ◦S.

We now turn to the observation that will allow quantitative insights into equilib-
rium investment behavior. Men face the kind of uncertainty regarding the types of their
competitors (and hence about which of the k prizes they will win with any particular in-
vestment) that is standard in auctions or in contests with one-dimensional heterogeneity
and ex-ante symmetric agents. Interestingly, key aspects of how the heterogeneity of

14T maps Rk
+ into Rn

+ because δW , aM and all coordinate functions of F̂ are non-decreasing. An
analogous observation applies to S.

15Note that if bW is an equilibrium strategy, men’s equilibrium strategy is uniquely determined by (4).
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the prizes affects the investment increments given by

∆
bM
M,i = E[bM(Mi+1:n)−bM(Mi:n)]

= γM∆
aM
M,i +

k−1

∑
j=0

E[Fn−k+ j:n−1(Mi+1:n)−Fn−k+ j:n−1(Mi:n)]∆
δM◦bW
W, j , (8)

turn out to be independent of the distribution F (an analogous observation applies for
women, of course). Indeed, F(Mi:n) is distributed like the i-th order statistic of n in-
dependent draws from the uniform distribution U(0,1) (Theorem 1.2.5 in Reiss 1989),
and Fj:n−1 is a polynomial in F . In particular, E[Fj:n−1(Mi:n)] does not depend on the
distribution F (the term is a weighted sum of moments of the i-th order statistic of n

independent draws from U(0,1)). This motivates the following definitions.

Definition 2. For any n≥ 2, let Θn ∈ Rn×n be the matrix with entries

θn,i j = E[Fj:n−1(Mi+1:n)−Fj:n−1(Mi:n)] for i, j ∈ {0, ...,n−1}.

For any n≥ k ≥ 2, let Θn,k ∈ Rn×k be the submatrix consisting of the last k columns of

Θn, and let Θ̂n,k be the lower right (trailing) principal k× k submatrix of Θn.16

Armed with Definition 2, we can write (8) in the following compact form:

∆
bM
M = γM∆

aM
M +Θn,k∆

δM◦bW
W . (9)

Given the uncertainty inherent in a contest with n contestants and k prizes, the distribution-
independent matrix Θn,k captures how the type-independent increments in expected
benefits obtained by men from partners with higher investments translate into invest-
ment increments.17

An analogous remark applies of course for the vector of women’s investment incre-
ments and to the matrix Θk, because

∆
bW
W,i = γW ∆

aW
W,i +

k−1

∑
j=0

E[G j:k−1(Wi+1:k)−G j:k−1(Wi:k)]∆̂
δW ◦bM
M, j

implies
∆

bW
W = γW ∆

aW
W +Θk∆̂

δW ◦bM
M . (10)

16That is, the entries of Θ̂n,k are θn,(n−k+i)(n−k+ j), for i, j ∈ {0, ...,k−1}.
17Lemma 4 in the Appendix shows that the matrix Θn,k also occurs in the explicit representation of

∆
aM
M , i.e., it is also important for computing bid increments for the standard all pay-auction model with

heterogenous prizes, where an agent’s valuation is multiplicative in his/her type and the prize he/she gets.
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The following lemma provides the explicit form of Θn, and establishes a somewhat
surprising fact: n+1

n−1Θn is a stochastic matrix.

Lemma 2. i) For all i ∈ {0, ...,n−1},

θn,i j =


0 if j = 0

n−1
2n−1

(n
i)(

n−2
j−1)

( 2n−2
i+ j−1)

if j ∈ {1, ...,n−1}.

ii) n+1
n−1Θn is a (row-)stochastic matrix.

If the benefit functions are linear, i.e., if δM(βW ) = dMβW and δW (βM) = dW βM

for constants dM,dW ≥ 0, we have a precise characterization of the feedback cycle:
if women’s investment increments change by some y ∈ Rk, men respond in a way
that alters their investment increments by Θn,kdMy, which in turn (i.e., after one round
through the feedback cycle) entails a further change of women’s investment increments
by ΘkdW Θ̂n,kdMy. The total effect on women’s investment increments induced by the
entire feedback process (including the initial change) is therefore ∑

∞
l=0(dMdW ΘkΘ̂n,k)

ly.

Definition 3. Let r(n,k)> 0 be the Perron root of the non-zero and non-negative matrix

ΘkΘ̂n,k, i.e., the real eigenvalue attaining the spectral radius, r(n,k) = ρ(ΘkΘ̂n,k).18

Since Lemma 2 implies that ΘkΘ̂n,k is sub-stochastic, the Perron root r(n,k) is
smaller than one. It measures by how much the maximal strength of the feedback loop
is dampened relative to a continuum economy where the analogous coefficient is r = 1
(see Section 4).

Theorem 1 (Equilibrium characterization for linear benefits). Assume that δM(βW ) =

dMβW and δW (βM) = dW βM for constants dM,dW ≥ 0. A side-symmetric, strictly sepa-

rating equilibrium exists if and only if ρ(dMdW ΘkΘ̂n,k) = dMdW r(n,k)< 1. If it exists,

the side-symmetric, strictly separating equilibrium is unique. The equilibrium strategies

satisfy

bM(m) = γMaM(m)+dMF̂ (m) ·∆bW
W

bW (w) = γW aW (w)+dW G (w) · ∆̂bM
M ,

where ∆
bW
W and ∆̂

bM
M are explicitly given by

∆̂
bM
M = (Ik−dMdW Θ̂n,kΘk)

−1(γM∆̂
aM
M +dMγW Θ̂n,k∆

aW
W ) (11)

∆
bW
W = (Ik−dMdW ΘkΘ̂n,k)

−1(γW ∆
aW
W +dW γMΘk∆̂

aM
M ). (12)

18The existence of r(n,k) follows from Theorems 8.1.22 and 8.3.1 in Horn and Johnson (2013).
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The condition dMdW r(n,k) < 1 says that the product of the two marginal exter-
nal benefits from investment and of the feedback coefficient r(n,k) is less than the
product of marginal costs, which is normalized here to unity. In this case, the se-
ries ∑

∞
l=0(dMdW ΘkΘ̂n,k)

l converges, and is then equal to (Ik−dMdW ΘkΘ̂n,k)
−1, so that

the feedback process triggered by men’s and women’s pure signaling investments con-
verges. This is precisely the interpretation of the expression (12), because γW ∆

aW
W +

dW γMΘk∆̂
aM
M would be the vector of women’s investment increments if women com-

peted for men who make pure signaling investments. Observe also that the resulting
equilibrium investments stay within a bounded multiple of the pure signaling invest-
ments.

If dMdW r(n,k)≥ 1, the feedback effect is so strong that the investments grow out of
bounds and the studied equilibrium type ceases to exist.19

To better understand the significance of r(n,k), consider the case n > k and note that
ΘkΘ̂n,k is positive.20 By Perron’s Theorem (Theorem 8.2.8 in Horn and Johnson 2013),
the Perron root is the only eigenvalue of maximal modulus, and there are unique right
and left corresponding eigenvectors y(n,k) > 0 and w(n,k) > 0, normalized such that
‖y(n,k)‖1 = 1 and y(n,k) ·w(n,k) = 1.21 Moreover, the matrices (r(n,k)−1ΘkΘ̂n,k)

l

converge to y(n,k)w(n,k)T as l → ∞, and the error decays geometrically in l. There-
fore, if dMdW r(n,k) approaches 1, the dominating effect of the feedback process is
amplifying the vector

(
w(n,k) · (γW ∆

aW
W +dW γMΘk∆̂

aM
M )
)

y(n,k) by a factor of 1/(1−
dMdW r(n,k)).22

Using some results from matrix analysis and Brouwer’s Fixed Point Theorem, we
also get a sharp condition for the existence of a side-symmetric, strictly separating
equilibrium in the case of general, concave benefit functions.

Theorem 2. For the general model of Section 2, a side-symmetric, strictly separating

equilibrium exists if and only if (limb→∞ δ ′M(b))(limb→∞ δ ′W (b))r(n,k)< 1.

We conclude this section with a closer look at the values of the feedback coefficient
r(n,k). By Lemma 2, the matrices

(n+1
n−1Θn

)2
, n+1

n−1
n+2

n ΘnΘ̂n+1,n and
(n+2

n Θn+1
)2

are

19The proof for this case is based on Farkas’ Lemma and uses the left eigenvector associated with the
eigenvalue r(n,k).

20If n = k, the first column of ΘkΘ̂n,k = Θ2
n is zero while the lower right (n− 1)× (n− 1) principal

submatrix is positive, and the following explanations must then essentially be applied to this submatrix.
21That is, ΘkΘ̂n,ky(n,k) = r(n,k)y(n,k) and w(n,k)T ΘkΘ̂n,k = r(n,k)w(n,k)T .
22Observe that w(n,k) · (γW ∆

aW
W +dW γMΘk∆̂

aM
M )> 0 as both vectors lie in the positive orthant.
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stochastic. This implies that for any n≥ 2:

r(n,n) =
(

n−1
n+1

)2

< r(n+1,n) =
(n−1)n

(n+1)(n+2)
< r(n+1,n+1) =

(
n

n+2

)2

.

(13)
Thus, the strength of the feedback effect increases if one more agent enters a balanced
market, or if an additional agent enters on the short side of a slightly unbalanced market.

If k ≤ n− 2, the row (and column) sums of ΘkΘ̂n,k are different, so that a closed-
form expression for r(n,k) does not exist. However, r(n,k) can easily be computed
numerically if k is not too large.23 Table 1 below, which gives the values of r(n,k) for
k ≤ n≤ 14 and also the limits limn→∞ r(n,k) for k ≤ 14,24 already displays the general
pattern.25

Table 1: Values of r(n,k)

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0.1111
3 0.1667 0.25
4 0.1714 0.3 0.36
5 0.1720 0.3035 0.4 0.4444
6 0.1717 0.3028 0.4023 0.4762 0.5102
7 0.1713 0.3014 0.4007 0.4777 0.5357 0.5626
8 0.1709 0.3000 0.3986 0.4757 0.5367 0.5833 0.6049
9 0.1706 0.2989 0.3966 0.4732 0.5346 0.5840 0.6222 0.64
10 0.1703 0.2978 0.3949 0.4709 0.5320 0.5818 0.6226 0.6545 0.6694
11 0.1700 0.2970 0.3934 0.4689 0.5295 0.5792 0.6206 0.6548 0.6818 0.6944
12 0.1698 0.2962 0.3921 0.4671 0.5273 0.5768 0.6181 0.6528 0.6820 0.7051 0.7160
13 0.1696 0.2956 0.3910 0.4655 0.5253 0.5745 0.6156 0.6504 0.6801 0.7052 0.7253 0.7347
14 0.1694 0.2950 0.3900 0.4641 0.5236 0.5725 0.6134 0.6481 0.6779 0.7035 0.7253 0.7429 0.7511
...

...
...

...
...

...
...

...
...

...
...

...
...

...
∞ 0.1667 0.2871 0.3766 0.4455 0.5003 0.5449 0.5819 0.6132 0.6400 0.6632 0.6835 0.7014 0.7173

First, r(n,k) increases with k, i.e., adding an additional agent on the short side of
an unbalanced market increases the strength of the feedback effect. Somewhat surpris-
ingly, the effect of increasing n for a fixed value of k is non-monotonic. Adding one
more man to a balanced market increases r (see (13); in Table 1, this can be seen from
the entries on the main diagonal and the first subdiagonal), but entry on the long side of
an already unbalanced market generally decreases the strength of the feedback effect.
More precisely, the numerical results show that if k ≥ 14 then r(n,k) is decreasing in n

from n= k+1 onwards, while the decreasing part starts a bit later for smaller values of k

23Fast algorithms (exploiting the special features of positive matrices) that compute the Perron root
exist even for fairly high-dimensional matrices.

24For any fixed k, limn→∞ ΘkΘ̂n,k can easily be found using Lemma 2.
25We have to rely on numerical results for the following discussion. Existing upper and lower bounds

for the Perron root of a positive matrix (see Chapter 8 in Horn and Johnson 2013) are not sharp enough to
prove the corresponding monotonicity properties analytically. We have checked all values k ≤ n≤ 100.
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(at n = k+3 for k = 2 and at n = k+2 for 3≤ k≤ 13). The decrease of r(n,k) becomes
quite substantial as n grows large. In particular, the feedback coefficient can be larger
in a market with strictly fewer agents on both sides (e.g., we have r(13,12) > r(n,14)
for large values of n).

3.1 Applications

In this Section we offer several applications of our insights above.

3.1.1 The Effect of Entry on Total Investments

HMS (see Proposition 4) showed that if investments are completely wasteful (dM =

dW = 0), then entry of additional men (i.e., on the long side of the market) has an
unambiguous effect on men’s total investments:

T IM(n,k) =
n

∑
i=1

E[bM(Mi:n)] =
n

∑
i=1

γME[aM(Mi:n)].

is always increasing in n for any fixed k. This represents the familiar intuition that
competition among men becomes stiffer when there are more competitors, but it is no
longer true if, due to the feedback loop, the “prizes” are endogenous.

To illustrate this phenomenon, we focus here on the case of partially, but not com-
pletely wasteful investments. We say that investments are partially wasteful if δ ′M(0)δ ′W (0)<
1. The reason for this terminology is as follows. If δ ′M(0) > 0 and δ ′W (0) > 0, invest-
ments generate benefits for partners but as long as δ ′M(0)δ ′W (0) < 1, the only pair of
Pareto efficient and individually rational investments for a given pair of agents26 is
(βM,βW ) = (0,0), and all (βM,βW ) ∈ R2

++ are inefficient.
As we have seen at the end of the previous section, the feedback coefficient de-

creases if agents enter on the long side of an already unbalanced market (with the minor
exceptions for k ≤ 13, mentioned above). As a consequence, men’s total investments
may actually be lower if there are more men, provided that the feedback effect is suf-
ficiently strong. This is the case if the product of marginal external benefits is close
to 1 and if k is not too small. For example, if F = G = U [0,1] and γM = 1

2 , we find
T IM(51,50) = 4.17 < T IM(100,50) = 8.21 < T IM(200,50) = 10.34 for dM = dW = 0,
but T IM(51,50) = 90.1 > T IM(100,50) = 81.5 > T IM(200,50) = 79.6 for constant
marginal external benefits dM = dW = 0.98.

26Two agents who are already matched before they invest and can write complete contracts would
make such investments.
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Proposition 4 in HMS also shows that if dM = dW = 0 and the distribution F has an
increasing failure rate, then women’s total investments

T IW (n,k) =
k

∑
i=1

E[bW (Wi:k)]

are always decreasing in n. Again, this is no longer true for partially wasteful invest-
ments: as the feedback effect becomes stronger if an additional man enters a balanced
market, women’s total investments may increase in this case. Table 2 illustrates this
effect for F = G =U [0,1], γM = 1

2 and constant marginal benefits dM = dW = 0.9. The
table, which depicts T IW (n,k) for k ≤ n ≤ 14, also illustrates how well the pattern of
women’s total investments follows the one of the feedback coefficient r(n,k) in Table
1.

Table 2: T IW (n,k) for F = G =U [0,1], dM = dW = 0.9 and γM = 1
2

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0.0913
3 0.1015 0.272
4 0.1018 0.290 0.530
5 0.1007 0.290 0.554 0.855
6 0.0995 0.287 0.552 0.883 1.237
7 0.0984 0.284 0.547 0.878 1.269 1.669
8 0.0974 0.281 0.541 0.869 1.260 1.704 2.146
9 0.0965 0.279 0.536 0.860 1.247 1.690 2.182 2.661
10 0.0957 0.276 0.531 0.852 1.234 1.673 2.164 2.698 3.21
11 0.0951 0.274 0.527 0.845 1.223 1.656 2.142 2.675 3.25 3.79
12 0.0945 0.273 0.523 0.838 1.213 1.641 2.121 2.649 3.22 3.83 4.39
13 0.0940 0.271 0.520 0.832 1.203 1.628 2.102 2.624 3.19 3.80 4.44 5.02
14 0.0936 0.270 0.517 0.827 1.195 1.616 2.085 2.601 3.16 3.76 4.40 5.07 5.68

3.1.2 The Effect of Changes in the Intra-Household Bargaining Power

We show here that if investments generate external benefits, the expected utility of low
type agents may be decreasing in their share γi, i ∈ {M,W}, of the type-dependent
output mw. This phenomenon cannot occur when signaling is completely wasteful.

We focus on a simple example with two agents on each side, and with constant
marginal external benefits. From r(2,2) = 1/9 and Theorem 1, we know that the side-
symmetric, strictly separating equilibrium exists if and only if dMdW < 9. Moreover,
the equilibrium strategies satisfy

bM(m) = γMaM(m)+dMF(m)∆bW
W,1 (14)
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and
bW (w) = γW aW (w)+dW G(w)∆bM

M,1, (15)

where ∆
bW
W and ∆

bM
M are explicitly given by

∆
bM
M =

(
1 − dMdW

9−dMdW

0 9
9−dMdW

)(
γM∆

aM
M +dMγW

(
0 1

3

0 1
3

)
∆

aW
W

)

∆
bW
W =

(
1 − dMdW

9−dMdW

0 9
9−dMdW

)(
γW ∆

aW
W +dW γM

(
0 1

3

0 1
3

)
∆

aM
M

)
.

In particular, the second-row entries (with index 1), which occur in (14) and (15) are

∆
bM
M,1 =

9
9−dMdW

(
γM∆

aM
M,1 +dMγW

1
3

∆
aW
W,1

)
and

∆
bW
W,1 =

9
9−dMdW

(
γW ∆

aW
W,1 +dW γM

1
3

∆
aM
M,1

)
. (16)

To explicitly pin down the equilibrium strategies, we thus only need to identify the
terms ∆

aM
M,1 and ∆

aW
W,1. From Lemma 4 in the Appendix we obtain

∆
aM
M,1 =

1
3

E[M2:3]E[W2:2−W1:2] and ∆
aW
W,1 =

1
3

E[W2:3]E[M2:2−M1:2]. (17)

For the remainder of this example, we assume d = dM = dW , F = G and m = 0.27 We
give conditions such that E[bM(M1:2)] is strictly increasing in γM. Since dE[bM(M1:2)]

equals the expected utility of a woman with type zero (see Lemma 3), this implies, by
continuity of the distribution and of the bid functions, that there is a positive measure
of (low) women types whose expected utility decreases when women’s match share
γW = 1− γM increases.28

At first sight, this may seem counter-intuitive. The argument behind it is that low
types get most of their utility from their partner’s investments. In contrast to their
prospective partners, these low types ”know” already that the matching outcome will
be low. But, the direct benefits of the partner’s investment – who expects a better match
than he or she gets in the end – are attractive in comparison. As an increase in intra-
household bargaining power for one market side leads to a decrease in the potential
partners’ investments, low types suffer from their empowerment since their expected

27It is not difficult to construct similar examples with asymmetric external benefits and distributions,
and also with m > 0, provided that m is sufficiently large.

28By symmetry, an analogous result applies for low type men.
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utility decreases.
Here is the formal argument. By Lemma 4 in the Appendix , E[F(M1:2)] = θ2,01 =

1
3

and E[aM(M1:2)] =
1
3E[M1:3]E[W2:2−W1:2]. From (14), (16) and (17) we obtain that

E[bM(M1:2)] =

(
γME[M1:3]+d

3γW +d γM

9−d2 E[M2:3]

)
E[M2:2−M1:2]

3
.

Substituteing γW = 1− γM we obtain

E[bM(M1:2)] =

(
3d

9−d2 E[M2:3]+ γM

(
E[M1:3]−

d
3+d

E[M2:3]

))
E[M2:2−M1:2]

3
.

Consequently, dE[bM(M1:2)] is strictly increasing in γM if and only if ( 3
d +1)E[M1:3]>

E[M2:3]. In particular, Lemma 5 in the Appendix shows that this is the case if invest-
ments are partially wasteful (0 < d < 1) and if the function m− 1−F(m)

f (m) is increasing.
The assumption of increasing virtual valuations implies 4E[M1:3]≥ E[M2:3].

3.1.3 Bounds on Under-Investment when Investments are Productive

We may use Theorem 1 to derive some interesting bounds on under-investment for
situations with investments that are productive. We say that investments are productive

if the following condition holds:

δ
′
M(0)δ ′W (0)> 1 and lim

b→∞
δ
′
M(b) lim

b→∞
δ
′
W (b)< 1. (18)

Under condition (18), the pairs of investments (βM,βW ) that are Pareto efficient and
individually rational for a given pair of agents are characterized by the conditions

δ
′
M(βW )δ ′W (βM) = 1, δM(βW )−βM ≥ 0 and δW (βM)−βW ≥ 0.

All these pairs involve investments strictly above the privately optimal levels βM = 0
and βW = 0. Pairs of investments satisfying δ ′M(βW )δ ′W (βM) > 1 are inefficiently low
then,29 while investments (βM,βW ) ∈ R2

++ for which δ ′M(βW )δ ′W (βM) < 1 correspond
to over-investment. Moreover, the level sets

Lc := {(βM,βW ) ∈ R2
++|δ ′M(βW )δ ′W (βM) = c}

are closer to L1 the closer c is to 1.
29There would be a way of marginally increasing both agents’ investments that yields a Pareto im-

provement for the pair.
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If investments are productive, the fact that an agent’s investment benefits his/her
partner creates a standard incentive for under-investment (the “hold-up” problem). This
problem is at least partly mitigated by the competition on each side of the market for the
external benefits offered by the other side. Moreover, the “exogenous” signaling motive
(the competition for partners with higher types) provides additional incentives. How-
ever, our results imply that if n and k are such that r(n,k)δ ′M(0)δ ′W (0)< 1, the feedback
effect is not strong enough for investments to exceed a bounded multiple of the pure
signaling investments. In particular, if signaling incentives are small, the competition
among n men and k women does not suffice to avoid extreme under-investment. We
formalize this finding in Corollary 1, where n, k, δM and δW are fixed, and where the
conditions on the supports of types are necessary and sufficient for signaling incentives
to become arbitrarily small, independently of the exact form of F and G.30

Corollary 1. Assume that r(n,k)δ ′M(0)δ ′W (0) < 1. If n = k, m(w−w)→ 0 and (m−
m)w→ 0, or if n > k and mw→ 0, then bM(m)→ 0 and bW (w)→ 0 for any side-

symmetric, strictly separating equilibrium.

By contrast, if n and k are such that r(n,k)δ ′M(0)δ ′W (0) > 1, the feedback effect is
too strong for investments to get stuck at extremely low levels.

Corollary 2. In any side-symmetric, strictly separating equilibrium, it holds that

r(n,k)δ ′M(bW (w))δ ′W (bM(m))< 1.

Thus, if r(n,k)δ ′M(0)δ ′W (0)> 1, we obtain a quantitative bound on under-investment:
even with arbitrarily small signaling concerns, it is guaranteed that the investments
made by the highest types, (bM(m),bW (w)), lie above the level set L1/r(n,k).

The bounds of Corollaries 1 and 2 are interesting for understanding the extent to
which the feedback effect can rule out “extreme” under-investment in small markets.
They do not provide novel information about equilibrium behavior in the limit of very
large markets however (see the explanations in Section 4).

4 Large Contests with Partially Wasteful or TU Invest-
ments

Theorem 1 permits some new insights into the relationship between finite and contin-
uum models of matching contests: it allows us to obtain precise characterizations of

30Thus, ∆
aM
M and ∆

aW
W converge to zero.
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the limit properties of equilibrium utilities in large matching contests if investments are
either partially wasteful (i.e., δ ′M(0)δ ′W (0)< 1, see Section 3.1.1) or correspond to mon-
etary transfers under quasi-linear utility, i.e., dM = dW = 1. We refer to the latter case
as the TU investment case.31 A thorough analysis of asymptotic behavior if investments
are productive (i.e., δ ′M(0)δ ′W (0)> 1, see Section 3.1.3) is way beyond the scope of the
present study.32 However, it is clear from Peters (2011) that, in this case almost all types
must weakly over-invest in the limit of very large markets even if signaling incentives
become arbitrarily small.33

For the following analysis, we have to assume that matching with a partner who
does not invest and has the lowest possible type is not better than staying unmatched,
formalized here by setting w = 0.34 To simplify notation, we assume w = 0 also for
balanced contests, and let m = 0, but these two assumptions do not matter for any of the
results.

Condition 1. w = m = 0.

The Continuum Model

We consider here the limit two-sided matching contest with a continuum of agents. The
distribution of women is G, the distribution of men is F/(1− r) for some r ∈ [0,1),35

and types are private information. Let mr denote the r-th quantile of F (i.e., F(mr) =

r), and let Fr(m) = (F(m)− F(mr))/(1− r) for m ≥ mr. The positively assortative
matching is now described by the matching function

ψr(m) =

0 if m < mr

G−1(Fr(m)) if m≥ mr,

which is strictly increasing on [mr,m], while types below mr stay unmatched. We let φr

denote its inverse, defined on [0,w].
If all other agents invest according to non-decreasing functions bM : [0,m]→ R+

and bW : [0,w]→ R+ that are strictly increasing on [mr,m] and [0,w], then a man who
invests bM(s) knows that he will be matched to a woman with type ψr(s) who makes

31Note that in this case, all possible (βM,βW ) are Pareto efficient for a given pair of agents.
32The fact that investments “blow up” in a way that is unbounded by the size of the pure signaling

incentives in this case (see Section 3.1.3) combined with the non-linearity of the benefit functions creates
problems that cannot be addressed with the paper’s techniques.

33One could also mimic the qualitative arguments in Peters (2011) to give conditions on the shape of
δM and δW that ensure strict over-investment in very large, unbalanced markets.

34If k is large then E[W1:k]≈ w, so w = 0 implies that a match with the lowest-ranked woman is not a
“large prize” for exogenous reasons (i.e., even if the woman does not invest).

35Thus, the total mass of men is 1/(1− r)≥ 1.
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an investment bW (ψr(s)). Similarly, a woman who invests bW (s) is matched to a man
with type φr(s) whose investment is bM(φr(s)). Thus, returns to investments are here
certain, a significant difference to the finite case.

Equilibrium strategies must clearly satisfy bM(m) = 0 for m < mr (as these types
stay unmatched for sure). Moreover, if bW (0) = 0 and bM and bW are continuous (as in
the equilibrium for the partially wasteful case, Theorem 3i below), issues related to the
question of how to define returns for investments outside of the ranges bM([0,m]) and
bW ([0,w]) do not arise.36

Theorem 3. Assume that Condition 1 holds.

i) If δ ′M(0)δ ′W (0) < 1, then the continuum model admits a side-symmetric equilib-

rium (bM,bW ) such that bM and bW are continuous, bW (0) = 0, and bM and bW are

strictly increasing and continuously differentiable on [mr,m] and [0,w], respectively.

There is a unique equilibrium with these properties. Agents’ equilibrium utilities are

given by

u(r)M (m) = γM

∫ m

0
ψr(s)ds and u(r)W (w) = γW

∫ w

0
φr(s)ds.

ii) If δM(βW ) = βW and δW (βM) = βM, the continuum model does not admit an

equilibrium that implements the positive assortative matching.

Thus, with partially wasteful investments, assortative matching can arise in equi-
librium. With TU investments (case ii), the continuum model does not admit such an
equilibrium.

Limit Characterizations

We now return to our main focus on finite markets. Given the separable form of the
utility functions, we can use the standard payoff equivalence result for Bayesian in-
centive compatible mechanisms in order to represent interim expected utilities. For a
side-symmetric, strictly separating equilibrium, we let UM(m) denote the expected util-
ity for a man with type m, and UW (w) denote the expected utility for a woman with type
w. We write Ψ(m) ∈ [0,w] for type m’s expected type of partner and Φ(w) ∈ [m,m] for

36In contrast, the definition of off-equilibrium payoffs plays an important role in continuum models
with productive investments, and many different outcomes can potentially be supported as equilibria,
depending on the choice of definition. See Peters (2011) for a detailed discussion of this phenomenon.
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type w’s expected type of partner. Thus,

Ψ(m) =

E[W1:n]+F (m) ·∆I1
W if n = k

F̂ (m) ·∆I1
W if n > k.

Φ(w) = E[Mn−k+1:n]+G (w) · ∆̂I1
M.

Lemma 3. Agents’ interim expected utilities satisfy:

UM(m) =

E[δM(bW (W1:n))]+ γMmE[W1:n]+ γM
∫ m

m Ψ(s)ds if n = k

γM
∫ m

m Ψ(s)ds if n > k.
(19)

UW (w) = E[δW (bM(Mn−k+1:n))]+ γW wE[Mn−k+1:n]+ γW

∫ w

w
Φ(s)ds. (20)

We now fix all characteristics of the environment other than the number of agents.
That is, F , G, γM, γW , δM and δW are arbitrary but fixed throughout Section 4. We use
here superscripts to highlight the dependence of strategies, utilities and expected match
partners on n and k, writing b(n,k)M , b(n,k)W , a(n,k)M , a(n,k)W , Ψ(n,k), Φ(n,k), U (n,k)

M and U (n,k)
W .

We first show that agents’ expected utilities in large matching contests with partially
wasteful investments converge to the equilibrium utilities for the continuum model:

Theorem 4. Assume that Condition 1 is satisfied and that δ ′M(0)δ ′W (0) < 1. Then, for

all m ∈ [0,m] and w ∈ [0,w]:

lim
k→∞, k

nk
→1−r

U (nk,k)
M (m) = u(r)M (m) and lim

k→∞, k
nk
→1−r

U (nk,k)
W (w) = u(r)W (w).

In any finite market, a type’s expected utility exceeds his or her information rent,
γM
∫ m

0 Ψ(n,k)(s)ds or γW
∫ w

0 Φ(n,k)(s)ds by a constant equal to the expected benefit from
the guaranteed partner’s investment, i.e., by E[δM(b(n,n)W (W1:n))] or 0 for men, and by
E[δW (b(n,k)M (Mn−k+1:n))] for women.37 Theorem 4 shows that this extra utility con-
verges to zero if δ ′M(0)δ ′W (0) < 1, and also that information rents converge to their
continuum counterparts.

Even though signals are only partially wasteful, Theorem 4 implies that, asymptot-
ically, the entire difference between total match surplus

S(r) :=
∫ m

mr

mψr(m)
f (m)

1− r
dm

37Note that the terms γMmE[W1:n] and γW wE[Mn−k+1:n] (the type-dependent component of the lowest
type’s utility from his/her guaranteed match) in (19) and (20) vanish under Condition 1.
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and aggregate information rents

γMR(r)
M + γW R(r)

W ,

where

R(r)
M =

∫ m

mr

(∫ m

0
ψr(s)ds

)
f (m)

1− r
dm and R(r)

W =
∫ w

0

(∫ w

0
φr(s)ds

)
g(w)dw,

gets dissipated, in accordance with the prediction of Theorem 3 (i). Note that the dis-
sipation rate is always the same, no matter what the benefit functions δM and δW are
(as long as the condition δ ′M(0)δ ′W (0) < 1 is satisfied). For example, if γM = γW = 1

2 ,

exactly half the available surplus is dissipated in the limit, exactly as in the HMS model
where signals are completely wasteful and bring no benefit to the other side.

With TU investments, the continuum model does not admit a separating equilibrium
(part (ii) of Theorem 3) since investments grow out of bounds. In the finite model,
equilibrium strategies become very steep as n and k grow, but a unique side-symmetric,
strictly separating equilibrium always exists (by Theorem 1 and r(n,k)< 1)!

Interestingly, we are able to precisely characterize the limit behavior of the cor-
responding equilibrium utilities. This amounts here to understand how the expected
investments of the types Mn−k+1:n and W1:n behave as the market grows.

Note first that ex-post budget balance holds here for each matched pair. In particular,
in any balanced market the sum of all agents’ ex-ante expected utilities must be equal
to the ex-ante expected total match surplus. That is, for all n:

E

[
1
n

n

∑
i=1

Mi:nWi:n

]
=
∫ m

0
U (n,n)

M (m) f (m)dm+
∫ w

0
U (n,n)

W (w)g(w)dw

= E[b(n,n)W (W1:n)]+ γM

∫ m

0

∫ m

0
Ψ

(n,n)(s)ds f (m)dm

+E[b(n,n)M (M1:n)]+ γW

∫ w

0

∫ w

0
Φ

(n,n)(s)dsg(w)dw.

As n→ ∞, the integral terms converge to γMR(0)
M and γW R(0)

W (by Lemma 7 in the Ap-
pendix and the Dominated Convergence Theorem), and the left hand side converges to
S(0) (by the Law of Large Numbers for empirical distributions). Thus,

S(0) = lim
n→∞

(E[b(n,n)M (M1:n)]+E[b(n,n)W (W1:n)])+ γMR(0)
M + γW R(0)

W .

Because R(0)
M and R(0)

W are in fact the aggregated core (or stable) payoffs for men and
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women in the continuum model, we must have

S(0) = R(0)
M +R(0)

W .

Thus, we obtain

lim
n→∞

(E[b(n,n)M (M1:n)]+E[b(n,n)W (W1:n)]) = γW R(0)
M + γMR(0)

W > 0.

We show that the difference between the expected investments of M1:n and W1:n con-
verges to 0, i.e., limn→∞(E[b

(n,n)
M (M1:n)]− E[b(n,n)W (W1:n)]) = 0, leading to our limit

characterization of equilibrium utilities in the TU case.

Theorem 5. Assume that δM(βW )= βW , δW (βM)= βM and that Condition 1 is satisfied.

i) In large balanced markets, the (per capita) difference between aggregate surplus

and aggregate information rents is shared approximately fifty-fifty between men and

women, regardless of F,G and γM: for all m ∈ [0,m] and w ∈ [0,w],

lim
n→∞

U (n,n)
M (m) =

γW R(0)
M + γMR(0)

W
2

+ γM

∫ m

0
ψ0(s)ds,

lim
n→∞

U (n,n)
W (w) =

γW R(0)
M + γMR(0)

W
2

+ γW

∫ w

0
φ0(s)ds.

ii) In large, unbalanced markets, each agent on the short side obtains a fraction close

to 1 of the per capita difference between aggregate surplus and aggregate information

rents (on top of her information rent): for all m ∈ [0,m] and w ∈ [0,w],

lim
k→∞,k<nk,

k
nk
→1−r

U (nk,k)
M (m) = γM

∫ m

0
ψr(s)ds,

lim
k→∞,k<nk,

k
nk
→1−r

U (nk,k)
W (w) = γW R(r)

M + γMR(r)
W + γW

∫ w

0
φr(s)ds.

The proof of Theorem 5 (i) relies on some subtle properties of the matrix Θn. The
unbalanced case in Theorem 5 (ii) is much simpler because only agents on the short
side obtain utility in excess of information rents, and because only a vanishingly small
fraction of total surplus can get dissipated (the investments made by agents failing to
match) in large markets.
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5 Conclusion

We have provided the first quantitative analysis of the feedback effect shaping Bayes-
Nash equilibrium investments in two-sided matching contests when the investments
create external benefits, and studied how the effect interacts with agents’ signaling in-
centives. We have identified the Perron root of a particular matrix of moments of order
statistics as the key measure of the intensity of the feedback cycle. This characterization
has allowed us to obtain detailed information about how the strength of the feedback
effect and the resulting amplification of agents’ pure signaling investments depend on
market size.

We have illustrated our results by highlighting some surprising consequences for the
comparative statics of total equilibrium signaling, and by providing novel, quantitative
insights into how competition alleviates the hold-up problem in small markets with
productive investments. The complex, interdependent nature of equilibrium behavior
also gives rise to other intricate effects. For example, in small markets, raising the
surplus share of one side of the market may impact the expected utility of agents on
that side in very different ways. Specifically, the analysis documents that an increase in
bargaining power on the own market side can harm some agents. Especially those with
little to offer may suffer.

Finally, our results have also allowed us to shed new light on the relationship be-
tween finite and continuum models of matching contests by deriving the exact asymp-
totic behavior of equilibrium utilities, as the numbers of men and women go to infinity,
in environments with partially wasteful or TU investments.

Appendix

Proof of Lemma 1. If bW is an equilibrium strategy, it is immediate from (6), (7) and
the definitions of T and S that ∆

δM◦bW
W is a fixed point of S ◦ T̂ . Moreover, the mapping

is one-to-one (if ι(b1
W ) = ι(b2

W ) for two equilibrium strategies b1
W and b2

W , then (4) and
(5) imply b1

W = b2
W ) and onto: if y∗ is a fixed point of S◦ T̂ , then bM(m) := γMaM(m)+

F̂ (m) · y∗ and bW (w) := γW aW (w) + G (w) · ∆̂δW ◦bM
M constitute equilibrium strategies

satisfying ∆
δM◦bW
W = y∗.

Proof of Lemma 2. i) θn,i0 = 0 is obvious. For j ≥ 1, we first rewrite θn,i j using inte-
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gration by parts:38

θn,i j = E[Fj:n−1(Mi+1:n)−Fj:n−1(Mi:n)] =
∫ m

m
Fj:n−1(m)( fi+1:n(m)− fi:n(m))dm

=
∫ m̄

m
(Fi:n(m)−Fi+1:n(m)) f j:n−1(m)dm = E[Fi:n(M j:n−1)−Fi+1:n(M j:n−1)].

Using the identities (1) and (2), it follows that

θn,i j = E[Fi:n(M j:n−1)−Fi+1:n(M j:n−1)] = E
[(

n
i

)
F i(M j:n−1)(1−F(M j:n−1))

n−i
]

=

(
n
i

)
(n−1)

(
n−2
j−1

)∫ m

m
F i+ j−1(m)(1−F(m))2n−1−i− j f (m)dm

=
n−1

2n−1

(n
i

)(n−2
j−1

)( 2n−2
i+ j−1

) ∫ m

m
fi+ j:2n−1(m)dm =

n−1
2n−1

(n
i

)(n−2
j−1

)( 2n−2
i+ j−1

) .

ii) Case n=2: The formula from (i) yields θ2,01 = θ2,11 =
1
3 . Thus, 3Θ2 is stochastic.

Case n > 2: The entries of the i-th row of Θn can be reinterpreted in a way that
allows computing the row sum as a telescoping sum. Indeed, for j = 2, ...,n−2:

E[Fj−1:n−2(Mi+1:n+1)−Fj:n−2(Mi+1:n+1)]

=
∫ m

m

(
n−2
j−1

)
F j−1(m)(1−F(m))n−1− j fi+1:n+1(m)dm

=

(
n−2
j−1

)
(n+1)

(
n
i

)∫ m

m
F i+ j−1(m)(1−F(m))2n−1−i− j f (m)dm

=
n+1

2n−1

(n
i

)(n−2
j−1

)( 2n−2
i+ j−1

) =
n+1
n−1

θn,i j.

Similarly, for j = n−1 we find:

E[Fn−2:n−2(Mi+1:n+1)] =
∫ m

m

(
n−2
n−2

)
Fn−2(m) fi+1:n+1(m)dm

=

(
n−2
n−2

)
(n+1)

(
n
i

)∫ m

m
F i+(n−1)−1(m)(1−F(m))2n−1−i−(n−1) f (m)dm

=
n+1

2n−1

(n
i

)(n−2
n−2

)( 2n−2
i+(n−1)−1

) = n+1
n−1

θn,i(n−1).

Finally, for j = 1,

E[1−F1:n−2(Mi+1:n+1)] =
n+1
n−1

θn,i1.

38Observe that the case i = 0 (so that F0:n ≡ 1 on [m,m]) is covered by the argument.
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Summing up all terms (including θn,i0 = 0) yields n+1
n−1 ∑

n−1
j=0 θn,i j = 1.

Proof of Theorem 1. If dM = 0, the unique fixed point of S ◦ T̂ is 0, and (11) and (12)
follow immediately from (9) and (10). If dM > 0, the fixed point equation becomes

∆
bW
W = γW ∆

aW
W +dW Θk(γM∆̂

aM
M +dMΘ̂n,k∆

bW
W ),

or
(Ik−dMdW ΘkΘ̂n,k)∆

bW
W = γW ∆

aW
W +dW γMΘk∆̂

aM
M .39 (21)

Case r(n,k)dMdW < 1: ρ(dMdW ΘkΘ̂n,k) = r(n,k)dMdW < 1 implies in particular that
Ik − dMdW ΘkΘ̂n,k is invertible, so that (21) yields (12). We must also show ∆

bW
W ≥

0. As ρ(dMdW ΘkΘ̂n,k) < 1, (Ik − dMdW ΘkΘ̂n,k)
−1 is given by the convergent series

∑
∞
l=0(dMdW ΘkΘ̂n,k)

l (Theorem 5.6.15 and Corollary 5.6.16 in Horn and Johnson 2013).
Thus, (Ik−dMdW ΘkΘ̂n,k)

−1 ≥ 0. Moreover, ∆
aW
W > 0 because aW is strictly increasing

(for j≥ 1, wG j(w)−
∫ w

w G j(s)ds is strictly increasing, and ∆̂
I1
M > 0). Similarly, ∆̂

aM
M > 0.

As Θk ≥ 0, it follows that γW ∆
aW
W +dW γMΘk∆̂

aM
M > 0. Thus, ∆

bW
W ≥ 0 (in fact, ∆

bW
W > 0,

because the diagonal entries of (Ik−dMdW ΘkΘ̂n,k)
−1 are positive). Finally, the explicit

form of ∆̂
bM
M , stated in (11), follows from plugging (10) into (9).

Case r(n,k)dMdW ≥ 1: let z := γW ∆
aW
W +dW γMΘk∆̂

aM
M . We have already shown that

z > 0. We have to show that the linear system of equations (Ik− dMdW ΘkΘ̂n,k)v = z

has no solution v ∈ Rk
+. This follows from Farkas’ Lemma and from the fact that the

non-negative and non-zero matrix ΘkΘ̂n,k, has a non-negative, non-zero left eigenvec-
tor w(n,k) associated with r(n,k), i.e., w(n,k)T ΘkΘ̂n,k = r(n,k)w(n,k)T (see Theorem
8.3.1 in Horn and Johnson 2013). It follows that

w(n,k)T (Ik−dMdW ΘkΘ̂n,k) = w(n,k)T (1− r(n,k)dMdW )≤ 0 and w(n,k)T z > 0.

Thus, by Farkas’ Lemma, (Ik− dMdW ΘkΘ̂n,k)v = z has no solution v ≥ 0, which con-
cludes the proof for the case r(n,k)dMdW ≥ 1.

Proof of Theorem 2. Case r(n,k)(limb→∞ δ ′M(b))(limb→∞ δ ′W (b)) < 1: We must show
that S◦ T̂ has a fixed point. We prove this for the case n > k first. Let CM and CW be two
constants satisfying limb→∞ δ ′M(b) < CM, limb→∞ δ ′W (b) < CW and r(n,k)CWCM < 1.
We show below that for all y ∈ Rk

+

S(T̂ (y))≤CMCW ΘkΘ̂n,ky+R(y), (22)

39We have derived the equation directly from (9) and (10). This is equivalent to writing down the fixed
point equation S◦ T̂ (y) = y for y = dM∆

bW
W and then dividing this equation by the constant dM > 0.
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for some R : Rk
+→ Rk

+ satisfying R(y) = o(||y||) as ||y|| → ∞ for any norm || · || on Rk

(here o(·) is the usual “little o” Landau symbol, and the inequality (22) holds of course
coordinate-wise). Invoking some facts from matrix analysis, this implies the existence
of a compact and convex set that is mapped into itself by S ◦ T̂ , so that, by Brouwer’s
Theorem, S◦ T̂ has a fixed point. To prove the existence of such a set, we show first that
CMCW ΘkΘ̂n,k > 0 and ρ(CMCW ΘkΘ̂n,k) =CMCW r(n,k)< 1 imply that there is a mono-

tone norm ‖ ·‖ on Rk (i.e., |yi| ≤ |ỹi| for all i implies ‖y‖ ≤ ‖ỹ‖) such that CMCW ΘkΘ̂n,k

is a contraction with respect to ‖ · ‖.40 Indeed, for an arbitrary positive k× k matrix
A > 0, let x > 0 be its Perron (right) eigenvector, i.e., Ax = ρ(A)x (see Theorem 8.2.8
in Horn and Johnson 2013) and define D as the diagonal matrix D = diag(x1, ...,xk). By
Theorem 5.6.7 of Horn and Johnson (2013), |||B|||D−1 := |||D−1BD|||∞ defines a matrix
norm that is induced by the vector norm ‖ · ‖D−1 defined via ‖y‖D−1 := ‖D−1y‖∞. That
is, for an arbitrary matrix B ∈ Rk×k, |||B|||D−1 = maxy6=0

‖By‖D−1
‖y‖D−1

. A straightforward

calculation shows that all row sums of D−1AD are equal to ρ(A) (see exercise 8.2.P12
in Horn and Johnson 2013). Using that ||| · |||∞ is the “row sum norm”, i.e., for any
matrix B, |||B|||∞ = max0≤i≤k−1 ∑

k−1
j=0 |bi j| (Example 5.6.5 in Horn and Johnson 2013),

it follows that |||A|||D−1 = |||D−1AD|||∞ = ρ(A). Moreover, the vector norm ‖ · ‖D−1 is
clearly monotone. Applying these findings for A =CMCW ΘkΘ̂n,k, we obtain from (22)
(note that the first inequality uses the monotonicity of the norm):

‖S(T̂ (y))‖D−1 ≤ ‖CMCW ΘkΘ̂n,ky+R(y)‖D−1 ≤ ‖CMCW ΘkΘ̂n,ky‖D−1 +‖R(y)‖D−1

≤ |||CMCW ΘkΘ̂n,k|||D−1‖y‖D−1 +‖R(y)‖D−1 = ρ(CMCW ΘkΘ̂n,k)‖y‖D−1 +o(‖y‖D−1).

(23)

For any K > 0, let BK(0) = {y ∈ Rk : ‖y‖D−1 ≤ K} (the closed ball of radius K for
the norm || · ||D−1). Clearly, BK(0) is compact and convex (see also Theorem 5.5.8 in
Horn and Johnson 2013). As ρ(CMCW ΘkΘ̂n,k) < 1, (23) implies that there is some
K1 < ∞ such that for all y∈Rk

+ with ||y||D−1 ≥K1, ||S(T̂ (y))||D−1 ≤ ||y||D−1 . Moreover,
S(T̂ (BK1(0)∩Rk

+)) is compact (BK1(0)∩Rk
+ is compact and S◦ T̂ is continuous). Taken

together, these two observations imply that there is some K2 (possibly greater than K1),
such that S(T̂ (BK2(0)∩Rk

+)) ⊂ BK2(0)∩Rk
+, i.e., the continuous mapping S ◦ T̂ maps

the compact and convex set BK2(0)∩Rk
+ into itself. Thus, it has a fixed point.

We still have to show (22). Note first that by the definition of CM and CW , there are
constants 0 < b1 < b2 < ∞ such that for all b≥ b1, δ ′M(b)≤CM and δ ′W (b)≤CW , and

40Note that for many “naive” guesses of monotone norms, CMCW ΘkΘ̂n,k need not be a contraction.
E.g., for a positive matrix A for which not all row sums are equal, we generally have the strict inequality
ρ(A)< |||A|||∞. Thus, even if ρ(A)< 1 there may be vectors for which ‖Ay‖∞ > ‖y‖∞.
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for all b≥ b2, δM(b)≤CMb. Recall also that for all i ∈ {0, ...,k−1},

T̂i(y) = E[δW (γMaM(Mn−k+i+1:n)+ F̂ (Mn−k+i+1:n) · y)

−δW (γMaM(Mn−k+i:n)+ F̂ (Mn−k+i:n) · y)]

Si(x) = E[δM(γW aW (Wi+1:k)+G (Wi+1:k) · x)−δM(γW aW (Wi:k)+G (Wi:k) · x)].

In the present case of n > k, F̂0 = Fn−k 6≡ 0, so that T̂ (y) depends on all entries of y.
T̂0(y) has no effect on S(T̂ (y)) because G0 ≡ 0. Given a vector v = (v0, ...,vk−1) ∈ Rk,
we write v−0 for the vector (v1, ...,vk−1).

For each y ∈ Rk
+, γMaM(Mn−k+1:n) + F̂ (Mn−k+1:n) · y is the smallest one of the

terms γMaM(Mn−k+i:n)+ F̂ (Mn−k+i:n) · y, i ∈ {1, ...,k}, that occur in the definition of
T̂−0. Moreover, the smallest entry of F̂ (Mn−k+1:n) = (Fn−k+ j:n−1(Mn−k+1:n)) j=0,...,k−1

is Fn−1:n−1(Mn−k+1:n), because Fn−1:n−1 first-order stochastically dominates the distri-
butions of the lower order statistics. This implies γMaM(Mn−k+1:n)+F̂ (Mn−k+1:n) ·y≥
||y||∞Fn−1:n−1(Mn−k+1:n). We define

m(b) :=

F−1
n−1:n−1

(
b1

b

)
if b≥ b1

m if 0≤ b≤ b1.

For b≥ b1, m(b) is strictly decreasing and satisfies bFn−1:n−1(m(b)) = b1. In particular,
limb→∞ m(b) = m. We write T̂i(y) = AT̂

i (y)+ ε T̂
i (y), where

AT̂
i (y) = E[(δW (γMaM(Mn−k+i+1:n)+ F̂ (Mn−k+i+1:n) · y)

−δW (γMaM(Mn−k+i:n)+ F̂ (Mn−k+i:n) · y))I{Mn−k+1:n≥m(||y||∞)}]

ε
T̂
i (y) = E[(δW (γMaM(Mn−k+i+1:n)+ F̂ (Mn−k+i+1:n) · y)

−δW (γMaM(Mn−k+i:n)+ F̂ (Mn−k+i:n) · y))I{Mn−k+1:n<m(||y||∞)}].

Here, I{·} is an indicator function. By the above definitions, AT̂
i (y) = 0 if ‖y‖∞ ≤ b1.

Moreover, if ‖y‖∞ ≥ b1 and conditional on the event {Mn−k+1:n ≥ m(||y||∞)}, we have
||y||∞Fn−1:n−1(Mn−k+1:n)≥ ||y||∞Fn−1:n−1(m(||y||∞)) = b1, so that the mean value the-
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orem and δ ′W (b)≤CW for b > b1 imply the following upper bound for AT̂
i (y):

AT̂
i (y)≤CW E[(γM(aM(Mn−k+i+1:n)−aM(Mn−k+i:n))

+(F̂ (Mn−k+i+1:n)− F̂ (Mn−k+i:n)) · y)I{Mn−k+1:n≥m(‖y‖∞)}]

≤CW

(
γM∆̂

aM
M,i +

k−1

∑
j=0

E[Fn−k+ j:n−1(Mn−k+i+1:n)−Fn−k+ j:n−1(Mn−k+i:n)]y j

)
=CW

(
γM∆̂

aM
M,i +(Θ̂n,ky)i

)
.

Next, for all i ∈ {1, ...,k−1}, ε T̂
i (y) = o(||y||∞) as ||y||∞→ ∞. Indeed, ε T̂

i (y)> 0 and

k−1

∑
i=1

ε
T̂
i (y)≤ E[(δW (γMaM(Mn:n)+ F̂ (Mn:n) · y))I{Mn−k+1:n<m(||y||∞)}]

≤ δW (γMaM(m)+ k||y||∞)E[I{Mn−k+1:n<m(||y||∞)}].

As ||y||∞ → ∞, the first factor is of order O(||y||∞), and the second is of order o(1).
Thus, their product is of order o(||y||∞). It follows that

T̂i(y)≤CW (Θ̂n,ky)i +o(||y||∞). (24)

Consider S now. γW aW (W1:k) +G (W1:k) · x is the smallest non-zero term among the
terms γW aW (Wi:k)+G (Wi:k) ·x = γW aW (Wi:k)+G−0(Wi:k) ·x−0, i ∈ {0, ...,k}, that occur
in the definition of S (and γW aW (W0:k) +G (W0:k) · x = 0). Moreover, γW aW (W1:k) +

G−0(W1:k) · x−0 ≥ ||x−0||∞Gk−1:k−1(W1:k). For l ∈ {1,2}, we define:

wl(b) :=

G−1
k−1:k−1

(
bl

b

)
if b≥ bl

w if 0≤ b≤ bl,

i.e., for b≥ bl , bGk−1:k−1(wl(b)) = bl . For i≥ 1, we write Si(x) = AS
i (x)+εS

i (x), where

AS
i (x) = E[(δM(γW aW (Wi+1:k)+G−0(Wi+1:k) · x−0)

−δM(γW aW (Wi:k)+G−0(Wi:k) · x−0))I{W1:k≥w1(||x−0||∞)}],

ε
S
i (x) = E[(δM(γW aW (Wi+1:k)+G−0(Wi+1:k) · x−0)

−δM(γW aW (Wi:k)+G−0(Wi:k) · x−0))I{W1:k<w1(||x−0||∞)}]

Analogously to the estimates for T̂ , it follows that

AS
i (x)≤CM

(
γW ∆

aW
W,i +(Θkx)i

)
,
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and εS
i (x) = o(||x−0||∞) as ||x−0||∞→∞. Next, we use the function w2 to write S0(x) =

AS
0(x)+ εS

0 (x), where

AS
0(x) = E[(δM(γW aW (W1:k)+G−0(W1:k) · x−0))I{W1:k≥w2(||x−0||∞)}],

ε
S
0 (x) = E[(δM(γW aW (W1:k)+G−0(W1:k) · x−0))I{W1:k<w2(||x−0||∞)}].

Then εS
0 (x) = o(||x−0||∞), and AS

0(x) ≤ CM

(
γW ∆

aW
W,0 +(Θkx)i

)
. Combining all esti-

mates for S, we get for all i ∈ {0, ...,k−1}:

Si(x)≤CM(Θkx)i +o(||x−0||∞). (25)

From (24) and (25), we get S(T̂ (y))≤CMCW ΘkΘ̂n,ky+R(y), where the remainder term
R satisfies R(y) = o(||y||∞) and thus (as all norms on Rk are equivalent) R(y) = o(||y||)
for any norm ‖ · ‖. This shows (22) and concludes the proof for the case n > k.

The proof for n = k is analogous, and quite a bit simpler. In this case, both y0

(corresponding to ∆
δM◦bW
W,0 ) and x0 (corresponding to ∆̂

δW ◦bM
M,0 ) are irrelevant, so that one

needs only the bounds δ ′M(b)≤CM and δ ′W (b)≤CW for b≥ b1 to derive the analog of
(22). Moreover, all row sums of Θ2

n are the same, so that the usual ||| · |||∞ norm can be
used for the contraction argument.

Case r(n,k)(limb→∞ δ ′M(b))(limb→∞ δ ′W (b)) ≥ 1: The proof of Corollary 2 shows
that the fixed point vector would have to be coordinate-wise larger than the one for
the case of linear benefits dM = limb→∞ δ ′M(b) and dW = limb→∞ δ ′W (b). However, by
Theorem 1, no fixed point exists in this case.

Lemma 4. ∆
aW
W and ∆

aM
M satisfy

∆
aW
W,i =

k−1

∑
j=1

θk,i jE[Wi+ j:2k−1]∆̂
I1
M, j for i ∈ {0, ...,k−1},

∆
aM
M,i =

k−1

∑
j=0

θn,i(n−k+ j)E[Mi+n−k+ j:2n−1]∆
I1
W, j for i ∈ {0, ...,n−1}.

Proof of Lemma 4. As wG j:k−1(w)−
∫ w

w G j:k−1(s)ds =
∫ w

w sg j:k−1(s)ds (for j ≥ 1), we
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find for i≥ 1:

∆
aW
W,i = E[aW (Wi+1:k)−aW (Wi:k)]

=
k−1

∑
j=1

E
[∫ Wi+1:k

w
sg j:k−1(s)ds−

∫ Wi:k

w
sg j:k−1(s)ds

]
∆̂

I1
M, j

=
k−1

∑
j=1

(∫ w

w

(∫ w

w
sg j:k−1(s)ds

)
(gi+1:k(w)−gi:k(w))dw

)
∆̂

I1
M, j

=
k−1

∑
j=1

(∫ w

w
wg j:k−1(w)(Gi:k(w)−Gi+1:k(w))dw

)
∆̂

I1
M, j

=
k−1

∑
j=1

(∫ w

w
w(k−1)

(
k−2
j−1

)(
k
i

)
G(w)i+ j−1(1−G(w))2k−1−(i+ j)g(w)dw

)
∆̂

I1
M, j

=
k−1

∑
j=1

θk,i j

(∫ w

w
w(2k−1)

(
2k−2

i+ j−1

)
G(w)i+ j−1(1−G(w))2k−1−(i+ j)g(w)dw

)
∆̂

I1
M, j

=
k−1

∑
j=1

θk,i jE[Wi+ j:2k−1]∆̂
I1
M, j.

Similarly, for ∆
aM
M,i, i ≥ 1 (if n = k, the term for j = 0 in the following calculation is

trivially equal to zero):

∆
aM
M,i = E[aM(Mi+1:n)−aM(Mi:n)]

=
k−1

∑
j=0

E
[∫ Mi+1:n

m
s fn−k+ j:n−1(s)ds−

∫ Mi:n

m
s fn−k+ j:n−1(s)ds

]
∆

I1
W, j

=
k−1

∑
j=0

(∫ m

m

(∫ m

m
s fn−k+ j:n−1(s)ds

)
( fi+1:n(m)− fi:n(m))dm

)
∆

I1
W, j

=
k−1

∑
j=0

(∫ m

m
m fn−k+ j:n−1(m)(Fi:n(m)−Fi+1:n(m))dm

)
∆

I1
W, j

=
k−1

∑
j=0

θn,i(n−k+ j)E[Mi+n−k+ j:2n−1]∆
I1
W, j.

The proofs for i = 0 follow from analogous calculations (using aW (W0:k) = aM(M0:n) =

0 and 1−G1:k(w) = 1−F1:n(m) = 0).

Lemma 5. If F has increasing virtual valuations, i.e., m− 1−F(m)
f (m) is weakly increasing,

and if m = 0, then 4E[M1:3]≥ E[M2:3]. The inequality is satisfied with equality if virtual

valuations are constant.
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Proof of Lemma 5. Recall F1:3 = 1− (1−F)3 and F1:3−F2:3 = 3F(1−F)2. We have

4E[M1:3]−E[M2:3] = 3E[M1:3]+ (E[M1:3]−E[M2:3])

= 3
∫ m

0
(1−F(x))3dx−3

∫ m

0
F(x)(1−F(x))2dx

= 3
∫ m

0
(1−F(x))2(1−2F(x))dx

= 3
(∫ m

0
(1−F(x))2dx−

∫ m

0
(1−F(x))22F(x)dx

)
.

Defining h = (1−F)2/ f and letting M denote a random variable with c.d.f. F , we get

4E[M1:3]−E[M2:3] = 3
∫ m

0
h(x) f (x)dx−

∫ m

0
h(x)2F(x) f (x)dx

= 3E[h(M)]−3E[h(M2:2)]

where we used that f2:2 = 2F f . Thus, if h is decreasing, 4E[M1:3]−E[M2:3] is non-
negative. Yet this is indeed the case since 1/h is the so-called zoom rate associated with
F and since it is shown in Ewerhart (2013) that the signs of the derivatives of the zoom
rate and of the virtual valuation function coincide, see also Szech (2011).

Proof of Corollary 1. Consider the equilibrium strategies b̃M and b̃W for the case of
linear benefit functions δ̃M(βW ) := δ ′M(0)βW and δ̃W (βM) := δ ′W (0)βM (the equilib-
rium exists, by Theorem 1, because r(n,k)δ ′M(0)δ ′W (0) < 1). The limit conditions on
type supports imply b̃M(m) → 0 and b̃W (w) → 0. Indeed, if n = k, then aM(m) ≤
m(w−w) and aW (w) ≤ (m−m)w, and if n > k, then aM(m),aW (w) ≤ mw. Thus,
aM(m)→ 0 and aW (w)→ 0, so that ∆

aM
M ,∆aW

W → 0. Thus, using (12), it follows that

∆
b̃W
W = (Ik− δ ′M(0)δ ′W (0)ΘkΘ̂n,k)

−1(γW ∆
aW
W + dW γMΘk∆̂

aM
M )→ 0 (Θk and Θ̂n,k are fix).

Similarly, ∆
b̃M
M → 0 (using (11)). Hence, b̃M(m) = γMaM(m)+δ ′M(0)F̂ (m) ·∆b̃W

W → 0,

and b̃W (w) = γW aW (w)+δ ′W (0)G (w) · ∆̂b̃M
M → 0.

To complete the proof, we show that for any equilibrium of the matching contest
with benefit functions δM and δW , bM(m) ≤ b̃M(m) for all m ∈ [m,m] and bW (w) ≤
b̃W (w) for all w ∈ [w,w]. First, the concavity of δW and δM, the mean value theorem,
and the identities (6) and (7) imply the following bounds for ∆̂

δW ◦bM
M and ∆

δM◦bW
W :

∆̂
δW ◦bM
M ≤ δ

′
W (0)(γM∆̂

aM
M + Θ̂n,k∆

δM◦bW
W ),

∆
δM◦bW
W ≤ δ

′
M(0)(γW ∆

aW
W +Θk∆̂

δW ◦bM
M ).
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Thus (as all entries of Θk are non-negative),

(Ik−δ
′
M(0)δ ′W (0)ΘkΘ̂n,k)∆

δM◦bW
W ≤ δ

′
M(0)(γW ∆

aW
W +δ

′
W (0)γMΘk∆̂

aM
M ). (26)

Applying (Ik− δ ′M(0)δ ′W (0)ΘkΘ̂n,k)
−1 = ∑

∞
l=0(δ

′
M(0)δ ′W (0)ΘkΘ̂n,k)

l ≥ 0 to both sides
of the vector inequality (26) yields

∆
δM◦bW
W ≤ δ

′
M(0)∆b̃W

W = ∆
δ̃M◦b̃W
W .

∆̂
δW ◦bM
M ≤ ∆̂

δ̃W ◦b̃M
M follows from an entirely analogous argument. bM(m) ≤ b̃M(m) now

follows from (4), and bW (w)≤ b̃W (w) follows from (5).

Proof of Corollary 2. Consider the expression (6) for ∆
δW ◦bM
M,i (i ∈ {0, ...,n− 1}). In-

voking the concavity of δW and the mean value theorem, we obtain the following lower
bound:

∆
δW ◦bM
M,i ≥ δ

′
W (bM(m))(γM∆

aM
M,i +(Θn,k∆

δM◦bW
W )i).

Analogously, (7), the concavity of δM, and the mean value theorem imply

∆
δM◦bW
W,i ≥ δ

′
M(bW (w))(γW ∆

aW
W,i +(Θk∆̂

δW ◦bM
M )i),

for all i ∈ {0, ...,k−1}. Thus,

∆̂
δW ◦bM
M ≥ δ

′
W (bM(m))(γM∆̂

aM
M + Θ̂n,k∆

δM◦bW
W ),

∆
δM◦bW
W ≥ δ

′
M(bW (w))(γW ∆

aW
W +Θk∆̂

δW ◦bM
M ).

As all entries of Θk are non-negative, we get:

(Ik−δ
′
M(bW (w))δ ′W (bM(m))ΘkΘ̂n,k)∆

δM◦bW
W

≥ δ
′
M(bW (w))(γW ∆

aW
W +δ

′
W (bM(m))γMΘk∆̂

aM
M ). (27)

If δ ′M(bW (w)) = 0, then the claim of the theorem holds trivially. Otherwise, the right
hand side of (27) is a positive vector. Thus, ∆

δM◦bW
W solves

(Ik−δ
′
M(bW (w))δ ′W (bM(m))ΘkΘ̂n,k)∆

δM◦bW
W = z,

for some z > 0. In the proof of Theorem 1, we have shown that this is possible if and
only if r(n,k)δ ′M(bW (w))δ ′W (bM(m))< 1.

Proof of Lemma 3. We give the proof for UM and n = k. The remaining cases are anal-
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ogous. Invoking (4) and the formula for aM, we find:

UM(m) = γMmΨ(m)+E[δM(bW (W1:n))]+ F̂ (m) ·∆δM◦bW
W −bM(m)

= γMm
(

E[W1:n]+ F̂ (m) ·∆I1
W

)
+E[δM(bW (W1:n))]− γMaM(m)

= E[δM(bW (W1:n))]+ γM

(
mE[W1:n]+

∫ m

m
F̂ (s)ds ·∆I1

W

)
= E[δM(bW (W1:n))]+ γMmE[W1:n]+ γM

∫ m

m
Ψ(s)ds.

Proof of Theorem 3. The maximization problems for types m and w, who assume that
others invest according to continuous, non-decreasing functions bM and bW that are
strictly increasing and differentiable on [mr,m] and [w,w] and satisfy bM(mr)= bW (0)=
0, are given by:

max
s∈[0,m]

[γMmψr(s)−bM(s)+δM(bW (ψr(s)))] , and

max
s∈[0,w]

[γW wφr(s)−bW (s)+δW (bM(φr(s)))] .

This implies the following necessary conditions for equilibrium investments by types
m > mr and w > 0:

b′M(m) = γMmψ
′
r(m)+δ

′
M(bW (ψr(m)))b′W (ψr(m))ψ ′r(m)

b′W (w) = γW wφ
′
r(w)+δ

′
W (bM(φr(w)))b′M(φr(w))φ ′r(w).

Evaluating the second condition at w = ψr(m), multiplying it by ψ ′r(m)> 0, and using
φr(ψr(m)) = m and φ ′r(ψr(m))ψ ′r(m) = 1, we obtain the following system of first-order
ODE for bm and bW ◦ψr:

b′M(m) = γMmψ
′
r(m)+δ

′
M((bW ◦ψr)(m)))(bW ◦ψr)

′(m)

(bW ◦ψr)
′(m) = γW ψr(m)+δ

′
W (bM(m))b′M(m). (28)

If δ ′M(0)δ ′W (0)< 1, we may rewrite the system (28) equivalently in standard form

b′M(m) =
γMmψ ′r(m)+δ ′M((bW ◦ψr)(m))γW ψr(m)

1−δ ′W (bM(m))δ ′M((bW ◦ψr)(m))

(bW ◦ψr)
′(m) =

γW ψr(m)+δ ′W (bM(m))γMmψ ′r(m)

1−δ ′W (bM(m))δ ′M((bW ◦ψr)(m))
.
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δ ′M(0)δ ′W (0) < 1 and the continuity of δ ′′M and δ ′′W imply that the Lipschitz condition
guaranteeing a unique pair of continuously differentiable solutions (bM,bW ◦ψr) with
initial values bM(mr) = bW (ψr(mr)) = 0 is satisfied, and clearly both functions are
strictly increasing. Sufficiency conditions for optimality follow immediately from su-
permodularity. The formulas for u(r)M and u(r)W follow from u(r)M (mr) = u(r)W (0) = 0 and
payoff equivalence. This proves part (i).

For part (ii), note that if bM and bW are strictly increasing functions, they are differ-
entiable almost everywhere. In particular, there is a set of full measure in [mr,m] where
both bM and bW ◦ψr are differentiable. But, if bM and bW are equilibrium strategies, the
system (28) must be satisfied for each of these types. However, for δ ′M ≡ 1 and δ ′W ≡ 1,
(28) is violated for any m. This concludes the proof.

The proofs of Theorems 4 and 5 use the following well-known result about the
asymptotic distribution of central order statistics:

Lemma 6. For m ∈ (m, m̄), set p = F(m)> 0. Let→d denote convergence in distribu-

tion, as n→ ∞. If ( jn)n∈N is a sequence that satisfies jn
n − p = o(n−1/2), then

√
n(M jn:n−m)→d N

(
0,

p(1− p)
f (m)2

)
,

In particular, the result applies for jn = dpne, the ceiling of pn (the smallest integer

greater than or equal to pn).

Proof of Lemma 6. See Theorem 10.3 in David and Nagaraja (2003).

Lemma 7. i) For all m ∈ [0,m] and w ∈ [0,w]:

lim
k→∞, k

nk
→1−r

Ψ
(nk,k)(m) = ψr(m) and lim

k→∞, k
nk
→1−r

Φ
(nk,k)(w) = φr(w).

ii) For all m ∈ [0,m] and w ∈ [0,w]:

lim
k→∞, k

nk
→1−r

∫ m

0
Ψ

(nk,k)(s)ds=
∫ m

0
ψr(s)ds and lim

k→∞, k
nk
→1−r

∫ w

0
Φ

(nk,k)(s)ds=
∫ w

0
φr(s)ds.

Proof of Lemma 7. i) We give the proof for limk→∞, k
nk
→1 Ψ(nk,k)(m) = ψ0(m), i.e., for

the convergence of a given type of man’s expected partner when r = 0. The proof
for r ∈ (0,1) is a bit more cumbersome in terms of notation, but otherwise analo-
gous. The proof for the convergence of Φ(nk,k) is analogous as well. Consider any
m ∈ (0, m̄) and set p = F(m) > 0. Fixing an arbitrary ε > 0 (with m− ε ∈ (0, m̄) and

38



m+ε ∈ (0, m̄)), the convergence in law of
√

nk(MdF(m−ε)nke:nk−1−(m−ε)) (by Lemma
6) implies that FdF(m−ε)nke:nk−1(m) converges exponentially fast to 1 (in k, or equiva-
lently nk). Moreover Fj:nk−1(m) ≥ FdF(m−ε)nke:nk−1(m) for all j ≤ dF(m− ε)ne (by
stochastic dominance). Similarly, FdF(m+ε)nke:nk−1(m) converges exponentially fast to
0, and Fj:nk−1(m)≤ FdF(m+ε)nke:nk−1(m) for all j ≥ dF(m+ ε)nke. It follows that

Ψ
(nk,k)(m) =

E[W1:nk ]+∑
nk−1
j=1 Fj:nk−1(m)E[Wj+1:nk−Wj:nk ] if nk = k

∑
k−1
j=0 Fnk−k+ j:nk−1(m)E[Wj+1:k−Wj:k] if nk > k

can be written as the sum of a number in
[
E[WdF(m−ε)nke+k−nk:k],E[WdF(m+ε)nke+k−nk:k]

]
and an error term that converges exponentially fast to zero. Moreover, as a simple
consequence of Lemma 6 (applied to women’s order statistics), we have:

lim
k→∞, k

nk
→1

E[WdF(m−ε)nke+k−nk:k] = G−1(F(m− ε)),

lim
k→∞, k

nk
→1

E[WdF(m+ε)nke+k−nk:k] = G−1(F(m+ ε)).

Thus, it follows that

G−1(F(m− ε))≤ liminf
k→∞, k

nk
→1

Ψ
(nk,k)(m)≤ limsup

k→∞, k
nk
→1

Ψ
(nk,k)(m)≤ G−1(F(m+ ε)).

Letting ε → 0 then yields limk→∞, k
nk
→1 Ψ(nk,k)(m) = ψ0(m), for all m ∈ (0, m̄). The re-

sult for m = 0 and m = m̄ now follows immediately from the monotonicity and bound-
edness of Ψ(nk,k).

ii) This follows from (i) and the Dominated Convergence Theorem.

We will use the following two lemmas in the proofs of Theorems 4 and 5. Lemma
8 is due to Varah (1975).

Lemma 8 (Varah, 1975). Let A be a l× l-matrix that is diagonally dominant by rows.

That is, for all i = 0, ..., l−1, |ai,i|> ∑ j 6=i |ai, j|. Set α := mini(|ai,i|−∑ j 6=i |ai, j|). Then

||A−1||∞ ≤ 1
α

.

Lemma 9. ||∆aW
W ||∞ = O

(1
n

)
, and if Condition 1 is satisfied also ||∆aM

M ||∞ = O
(1

k

)
.

Proof of Lemma 9. Let c f := minm∈[m,m] f (m) > 0 and cg := minw∈[w,w] g(w) > 0. We
will prove the lemma using the representations of ∆

aW
W and ∆

aM
M from Lemma 4. Note
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first that, for all i ∈ {0, ...,n−1},

∆
I1
M,i = E[Mi+1:n−Mi:n] =

∫ m

m
(Fi:n(m)−Fi+1:n(m))dm + I{i=0}m

=
∫ m

m

(
n
i

)
F i(m)(1−F(m))n−idm + I{i=0}m

≤ 1
c f

∫ m

m

(
n
i

)
F i(m)(1−F(m))n−i f (m)dm + I{i=0}m

=
1

c f (n+1)
+ I{i=0}m,

where I{·} is the usual indicator function. An analogous inequality applies, of course,
for ∆

I1
W,i, i ∈ {0, ...,k−1}. Using Lemma 4 and Lemma 2 (ii), we obtain:

∆
aW
W,i =

k−1

∑
j=1

θk,i jE[Wi+ j:2k−1]∆̂
I1
M, j <

w(k−1)
c f (k+1)(n+1)

= O
(

1
n

)

∆
aM
M,i =

k−1

∑
j=0

θn,i(n−k+ j)E[Mi+n−k+ j:2n−1]∆
I1
W, j <

m(n−1)
cg(k+1)(n+1)

= O
(

1
k

)
,

where the second inequality uses Condition 1.

Proof of Theorem 4. Given the results of Lemma 3 and Lemma 7 ii), we still have to
show

lim
n→∞

E[δM(b(n,n)W (W1:n))] = lim
n→∞

E[δW (b(n,n)M (M1:n))] = 0 (balanced case)

and
lim

k→∞,k<nk,
k

nk
→1−r

E[δW (b(nk,k)
M (Mnk−k+1:nk))] = 0 (unbalanced case).

As equilibrium strategies for arbitrary benefit functions satisfying δ ′M(0)δ ′W (0)< 1 are
pointwise dominated by the equilibrium strategies for the case of linear benefit functions
with dM = δ ′M(0) and dW = δ ′W (0) (see the proof of Theorem 1), we need to consider
only the latter case. Starting from (11), we obtain:

||∆̂b(n,k)M
M ||∞ = ||(Ik−dMdW Θ̂n,kΘk)

−1(γM∆̂
a(n,k)M
M +dMγW Θ̂n,k∆

a(n,k)W
W )||∞

≤ ||(Ik−dMdW Θ̂n,kΘk)
−1||∞(γM||∆̂

a(n,k)M
M ||∞ +dMγW ||Θ̂n,k||∞||∆

a(n,k)W
W ||∞) = O

(
1
k

)
,

where the last step uses ||(Ik− dMdW Θ̂n,kΘk)
−1||∞ ≤ 1

1−dMdW
(by Lemma 8, because

Θ̂n,kΘk is sub-stochastic), ||Θ̂n,k||∞ ≤ 1, as well as ||∆̂a(n,k)M
M ||∞ = O

(1
k

)
and ||∆a(n,k)W

W ||∞ =
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O
(1

n

)
(by Lemma 9). An analogous argument, starting from (12) shows ||∆b(n,k)W

W ||∞ =

O
(1

k

)
. As E[b(n,n)W (W1:n)] = ∆

b(n,n)W
W,0 and E[b(n,n)M (M1:n)] = ∆

b(n,n)M
M,0 , this proves the claim of

the Theorem for balanced markets.
We still have to show limk→∞,k<nk,

k
nk
→1−r E[b(nk,k)

M (Mnk−k+1:nk))] = 0. Note that

b(nk,k)
M (m) = γMa(nk,k)

M (m)+dMF̂ (m) ·∆b
(nk ,k)
W

W

≤ F̂ (m) · (γMm∆
I1
W +dM∆

b
(nk ,k)
W

W ) =
k−1

∑
j=0

Fnk−k+ j:nk−1(m)(γMm∆
I1
W, j +dM∆

b
(nk ,k)
W

W, j ).

As ||∆I1
W ||∞ = O

(1
k

)
(see the proof of Lemma 9) and ||∆b(n,k)W

W ||∞ = O
(1

k

)
(see above), the

claim follows immediately from Lemma 6, which implies that for an arbitrary ε > 0
and any sequence jk ≥ εk, the probability that Fnk−k+ jk:nk−1(Mnk−k+1:nk) is larger than
ε converges exponentially fast to 0.

The proof of Theorem 5 i) uses the following lemma.

Lemma 10. i) The diagonal entries of Θn satisfy:

argmini∈{1,...,n−1}θn,ii =
n
2

if n is even,

argmini∈{1,...,n−1}θn,ii =

{
n−1

2
,
n+1

2

}
if n is odd.

ii) For even n, limn→∞ θn, n
2

n
2

√
πn = 1, and for odd n, limn→∞ θn, n−1

2
n−1

2

√
πn = 1.

Proof of Lemma 10. i) According to Lemma 2 (i), for i ∈ {1, ...,n−1}:

θn,ii =
n−1

2n−1

(n
i

)(n−2
i−1

)(2n−2
2i−1

) =
n−1

2n−1

(2i−1
i

)(2n−1−2i
n−i

)(2n−2
n

) .

For i ∈ {1, ...,n−2}, consider lnθn,ii− lnθn,(i+1)(i+1).

lnθn,ii− lnθn,(i+1)(i+1) =

(
2i−1

∑
l=i+1

ln l−
i−1

∑
l=1

ln l +
2n−1−2i

∑
l=n+1−i

ln l−
n−1−i

∑
l=1

ln l

)

−

(
2i+1

∑
l=i+2

ln l−
i

∑
l=1

ln l +
2n−3−2i

∑
l=n−i

ln l−
n−2−i

∑
l=1

ln l

)
= ln(i+1)− ln(2i)

− ln(2i+1)+ ln i− ln(n− i)+ ln(2n−2−2i)+ ln(2n−1−2i)− ln(n−1− i)

= ln(i+1)− ln(2i+1)− ln(n− i)+ ln(2n−1−2i)

= ln
(

2− 1
n− i

)
− ln

(
2− 1

i+1

)
.
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Thus, if n is even, we have θn,ii > θn,(i+1)(i+1) if and only if i≤ n
2−1 (otherwise the

strict reverse inequality holds). The claim for odd n also follows.
ii) This follows from Stirling’s approximation, n! =

√
2πn

(n
e

)n (1+O
(1

n

))
. We

spell out the case of even n.

√
πnθn, n

2
n
2
=
√

πn
n−1
2n−1

n!(n−2)!(n−1)!2(n
2

)
!2
(n−2

2

)
!2(2n−2)!

=
√

n
n−1

2n−1
1√
2

√
n(n−2)(n−1)
n
2

n−2
2

√
2n−2

nn(n−2)n−2(n−1)2n−2(n
2

)n (n−2
2

)n−2
(2n−2)2n−2

(
1+O

(1
n

))(
1+O

(1
n

))
=
√

n
n−1

2n−1
2
√

n−1√
n(n−2)

(
1+O

(1
n

))(
1+O

(1
n

)) .
This ratio converges to 1 as n→ ∞.

Proof of Theorem 5. Part (i): We show limn→∞(E[b
(n,n)
M (M1:n)]−E[b(n,n)W (W1:n)]) = 0,

i.e., limn→∞

(
∆

b(n,n)M
M,0 −∆

b(n,n)W
W,0

)
= 0.

Given a vector v = (v0, ...,vn−1) ∈Rn, we write v−0 for the vector (v1, ...,vn−1). We
define Vn ∈ Rn via Vn, j := θn,0 j for j ∈ {0, ...,n− 1}, i.e., Vn is the first row vector of
Θn. Recall also that Θ̂n,n−1 is the (n−1)× (n−1) matrix that results from deleting the
first column (which is zero) and the first row of Θn. (9) and (10) imply:

∆
b(n,n)M
M,0 = γM∆

a(n,n)M
M,0 +Vn,−0 ·∆

b(n,n)W
W,−0 and ∆

b(n,n)W
W,0 = γW ∆

a(n,n)W
W,0 +Vn,−0 ·∆

b(n,n)M
M,−0.

Thus, ∆
b(n,n)M
M,0 − ∆

b(n,n)W
W,0 = γM∆

a(n,n)M
M,0 − γW ∆

a(n,n)W
W,0 +Vn,−0 ·

(
∆

b(n,n)W
W,−0−∆

b(n,n)M
M,−0

)
. Using that

||∆a(n,n)M
M ||∞ = O

(1
n

)
and ||∆a(n,n)W

W ||∞ = O
(1

n

)
(by Lemma 9), as well as ||Vn,−0||1 = n−1

n+1

(by Lemma 2 ii), limn→∞

(
∆

b(n,n)M
M,0 −∆

b(n,n)W
W,0

)
= 0 follows from

lim
n→∞
||∆b(n,n)W

W,−0−∆
b(n,n)M
M,−0||∞ = 0,

which we now show. First, using (again) that the first column of Θn is zero, (9) and (10)
yield

∆
b(n,n)M
M,−0 = γM∆

a(n,n)M
M,−0 + Θ̂n,n−1∆

b(n,n)W
W,−0,

∆
b(n,n)W
W,−0 = γW ∆

a(n,n)W
W,−0 + Θ̂n,n−1∆

b(n,n)M
M,−0.

Thus, analogous to (11) and (12), we find the following explicit representations of
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∆
b(n,n)M
M,−0 and ∆

b(n,n)W
W,−0 (using only the entries of Θ̂n,n−1):

∆
b(n,n)M
M,−0 = (In−1− Θ̂

2
n,n−1)

−1(γM∆
a(n,n)M
M,−0 + γW Θ̂n,n−1∆

a(n,n)W
W,−0)

∆
b(n,n)W
W,−0 = (In−1− Θ̂

2
n,n−1)

−1(γW ∆
a(n,n)W
W,−0 + γMΘ̂n,n−1∆

a(n,n)M
M,−0).

It follows that

||∆b(n,n)W
W,−0−∆

b(n,n)M
M,−0||∞ = ||(In−1− Θ̂

2
n,n−1)

−1(In−1− Θ̂n,n−1)(γW ∆
a(n,n)W
W,−0− γM∆

a(n,n)M
M,−0)||∞

= ||(In−1 + Θ̂n,n−1)
−1(γW ∆

a(n,n)W
W,−0− γM∆

a(n,n)M
M,−0)||∞

≤ ||(In−1 + Θ̂n,n−1)
−1||∞(γW ||∆

a(n,n)W
W,−0||∞ + γM||∆

a(n,n)M
M,−0||∞).

But, ||(In−1 + Θ̂n,n−1)
−1||∞ = O(

√
n). Indeed, from Lemma 2 (ii), we know:

min
i∈{1,...,n−1}

(1+θn,ii−∑
j 6=i

θn,i j) = min
i∈{1,...,n−1}

(
2θn,ii +

2
n+1

)
.

Hence, Lemma 10 implies

lim
n→∞

(√
πn
2

min
i∈{1,...,n−1}

(1+θn,ii−∑
j 6=i

θn,i j)

)
= 1.

Thus, by Lemma 8, limsupn→∞

2||(In−1+Θ̂n,n−1)
−1||∞√

πn ≤ 1, so that ||(In−1+ Θ̂n,n−1)
−1||∞ =

O(
√

n). Using ||∆a(n,n)M
M ||∞ = O

(1
n

)
and ||∆a(n,n)W

W ||∞ = O
(1

n

)
, it follows that ||∆b(n,n)W

W,−0−

∆
b(n,n)M
M,−0||∞ = O( 1√

n).

Part (ii): Analogous to the argument in the main text, the sum of all agents’ ex-ante
expected utilities is bounded by ex-ante expected aggregate match surplus:

E

[
1
k

k

∑
i=1

Mnk−k+i:nkWi:k

]
>

nk

k

∫ m

0
U (nk,k)

M (m) f (m)dm+
∫ w

0
U (nk,k)

W (w)g(w)dw

= γM

∫ m

0

∫ m

0
Ψ

(nk,k)(s)ds f (m)
nk

k
dm

+E[bM(Mnk−k+1:nk)]+ γW

∫ w

0

∫ w

0
Φ

(nk,k)(s)dsg(w)dw.

The strict inequality above holds because the investments of the men who fail to match

43



are lost. Note that

lim
k→∞,k<nk,

k
nk
→1−r

E

[
1
k

k

∑
i=1

Mnk−k+i:nkWi:k

]
= S(r),

lim
k→∞,k<nk,

k
nk
→1−r

∫ m

0

∫ m

0
Ψ

(nk,k)(s)ds f (m)
nk

k
dm = R(r)

M ,

lim
k→∞,k<nk,

k
nk
→1−r

∫ w

0

∫ w

0
Φ

(nk,k)(s)dsg(w)dw = R(r)
W ,

where the first identity follows from the law of large numbers for empirical distribu-
tions, and the second and the third identity follow from Lemma 7 and the Dominated
Convergence Theorem. Moreover, S(r) = R(r)

M +R(r)
W (as R(r)

M and R(r)
W are the aggregate

core utilities in the continuum model). Thus,

limsup
k→∞,k<nk,

k
nk
→1−r

E[bM(Mnk−k+1:nk)]≤ γW R(r)
M + γMR(r)

W .

We show now that limk→∞,k<nk,
k

nk
→1−r E[bM(Mnk−k+1:nk)] = γW R(r)

M + γMR(r)
W , i.e., the

fraction of the difference between aggregate surplus and aggregate information rents
that is dissipated converges to 0. Indeed, by the above observations, E[bM(Mnk−k+1:nk)]=

O(1) (in the considered limit). Moreover, for any ε > 0 and any sequence jk ≥ εk,
E[bM(Mnk−k− jk:nk)] converges to zero exponentially fast (e.g., because, by Lemma 6,
the probability that Fnk−k:nk−1(Mnk−k− jk:nk) is greater than ε declines exponentially).
Thus, all investments that are wasted in expectation, E[bM(M1:nk)],...,E[bM(Mnk−k:nk)]

are at most of order 1, and, for any ε > 0, at most εk of these are not exponentially
small. Consequently, the per-capita expected utility that is lost converges to zero.

Acknowledgement

Deniz Dizdar gratefully acknowledges financial support from the FRQSC.
Benny Moldovanu gratefully acknowledges financial support from the German Sci-

ence Foundation.

References

[1] Bhaskar, V., and E. Hopkins (2016): “Marriage as a Rat Race: Noisy Pre-Marital
Investments with Assortative Matching,” Journal of Political Economy 124, 992-
1045.

44



[2] Boas, F. (1897) Kwakiutl Ethnography (ed) H. Codere. Chicago: University Press
(1966).

[3] Che, Y.-K., and D. B. Hausch (1999) “Cooperative Investments and the Value of
Contracting,” The American Economic Review 89(1), 125-147.

[4] Cole, H. L., G. J. Mailath, and A. Postlewaite (2001a): “Efficient Non-
Contractible Investments in Large Economies,” Journal of Economic Theory 101,
333-373.

[5] Cole, H. L., G. J. Mailath, and A. Postlewaite (2001b): “Efficient Non-
Contractible Investments in Finite Economies,” Advances in Theoretical Eco-

nomics 1, Iss. 1, Article 2.

[6] David, H. A., and H. N. Nagaraja: Order Statistics, Wiley-Interscience, 2003.

[7] Dizdar, D. (2017): “Two-sided Investment and Matching with Multidimensional
Cost Types and Attributes,” American Economic Journal: Microeconomics 10(3),
86-123.

[8] Ewerhart, C. (2013): “Regular type distributions in mechanism design and ρ-
concavity, ” Economic Theory 53(3), 591-603.

[9] Felli, L., and K. Roberts (2016): “Does Competition Solve the Hold-Up Prob-
lem?” Economica 83, 172-200.

[10] Gregory, C. A. (1980): “Gifts to Men and Gifts to God: Exchange and Capital
Accumulation in Contemporary Papua” Man (New Series) 15(4), 626-652.

[11] Hopkins, E. (2012): “Job Market Signaling Of Relative Position, Or Becker Mar-
ried To Spence,” Journal of the European Economic Association 10, 290-322.

[12] Hoppe, H. C., B. Moldovanu, and A. Sela (2009): “The Theory of Assortative
Matching Based on Costly Signals,” Review of Economic Studies 76, 253-281.

[13] Horn, R. A., and C. R. Johnson: Matrix Analysis, Cambridge University Press,
2013.

[14] Konrad, K. A. (2007): “Strategy in Contests - An Introduction,” Discussion Paper
SP II 2007-01, Berlin Wissenschaftszentrum.

[15] Lazear, E. P., and S. Rosen (1981): “Rank-Order Tournaments as Optimum Labor
Contracts,” Journal of Political Economy 89, 841-864.

45



[16] Mauss, M. (1935): The Gift. London: Routledge & Kegan Paul (1974).

[17] Moldovanu, B., and A. Sela (2001): “The Optimal Allocation of Prizes in Con-
tests,” American Economic Review 91(3), 542-558.
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