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1. INTRODUCTION

Mechanism design problems appear naturally in numerous economic
situations, including the regulation of a monopolist, auctions, government
procurement, nonlinear pricing, and the provision of public goods. By and
large, most of the vast literature on mechanism design has been restricted
to the case in which uncertainty is modelled by a single parameter, and the
commodity space has dimension two (for example, the quantity-money
commodity space in nonlinear pricing). In many problems, however, a
satisfying analysis requires a multidimensional treatment.

A fundamental assumption in the literature on optimal auction design is
that agents' final payoffs are determined solely by whether or not they
obtain the auctioned good, and by the payments made as required by the
rules of the auction (see, for example, Myerson [13], and Milgrom and
Weber [11]). The possibility that the auctioned good might play a role in
future interactions among the auction's participants is excluded. But, there
are many situations in which an auction's participants interact after the close
of the auction, and where the outcome of the auction affects the nature of
their future interaction. Then, when a buyer does not obtain the object, he
is no longer indifferent about the identity of the winner of the auction.
Several illustrations are: changes of ownership (such as mergers or privat-
izations) in oligopolistic markets; the sale of a patent when there is
downstream competition between buyers; the award of major projects that
lead to the creation of a new technology standard; the location of environ-
mentally hazardous enterprises such as waste management plants or nuclear
reactors; the location of a potentially powerful international organization
such as the European Central Bank.

The previous discussion suggests a model that differs from most of the
literature on optimal auction design, and more broadly, mechanism design
problems in two important respects:

(1) Buyer i 's preferences are determined by an N-dimensional vector
ti=(t i

1 , ..., t i
N). The coordinate t i

i can be thought of as the usual ``private
value'' of player i, while each other coordinate t i

j can be interpreted as his
total payoff (excluding payments made in the auction) should buyer j get
the object. We use the descriptive term ``externalities'' to refer to these inter-
action terms. We are then confronted with a multidimensional mechanism
design problem.

(2) Since buyers will generally be unable to escape the effect of
externalities simply by refusing to participate in the auction, the agents'
``reservation utilities'' are neither exogenously given, nor type-independent.
Consider the event where a buyer refuses to participate in the auction. In
contrast to auctions without externalities, where buyers' outside options
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can be normalized to zero, when externalities are present, a buyer's reserva-
tion value will, in effect, vary with both his type and the seller's action.

In this framework, we first characterize incentive compatible and
individually rational auction mechanisms. We then turn to the problem
of finding optimal mechanisms that maximize the seller's expected utility
(revenue plus externality), in the restricted class of standard auctions
(defined below).

There are several papers concerning multidimensional mechanism design.
Two strands of this literature are fairly well developed, the first studying
nonlinear pricing in multiproduct monopoly, and the second addressing
the regulation of multiproduct monopolists. Among the contributions to
the former strand are: Champsaur and Rochet [2], Laffont, Maskin and
Rochet [5], McAfee, McMillan and Whinston [10], Mirman and Sibley
[12], Palfrey [14], Spence [19], and Wilson [20, 21]. Notable contribu-
tions to the second strand include: Laffont and Tirole [6], and Lewis and
Sappington [7]. In addition, there are a few papers we would like to
mention because they concentrate on the development of general tools and
methods, and because they illustrate the additional difficulties that are
present in multidimensional models. They are: Matthews and Moore [8],
McAfee and McMillan [9], Rochet [15], Rochet and Chone� [16], and
Armstrong [1]. We discuss the last three because they are relevant for our
own work.

Rochet [15] introduces a conjugate duality approach, and presents a
very useful characterization result for incentive compatible mechanisms.
The analysis is restricted to utility functions that are linear in their charac-
teristic space. For a multiproduct monopolist model, Rochet and Chone�
[16] show that in an optimal mechanism, the participation constraint is
active for a set of types (possibly of positive measure).

Armstrong [1] studies the optimal tariff for a multi-product monopolist
selling to a measure of non-interacting consumers. He is able to reduce
substantially the complexity of the underlying optimization problem, and
obtains solutions in closed form for classes of problems in which the agents'
utilities and the distribution of their characteristics are related in a specific
way. In addition, given some mild technical conditions, Armstrong shows
that it is always in the interest of the monopolist to exclude a positive
measure of buyers from consumption.

In Jehiel, Moldovanu and Stacchetti [3] we look at a complementary
framework where buyers have private information on the externalities they
cause to others. Moreover, we assume there that these externalities do not
depend on the sufferer's identity. The seller's problem in this framework is
much simpler, and eventually reduces to a one-dimensional mechanism
design problem for which a full solution is obtained.
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The paper is organized as follows: In Section 2 we present the model and
invoke the revelation principle to formulate the design problem in terms of
two functions on the space of type profiles: the probability assignment
function, specifying the random allocation of the object amongst the
players, and the payment function stipulating the transfer from each buyer
to the seller.

In Section 3 we use conjugate duality to derive necessary and sufficient
conditions for a mechanism to be incentive compatible, similar to the
envelope condition for one-dimensional mechanism design problems. This
characterization result allows us to eliminate half the variables (the payment
functions) in the problem. In particular, we show that incentive compatible
mechanisms produce interim utility functions for each agent which are
convex potentials. The gradient of an agent's interim utility is the condi-
tional probability vector given his type, where each coordinate is the
probability that the object be assigned to the corresponding buyer. Since i 's
interim utility is a potential, the conditional probability assignment vector
must be a conservative function of his type. We informally call these
requirements the ``integrability constraints''.

Section 4 deals with the participation constraints. Here, these constraints
involve additional difficulties, not present in an auction without exter-
nalities. In one dimensional mechanism design problems, the participation
constraints bind only for the ``lowest type''. But, as the example in Rochet
and Chone� [16] suggests, this need not be the case in multidimensional
problems. Moreover, in our environment, the buyers' reservation values are
endogenous, and participation constraints are type-dependent. Thus, we
must also construct optimal ``threats'' that ensure the participation of the
buyers. Despite the relatively complex structure, we are able to show that
it is enough to check the participation constraint for a ``critical'' type of
every player.

In the rest of the paper we restrict attention to symmetric settings and
to a class of anonymous mechanisms, which we call standard bidding proce-
dures, for which we are able to deal with the integrability constraints. In a
standard bidding procedure, agents can only submit one-dimensional ``bids''.
Thus, buyers are not able to fully convey their types to the seller.

In Section 5 we confine attention to mechanisms that always transfer the
object. In this case, we show that the optimal standard bidding procedure
consists of a second-price auction. In the equilibrium of the second-price
auction an agent makes a bid equal to the difference between his valuation
for the object (net of externalities) and the expected externality suffered in
case another agent gets the good.

In Section 6 we study second-price auctions with reserve prices (so the
seller may keep the object sometimes). The integrability constraint plays a
complex role when we try to determine the set of types that bid below the
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reserve price (and hence never get the good). This constraint translates into
a geometric condition about the direction of the normal to the boundary
of the set of types M0 that bid below the reserve price. The geometric
condition can be stated as a differential equation, whose solution allows us
to obtain the boundary of M0 , and explicitly construct the equilibrium
strategies and the associated seller's revenue.

An interesting question is whether the seller will, independently of the
relation between his characteristics and the buyers' characteristics, prefer to
impose a strictly positive reserve price (i.e., will always exclude some types
from consumption). The fact that exclusion is always optimal is a main
finding in Armstrong's work. Contrary to Armstrong, we show by example
that non-exclusion (i.e., imposing a reserve price equal to zero) is optimal
for a range of the model's parameters.

2. THE MODEL

There are N buyers, indexed by i=1, ..., N, and a seller, designated as
player i=0. We will refer to the ``players'' when we want to include the
seller, and to the ``buyers'' when we want to exclude her, although the seller
is not a player of the auction game. Let I :=[1, ..., N] be the set of buyers.
The seller owns a single unit of an indivisible object.

Buyer i 's preferences are determined by his vector type ti=(t i
1 , ..., t i

N)
where t i

j is buyer i 's payoff when player j gets the object.1 A common
situation, which we call the negative externalities case, is when each buyer
receives a positive payoff if he obtains the object, and a negative payoff if
anybody else gets it. But, in general, we will also allow for the possibility
of positive externalities.

The seller has an analogous type represented by the N-dimensional
vector t0, which is common knowledge amongst the buyers (ex-ante).
Buyer i 's type is drawn from Ti :=(e0 , e1] i&1_[v0 , v1)_(e0 , e1]N&i,
according with the density fi , and is independent of all other players' types.
Thus, the probability that the buyers' types are given by the N-tuple
(t1, ..., tN) # T :=T1_ } } } _TN is f (t) :=f1(t1)_ } } } _fN(tN). Buyers' types
are private information. The negative externalities case corresponds to
e1�0 and v0�0. We allow for the possibility that e0=&� and�or
v1=+�. We assume that fi (ti)>0 for all ti # int(T i). The ``origin'' (or
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0 , t i
1 , ..., t i

n) and t i
0 is buyer i's payoff when the seller

keeps the object. The known default value model we study assumes that the values t i
0 , i # I,

are common knowledge and have been normalized to 0. The two models are similar and most
of the characterization results we present apply equally to the unknown default values model
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``upper-left corner'') of Ti is C i :=(e1 , ..., e1 , v0 , e1 , ..., e1); we also say that
ti=C i is player i 's ``lowest type''.

Implicitly, we have made above a symmetry assumption that later plays
an important role in the analysis: the extreme externalities e0 and e1 for a
player i are independent of which other player gets the object. We have also
assumed that appropriately permuting the coordinates, the origin C i is the
``same'' for each player i; this, however, is irrelevant and assumed only for
convenience.

Buyer i 's utility is additively separable: if he pays xi to the seller and
player j gets the object, his utility is t i

j&xi , where we define t i
0 :=0. In

general, a buyer's payment need not be zero even if he doesn't get the
object. The seller's utility is also additively separable: if buyer i pays her x i ,
i # I, and she gives the object to player j ( j could be 0), her utility is
t0

j +x1+ } } } +xN (again, we define t0
0 :=0).

For the study of general properties of auction mechanisms, there is no
loss of generality in restricting attention to direct revelation mechanisms
for which it is a Bayesian equilibrium for each buyer to report his type
truthfully. Since a buyer cannot be forced to ``participate'' in the auction,
``nonparticipation'' must be included among his possible reports. Let 7 :=
[_ # RN

+ | � _i�1] be the set of probability vectors. The coordinate _i of a
probability vector _ represents the probability that player i gets the object,
and _0 :=1&� i # I _i represents the probability that the seller keeps the
object. The seller specifies the rules of the auction in terms of a revelation
mechanism (\, x, p), where \=(\1, ..., \N) # 7N is a profile of N probability
vectors, x i : T � R, i # I, and p: T � 7. The seller asks each of the buyers
simultaneously to report a type. If all buyers submit a type and the report
profile is (t1, ..., tN) # T, buyer i must pay the seller xi (t1, ..., tN), and he gets
the object with probability pi (t1, ..., tN). If buyer i refuses to participate in
the auction while all other buyers submit a report, the object is given to
player j with probability \ i

j , j # I, and no buyer makes a payment to the
seller.2 If two or more buyers refuse to submit a report, then, say, the seller
keeps the object with probability 1 and nobody makes any payments.3

Suppose player i believes everybody else reports truthfully. Then, to
assess the expected value of his reports, he only needs to know the condi-
tional expected value, given his own type, of his payment and the probability
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i is always 0.
3 We study the Nash equilibria of the game, and disregard the possibility of coalition forma-

tion. Hence, profitable multiple deviations are irrelevant. If the domain of the function p were
extended to include profiles where some players report ``nonparticipation'', then the vectors \i

could be included as part of the definition of p. We have chosen the domain T mainly to
simplify the notation below; in an honest equilibrium, no player reports ``nonparticipation''.



assignment vector. Define then the functions yi : Ti � R and qi: Ti � 7 as
follows:

yi (ti) :=|
T&i

xi (t1, ..., tN) f&i (t&i) dt&i

q i
j(t

i) :=|
T&i

pj (t1, ..., tN) f&i (t&i) dt&i.

We will refer to these functions as buyer i 's conditional expected payment
and conditional expected probability assignment in the mechanism (\, x, p).
If buyer i believes his opponents will report truthfully, and reports type si

when his type is ti, his expected utility is U i (si, ti) :=qi (si) } t i& y i (s i).
The auction mechanism (\, x, p) is said to be incentive compatible for

buyer i if

Ui (ti, ti)�Ui (si, ti) for all si, ti # Ti ,

and to satisfy the participation constraint for buyer i if

Ui (ti, ti)�\ i } ti for all ti # Ti .

The right hand side of the last inequality is buyer i 's expected value when
he doesn't make any payments to the seller, and the seller assigns the object
randomly according with the probability vector \i. The auction mechanism is
feasible if it is incentive compatible and satisfies the participation constraints
for every buyer.

Clearly, buyer i cares only about his expected payment, and if (\, x, p)
is a feasible mechanism, so is (\, x� , p), where x� i (t) :=yi (t i) for all t # T.
Moreover, the seller expects the same revenue with x� or with x. Thus, there
is no loss of generality in restricting attention to mechanisms for which the
payment of each buyer depends only on his own report. Consequently,
we will specify below auction mechanisms directly in terms of (\, y, p).
However, for comparing the mechanism with traditional auctions, it is
sometimes more convenient to describe explicitly how buyer i 's payment
changes with his opponents' bids (i.e., in a second-price auction).

3. INCENTIVE COMPATIBILITY

Any auction mechanism (\, y, p) presents each buyer i with a ``menu''

Mi :=[(qi (ti), yi (ti)) | t i # Ti].
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Buyer i 's surplus function Si : Ti � R is then

Si (ti) :=sup [qi (si) } t i& yi (si) | si # Ti] t i # Ti .

This optimization problem determines buyers i 's optimal report when he is
presented with the menu Mi and his type is ti. Various properties of Si are
readily available and have been previously recorded by Armstrong [1] and
Rochet [15] (for a general reference on conjugate duality and properties
of convex functions, the reader should consult the classic references by
Rockafellar [17, 18]). Si is convex, continuous, and monotonically increas-
ing. Let �Si (t i) denote the sub differential of S i at ti. Then, the following
statements are equivalent:

(1) (\, y, p) is incentive compatible for buyer i;

(2) Si (ti)=Ui (t i, ti) for all t i # Ti ; and

(3) for all ti # Ti , qi (ti) # �S i (ti) and yi (ti)=q i (t i) } ti&S i (ti).

Moreover, since Si is convex, Si is differentiable almost everywhere (a.e.),
and if Si is differentiable at ti, �Si (t i)=[{S i (ti)]. Thus q i (t i)={S i (t i) a.e.
in Ti .

Note that Si (ti) is non decreasing in each of its arguments because qi (ti),
being a probability vector, is always nonnegative. The standard extension
for vector-valued functions of the familiar notion of monotonicity for real-
valued functions is given in the next definition. A function is convex only
if its sub differential is a monotone map (Rockafellar [17]). Thus, if (\, y, p)
is incentive compatible, qi must be monotone for each i.

Definition. The function qi is monotone if for every si, t i # Ti ,

(si&ti) } (qi (si)&(qi (ti))�0.

The property that qi (t i) # �S i (t i) for every ti # Ti is the familiar ``envelope
condition''. Let (\, y, p) be an incentive compatible auction mechanism. If
Si is differentiable at ti, we have

dSi

dt i
j

(t i)=
dU i

dt i
j

(t i, t i)=
�Ui

�t i
j

(si, ti)} s i=t i
=q i

j(t
i),

because �Ui (si, ti)��s i
k | s i=t i=0 for all k.

Since Si is convex and qi (ti) # �Si (ti) for all t i,

Si (ti)=Si (si)+|
t i

s i
q i ({) } d{ for all si, t i # Ti .
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The integral in the right hand side is a line integral, which does not depend
on the specific path from si to ti.4 That is, the vector field qi must be conser-
vative.5 The following proposition summarizes these results.

Proposition 1. Consider the auction mechanism (\, y, p), and let qi,
i # I, be the corresponding conditional probability assignment functions. Then,

(1) The mechanism is incentive compatible for buyer i iff the vector
field qi: Ti � 7 is monotone and conservative, and for each ti # Ti ,

yi (ti)=qi (ti) } ti&S i (ti), where

S i (ti)=Si (C i)+|
t i

Ci
qi (si) } ds i.

(2) the mechanism satisfies the participation constraints for buyer i iff

Si (ti)�\i } ti for all ti # Ti .

By part (1), the payment and surplus of the lowest type, yi (C i) and
Si (C i), satisfy Si (C i)=q i (C i) } C i& yi (C i) (that is, the constant of integra-
tion Si (C i) is uniquely determined by yi (C i)). Therefore, part (1) of
Proposition 1 states that for incentive compatible mechanisms, the expected
payment function yi is uniquely determined by yi (C i) and the probability
assignment function p. We will denote the vector ( y1(C 1), ..., yN(CN))
by y(C).

We next present a technical result, which provides a geometric charac-
terization of the integrability condition for a class of piecewise continuous
conditional expected probability assignment functions. Many traditional
auctions, adapted to the current model with externalities, yield conditional
expected probability assignment functions that fall within this class. More
generally, this is often the case for deterministic mechanisms (where the
rules of the auction specify that a.e. the object is assigned to a specific
player with probability 1). Although we state the result for probability
assignment functions, the proposition should prove useful in other contexts
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5 A vector field (or function) v: RN � RN is conservative if it is the gradient of a function
V: RN � R. If v is differentiable, v is conservative iff �v i��{j #�vj ��{i for all i{ j. That is, iff
the Jacobian of v is symmetric.



as well (i.e., nonlinear pricing). We use it in Section 6 to find the equili-
brium of second-price auctions with reserve prices. The proof of Proposition 2
is relegated to the Appendix.

Proposition 2. Assume qi: Ti � 7 is piecewise continuous. That is,
assume there exists a partition [M1 , ..., Mk] of Ti such that qi restricted to
int(Mj) is continuous for each j=1, ..., k. Suppose each Mj is an N-dimen-
sional manifold with a piecewise smooth boundary6 Then, q i is conservative
iff (1) qi restrict to Mj is conservative for each j=1, ..., k; and (2) whenever
Mj and Mm are two adjacent regions, the jump in qi (ti) as ti crosses from Mj

to Mm is perpendicular to the common boundary between Mj and Mm . That
is, if ti is in the common boundary between Mj and Mm , and n is the unitary
normal vector of the boundary between Mj and Mm at t i, then the vector

2qi (ti) := lim
= � 0+

q i (ti+=n)& lim
= � 0+

qi (ti&=n)

is parallel to n.

4. THE PARTICIPATION CONSTRAINTS

In this section we show that it is enough to verify the participation
constraint for the critical type Oi, where Oi is the type in Ti closest to the
point (0, ..., 0, v0 , 0, ..., 0). If type Oi satisfies the participation constraint
and the auction mechanism is incentive compatible, then all the other
participation constraints are satisfied (and thus, they are redundant).
Moreover, although it is possible to choose different critical types, from the
seller's point of view, the choice of Oi above is optimal.

Let p: T � 7 be the probability assignment vector of an arbitrary incentive
compatible mechanism. That is, qi: Ti � 7 is monotone and conservative for
each i # I. We want to find y: T � RN and \ # 7N such that (\, y, p) is feasible
and maximizes the seller's expected revenue (for the given p).

By Proposition 1, y is completely determined by y(C) and p (through the
incentive compatibility constraints). For each i # I, let

Si*(t i)=q i (C i) } C i+|
t i

Ci
q i (s i) } dsi, ti # Ti ,
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so that Si (ti)=S i*(t i)& yi (C i), ti # T i . Then the problem is to find for each
i # I, the optimal solution (\i, yi (C i)) # 7_R of the problem

max
(\ i, yi (C

i ))
yi (C i)

s.t. Si*(ti)& yi (C i)�\i } ti for all t i # Ti

\ i
i=0.

Geometrically, we are choosing the slope (\i) of a hyperplane through the
origin of RN and a downward vertical translation ( yi (C i)) for the graph of
Si so that the translation is maximized subject to the constraint that the
graph of Si stay (weakly) above the hyperplane. Obviously, since S i is
convex, an optimal (\i, yi (C i)) will make the hyperplane tangent to the
graph of Si at some critical point Oi, and therefore \i # �Si (O i) (where we
extend the domain of Si to RN by defining Si (t i)=+� for all ti � Ti).

We distinguish three cases (i) the negative externalities case when e1<0,
(ii) the positive externalities case when e0>0, and (iii) the mixed case when
e0�0�e1 . If e1<0, all the externalities are negative, and the most severe
threat the seller can make is to give the object to one of i 's opponents for
sure if i does not participate. That is, she should pick \i # 7 such that \ i

i=0
and � j # I \ i

j=1. Since the subgradient qi (ti) of Si at t i remains in 7, if
yi (C i) is increased until S i (C i)=\i } C i#e1 , the graph of Si will be above
the hyperplane everywhere else. That is, the critical type is Oi=C i. If
e0>0, then all the externalities are positive and the seller should commit
to keeping the object when buyer i does not participate. That is, she should
choose \i=0 (a horizontal hyperplane). Since qi (ti)�0 for all ti, the func-
tion Si is increasing and the critical type is the point Oi=(e0 , ..., e0 , v0 ,
e0 , ..., e0), where Si attains its minimum. In this case, yi (C i) can be
increased until Si (Oi)=0. Finally, when e0�0�e1 , the externalities are
mixed. Here the critical type is Oi=(0, ..., 0, v0 , 0, ..., 0). To see this, recall
that \ i

i=0 and therefore the hyperplane must contain the point (Oi, 0).
Since the graph of Si must remain above the hyperplane, we must have
that Si (Oi)�0. It turns out that we can increase yi (C i) until S i (Oi)=0
provided we pick \i # �Si (Oi). We have that qi (Oi) # �Si (Oi), and since
\i

i=0, in general \i{qi (O i). Yet, to choose \ i # �Si (Oi) is possible because
Oi is on the boundary of Ti , and hence �S i (Oi) is not a singleton.

The above optimal translations yi (C i) are

ŷi (C i)={
q i (C i) } C i&e1

qi (C i) } C i+|
Oi

C i
qi (s) } ds

in case (i)

in case (ii) and (iii),

268 JEHIEL, MOLDOVANU, AND STACCHETTI



and the corresponding optimal threat vectors are

case (i): any vector in \̂i # 7 such that \̂ i
i=0, \̂ i

j�q i
j(C

i) for all j{i,
and �j # I \̂ i

j=1;

case (ii): \̂ i=0;

case (iii): \̂i=( \̂ i
i , \̂ i

&i)=(0, q i
&i(O

i)) (where Oi=(0, ..., 0, v0 , 0, ..., 0)).

The following proposition summarizes our discussion. Its proof in the
Appendix verifies that \̂i is the appropriate slope for the hyperplane in each
of the three cases.

Proposition 3. Let p be such that every qi, i # I, is monotone and conser-
vative. Then ( \̂, ŷ(C), p) is the optimal auction mechanism among all auction
mechanisms with probability assignment function p. In particular, if (\, y(C), p)
is a feasible mechanism (not necessarily optimal ), then y(C)� ŷ(C) and
( \̂, y(C), p) is also feasible.

Proposition 3 shows that as in Myerson's auction model, it is enough to
check the participation constraint for only one critical type. Here, buyer i 's
critical type is Oi, which the closest type to (0, ..., v0 , ..., 0).

5. STANDARD BIDDING MECHANISMS FOR
THE SYMMETRIC CASE

We now study more traditional auctions in which each buyer i submits
a one-dimensional bid bi . For symmetric settings, we derive the equilibrium
of the second-price auction with an entry fee. We then show that this
auction maximizes the seller's expected revenue among all standard auctions
(with one-dimensional bids) where the seller never keeps the good. In
particular, in this framework we can deal with the complex integrability
constraints (that each qi be conservative). Finally we note that the second-
price auction with entry fee is optimal in the class of all auctions that
always transfer the good if there are only two buyers, or if there are n
buyers, but for all j{i{k, t i

j=t i
k .

We will now assume that the set of types for each buyer is bounded.
Hence, Ti=[e0 , e1] i&1_[v0 , v1]_[e0 , e1]N&i, where v0>0, v1 , e0 and e1

are all finite real numbers.
In a standard bidding mechanism, the rules of the auction are specified by

the probability assignment function p: [b
�
, b� ]N � 7, the payment func-

tions xi : [b
�
, b� ]N � R, i # I, and \=(\1, ..., \N), where xi (bi , ..., bN) and

pi (b1 , ..., bN) are, respectively, player i 's payment and probability of winning
the object given the bid profile b=(b1 , ..., bN), and \i is the lottery used to
assign the object if buyer i does not participate. The latter is chosen according
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with Proposition 3, and is not mentioned again in the analysis below. The
interval [b

�
, b� ] represents the set of admissible bids; an inadmissible bid is

equivalent to nonparticipation.
In this section, all mechanisms are assumed to be standard, unless other-

wise specified.
Situations in which the buyers are ex-ante identical are relatively natural. A

typical requirement in the model without externalities is that the buyers' types
are all drawn from the same distribution. Here we require more. In particular,
if i, j, k are three different buyers, and {1 and {2 are two possible externalities,
we assume that it is equally likely that (t i

j , t i
k)=({1 , {2) or (ti

j , t i
k)=({2 , {1).

A permutation of I is any bijection ?: I � I. A permutation ? fixes i if
?(i)=i. For each permutation ? of I, we define the function 6: RN � RN

as follows: 6(b) :=(b?&1(1) , ..., b?&1(N)) for each b # RN. Let ?ij be the simple
permutation that switches the indices i and j (that is, ?ij (i)= j, ? ij ( j)=i,
and ?ij (k)=k for all k � [i, j]), and let 6ij : RN � RN be the corresponding
map switching coordinates i and j.

Definition. The setting is symmetric if

(S1) t0
i =t0

j for all i, j # I.

(S2) for each i # I, type ti, and permutation ? that fixes i, fi (6(t i))
= fi (ti).

(S3) for any i{ j and type ti, f i (t i)= f j (6 ij (t i)).

Condition (S1) says that no matter which buyer gets the object, the seller
suffers the same externality. (S2) states that the probabilities that buyer i
is of type ti or another type equal to ti but with coordinates j and k (where
j{i and k{i) switched, are the same. Finally, (S3) says that types for each
player are drawn from the ``same'' distribution. For the rest of this section,
we assume that the setting is always symmetric.

We restrict attention to anonymous mechanisms in which the seller
cannot make the outcome depend on the identity of the buyers,7 and to
symmetric equilibria, where all buyers use the same bidding strategy.

Definition. The mechanism ( p, x) is anonymous if for any bid profile
b # [b

�
, b� ]N,

(A1) pi (6(b))= pi (b) and xi (6(b))=x i(b) for any i # I and permu-
tation ? that fixes i; and

(A2) pj (6ij (b))= pi (b) and xj (6 ij (b))=xi (b) for any i, j # I with i{ j.
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In an anonymous mechanism, buyer i 's payment and probability of getting
the object are unaffected if two of his opponents swap their bids. And, if
buyers i and j swap their bids, their corresponding payments and probabi-
lities of getting the object are swapped too. (A1) and (A2) together imply
that pj (6(b))= pi (b) and x j (6(b))=xi (b) for any i{ j and permutation ?
such that ?(i)= j.

Definition. A bidding strategy for player i is a function Bi : Ti � [b
�
, b� ].

A bidding strategy profile B=(B1 , ..., BN) is symmetric if Bi (ti)=B1(61i (ti))
for all t i # Ti and i # I.8

Given a standard bidding mechanism ( p, x) and a bidding strategy profile
B=(B1 , ..., BN), player i 's conditional payment yi (bi) and probability
assignment vector qi (bi) for any bid bi # [b

�
, b� ] are defined by

yi (b i) :=|
T&i

x i (bi , B&i (t&i)) f&i (t&i) dt&i

q i
j(bi) :=|

T&i

pj (bi , B&i (t&i)) f&i (t&i) dt&i, j # I.

It is easy to see that if ( p, x) is an anonymous mechanism and B is a
symmetric bidding strategy, then yi #y1 for all i>1. That is, the expected
payment function is the same for all buyers. The next lemma also establishes
that the conditional probability assignment function is the same for all the
buyers up to a permutation of coordinates. Moreover, for any buyer i and
any bid bi , each of i 's opponents has the same conditional probability of
getting the object. The proof of the lemma is relegated to the Appendix.

Lemma 1. Suppose ( p, x) is anonymous and B is a symmetric bidding
strategy. Then, for any i # I, ; # [b

�
, b� ], and j # I"[i],

q i
j(;)=

1&q i
0(;)&q i

i(;)
N&1

and q i
i(;)=q1

1(;).

Note that Lemma 1 also implies that for any ; # [b
�
, b� ] and i # I, q i

&0(;)
=61i (q1

&0(;)).
Let B be a symmetric strategy for the anonymous mechanism ( p, x).

Buyer i's expected utility when he is of type ti # Ti and bids bi # [b
�
, b� ] is
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B1(6 ij (t1))=B1(t1) for all t1 # T1 and i{1{ j. However, this condition is not needed for our
results.



Ui (bi , t i) :=qi (bi) } t i& y i (b i)

=q i
i(bi) _t i

i&
1

N&1
:
j{i

t i
j&+(1&q i

0(bi)) _ 1
N&1

:
j{i

t i
j&& yi (bi),

where the second equality follows from Lemma 1.

Definition. Let 70 :=[_ # 7 | �i # I _i=1]. The mechanism ( p, x) always
transfers the object if p(b) # 70 for all b # [b

�
, b� ]N (that is, the probability

that the seller keep the object is 0).
If B is a symmetric bidding strategy for a mechanism ( p, x) that always

transfers the object, then

Ui (bi , ti)=q i
i(bi) _t i

i&
1

N&1
:
j{i

t i
j&+

1
N&1

:
j{i

t i
j& yi (bi),

because q i
0(bi)=0 and q i

j(b i)=(1&q i
i(bi))�(N&1) for all j{i. This decom-

position shows that given a symmetric bidding strategy, buyer i's expected
payoff is determined completely by his bid and the difference between his
valuation of the object and the average externality he suffers in case another
buyer gets the object. Accordingly, we make the following definition.

Definition. Let b
�
* :=v0&e1 and b� * :=v1&e0 , and B* be the symmetric

bidding strategy with range [b
�
*, b� *]N, where

Bi*(t i)=t i
i&

1
N&1

:
j{i

t i
j , t i # Ti .

Lemma 2. Let ( p, x) be an anonymous mechanism that always transfers
the object. Suppose the symmetric bidding strategy B is an equilibrium for ( p, y).
Then, for all i # I and a.e. ti, si # Ti , Bi*(ti)=Bi*(si) implies Bi (ti)=Bi (si).9

Proof. By symmetry, it is enough to show the result for i=1. Player 1's
surplus function is given by S1(t1) :=sup [U1(b1 , t1) | b1 # [b

�
, b� ]]. Let

M :=[(q1
1(b1), y(b1)) | b1 # [b

�
, b� ]] be the menu set.10 The surplus function

is convex, and b1* maximizes player 1's expected utility U1(b1 , t1) (that is,
b1*=B1(t1)) iff q1(b1*) # �S1(t1).
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9 Lemma 2 leaves open the possibility that for a set E of Lebesgue measure 0 in the interval
[b

�
*, b� *], there exist types t1 and s1 such that B1*(t1)=B1*(s1) # E and B1(t1){B1(s1). But

then, we could redefine the equilibrium strategy as follows. For each b1 # E, pick an arbitrary
t1 with B1*(t1)=b1 , and for all s1 # T1 with B1*(s1)=b1 , let B1(s1)=B1(t1) (which is also
optimal at s1). Redefine B i , i�2, accordingly to maintain symmetry. This will not affect any
of the players' expectations, and the new B will remain a symmetric equilibrium.

10 By symmetry, every player i faces the same menu M, and therefore q i
i(b i)=q1

1(bi) for all
i and bi # [b

�
, b� ].



Let t1, s1 # T1 be such that B1*(t1)=B1*(s1). Since p0(b)=0 for all
b # [b

�
, b� ]N, q1

0(b1)=0 for all b1 # [b
�
, b� ], and

U1(b1 , t1)=U1(b1 , s1)+
1

N&1
:

j{1

[t1
j &s1

j ].

Therefore, S1(t1)=S1(s1)+(1�N&1) �j{1 [t1
j &s1

j ], and �S1(t1)=�S1(s1).
Moreover, S1 is differentiable almost everywhere, and S1 is differentiable at
t1 iff S1 differentiable at s1. If S1 is differentiable at t1 (and s1), then

q1
1(B1(t1))=

�S1

�t1
1

(t1)=
�S1

�t1
1

(s1)=q1
1(B1(s1)),

and thus, by the monotonicity of q1
1 , B1(t1)=B1(s1). K

A symmetric revelation principle. By Lemma 2, for any anonymous
mechanism ( p, x) that always transfers the object and corresponding
symmetric equilibrium B in which all types of every player participate,
there exists another anonymous mechanism ( p~ , x~ ) for which B* is an equi-
librium, and such that for each i and ti # Ti ,

q i
i(Bi (ti))=q~ i

i (Bi*(ti)) and yi (Bi (t i))= y~ i (B i*(t i)).

Here q i
i (t i) and q~ i

i (t
i) ( y i and y~ i) are respectively the conditional prob-

abilities of winning the object (payments) in the equilibria B and B*. Indeed,
for any b # [b

�
*, b� *]N, choose any t # T such that b=(B1*(t1), ..., B*N(tN)),

and let

p~ i (b) :=pi (B1(t1), ..., BN(tN)) and y~ i(bi) :=y i (Bi (ti)), i # I.

That is, without loss of generality, for symmetric equilibria of anonymous
mechanisms that always transfer the object, we can restrict attention to
direct revelation mechanisms in which each player i reveals his ``summary
type'' Bi*(t i).

We can also view any anonymous mechanism ( p, x) for which B* is an
equilibrium as a direct revelation mechanism ( p̂, x̂) for which truthtelling
(and participation) is an equilibrium. We can define ( p̂, x̂) as follows:

p̂(t) :=p(B1*(t1), ..., B*N(tN)) and

x̂(t) :=x(B1*(t1), ..., B*N(tN)), t # T.

For each i and t i # Ti , consider the following change of variables:

s i
i :=Bi*(t i), and s i

j :=t i
j for all j{i.
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The determinant of the Jacobian of this change of variables is 1, and its
inverse is t1=({i (si), s i

&i), where

{i (si) :=s i
i+

1
N&1

:
j{i

s i
j .

For each i # I, s i
i # [b

�
*, b� *], and s i

&i # [e0 , e1]N&1, define

f� i (si) :=f i ({i (si), s i
&i),

gi (s i
i) :=| f� i (si) ds i

&i , Gi (s i
i) :=|

si
i

b
�
*

gi (z) dz, and

#i (s i
i) :=s i

i&
1&Gi (s i

i)
g(s i

i)
.

gi (s i
i) represents the density of all types that have the same summary type

si
i (and G i is its corresponding distribution), and # i(s i

i) is the analogue of
Myerson's virtual type. The symmetry assumptions (S2) and (S3) imply
that gi #g1 and #1 ##1 for all i # I. Hence, hereafter we drop the subindex
from these two functions.

Consider now the seller's problem of finding the standard mechanism
that maximizes expected revenue. By explicitly carrying out the integration
with respect to s i

&i for each i, the seller's problem can be stated as

(P) max |
[b

�
*, b� *]N

:
i # I

[#(b i) } pi (b1 , ..., bN)] g(b1) } } } g(bN) db1 } } } dbN

s.t. p: [b
�
*, b� *]N � 7, and

monotonicity and integrability constraints.

We now identify a class of problems for which it is possible to relax both the
monotonicity and integrability constraints. If the problem is ``regular'', then the
solution of the relaxed problem satisfies these constraints automatically.

Definition. Problem (P) is regular if #(b)=b&[1&G(b)]�g(b) is an
increasing function of b # [b

�
*, b� *].

The second-price auction. Let [b
�
*, b� *]N be the set of admissible bids. If

player i does not participate or submits an invalid bid, we make his bid
bi= V . Let J denote the set of all bidders who submit a valid bid, W be
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the subset of those who submit the largest (valid) bid, and *(J) and
*(W) be their corresponding cardinalities. Pick any i # W, and let

X :={v0&e1

max[bj | j # J"[i]]
if *(J)=1
if *(J)�2.

Then, for each i # I, buyer i's payment and probability of getting the object
are given by

(xs
i(b1 , ..., bN), p s

i(b1 , ..., bN))={\
X

*(W)
,

1
*(W)+

(0, 0)

if i # W

otherwise.

Observe that we have extended the domain of the functions pi and xi to
RN, where R :=[ V ] _ [b

�
*, b� *], and thus the auction specifies an outcome

for any subset of buyers who submit a valid bid. Obviously, the second-
price auction is anonymous.

Proposition 4. B* is the unique symmetric equilibrium of the second-
price auctions.

Proof. The proof follows the standard argument that shows that in the
case without externalities, bidding one own's valuation is a dominant strategy.
By symmetry, it is enough to show that for any t1, B1*(t1) is a best response
for player 1 to B*&1 . Let t1 # T1 and b1 :=B*(t1). Consider another bid b$1<b1 .
Let h denote the highest bid submitted by 1's opponents. If h<b$1<b1 ,
then player 1 gets the object whether he bids b1 or b$1 , and pays h in both
cases. Thus, in both cases his payoff is t1

1&h. If b$1<b1<h, then player 1
does not get the object when he bids b1 or b$1 , and his payoff is t1

j in both
cases, where j is the winner of the object. However, if b$1<h<b1 , player 1
gets the object when he bids b1 but not when he bids b$1 . In the former case
his payoff is t1

1&h, while in the latter, his (expected) payoff is (1�N&1)
_�j>1 t1

j . But, h<b1=B*(t1) is equivalent to

t1
1&h>

1
N&1

:
j>1

t1
j ,

and player 1 is (ex-ante) strictly better off when he bids b1 . Since the prob-
ability that the opponents' highest bid falls between b$1 and b1 is strictly
positive, U1(b1 , t1)>U1(b$1 , t1). The analysis showing that player 1 strictly
prefers b1 to a bid b$1>b1 is similar.

Finally, consider the bid b$1= V . According with the rules of the auction,
bidding b$1= V leads to exactly the same outcome as bidding b$1=b

�
*. K
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Associated with the second-price auction (xs, ps), there is an equivalent
direct revelation mechanism ( \̂s, x̂s, p̂s), defined as follows. For each t # T,

p̂s(t1, ..., tN) :=ps(B1*(t1), ..., B*N(tN)),

x̂s(t1, ..., tN) :=xs(B1*(t1), ..., B*N(tN)),

and \̂s=( \̂s1, ..., \̂sN) is the corresponding profile of probability vectors defined
in Proposition 3. Actually, the direct revelation mechanism ( \̂s, x̂s, p̂s) differs
from the second-price auction (xs, ps) in that it makes a different threat for
the case in which a buyer does not participate. In (xs, ps) the auction is run
with as many buyers who decide to participate. Instead, in ( \̂s, x̂s, p̂s), the
object is allocated according with the lottery \si when buyer i does not
participate. By Proposition 3, the seller's expected revenue can also be
improved in ( \̂s, x̂s, p̂s) with an appropriate translation of the payments.
Although in Proposition 3 we achieved this by increasing the payment of
every type of every buyer, now we prefer to present this translation in
terms of an entry fee. The entry fee is determined so as to extract the most
surplus from the buyers while still ensuring that all types participate in the
auction.

To avoid case (iii) in Proposition 3, which involves an endogenous
computation, the rest of the section assumes that either case (i) or case (ii)
holds.

The second-price auction with entry fee. Each player must pay an entry
fee E=max[0, e0] to participate. If all buyers participate and submit a
valid bid, the payments and probability assignment vector are given by
(xs, ps). If buyer i does not participate or does not make a valid bid, the
object is allocated according with the lottery \̂si, where

( \̂si
i , \̂si

&i)={
1

N&1
(0, 1, ..., 1)

(0, 0, ..., 0)

if e1�0

if e0�0.

The second-price auction with entry fee is a standard anonymous mechanism
that always transfers the object (in equilibrium).

Proposition 5. Suppose problem (P) is regular and that either (i) e1�0,
or (ii) e0�0. Then the optimal standard anonymous mechanism that always
transfers the object is the second-price auction with entry fee. In its corre-
sponding (best) equilibrium, all buyers participate ( pay the entry fee), and
bid according with the strategy B*.

Proof. If we require that p: [b
�
*, b� *]N � 70 (instead of 7), and drop

the monotonicity and integrability constraints of problem (P), the relaxed
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problem can be solved by pointwise maximization. The solution of the
latter is

p(b1 , ..., bN) # arg max
z # 70

:
N

i=1

#(bi) zi , for each b # [b
�
*, b� *]N.

That is, the object is assigned (with probability 1) to the player i with the
largest value of #(bi). Since the problem is regular, this is the player with
the largest bid bi . Hence, the pointwise maximization yields the solution
p#ps. By Proposition 4, the mechanism (xs, ps) has the unique symmetric
equilibrium B*. Hence, the direct revelation mechanism ( \̂s, (E, ..., E)+x̂s, p̂s)
is feasible, and therefore, by Proposition 1, p̂s is monotone and conservative.

The reader can check that E+xs
i implies the same optimal expected

payment ŷi (C i) defined in Proposition 3 for the cases (i) and (ii). Hence,
( \̂s, (E, ..., E)+x̂s, p̂s) is the optimal direct revelation mechanism for the
given p̂s.

Remark. As we argue below, when N=2 and the seller always transfers
the object, the restriction to standard mechanisms is not binding. Consider
an incentive compatible auction mechanism (\, y, p) that always transfers
the object ( p(t) # 70 for all t # T ). If S i denotes buyer i 's surplus function,
by Proposition 1 we have that {Si (ti)=q i (ti) a.e. ti # Ti , and therefore

:
j # I

DjS i (t i)=1,

where to avoid confusion below, we are denoting the partial derivative of
Si with respect to its j th argument at t i by DjSi (ti). If e=(1, 1), the above
equality implies that Si (ti+:e)=S i (ti)+: for all : in the real interval
where ti+:e remains in Ti .

Consider now two types s1, t1 # T1 such that B1*(s1)=B1*(t1). That is,
s1

1&s1
2=t1

1&t1
2 , or s1

1&t1
1=s1

2&t1
2 . Hence, we have that s1=t1+(s1

2&t1
2)e,

and thus S1(s1)=S1(t1)+(s1
2&t1

2). Moreover, for any = # R such that
(s1

1+=, s1
2), (t1

1+=, t1
2) # T1 , we also have that S1(s1

1+=, s1
2)=S1(t1

1+=, t1
2)+

(s1
2&t1

2). This implies that

q1
1(s1)=D1S1(s1)=lim

= � 0

S1(s1
1+=, s1

2)&S1(s1)
=

=lim
= � 0

S1(t1
1+=, t1

2)&S1(t1)
=

=D1S1(t1)=q1
1(t1),
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and that q1
2(s

1)=1&q1
1(s

1)=1&q1
1(t

1)=q1
2(t1). By incentive compatibility,

we must also have that y1(s1)= y1(t1). Define the standard auction mechanism
(\, ŷ, p̂) as follows: for each (b1 , b2) # [b

�
*, b� *]2, pick an arbitrary t # T

such that Bi*(t i)=bi , i # I, and let

p̂(b1 , b2)= p(t) and ŷi (bi)= y i (ti), i # I.

The argument above shows that B* is an equilibrium of (\, ŷ, p̂). Thus,
when N=2 and the seller always transfers the object, there is no loss of
generality in restricting attention to standard bidding mechanisms. There-
fore, when N=2, by Proposition 5, the second-price auction (with appropriate
entry fees) is optimal among all auctions that always transfer the object
(standard or otherwise).

The same conclusion holds for N�3, when the type spaces are two-
dimensional in the following way.11

Ti=[(t i
i , t i

&i)=(:, ;, ..., ;) | : # [v0 , v1] and ; # [e0 , e1]], i # I.

A similar argument to that above shows that in this case too the second-
price auction (with appropriate entry fees) is optimal among all auctions
that always transfer the object.

6. SECOND-PRICE AUCTIONS WITH RESERVE PRICES

We now relax the constraint of the previous section, that the auction
always transfers the object (in equilibrium), and investigate whether it is
beneficial for the seller to keep the object sometimes. More specifically, we
now consider a second-price auction with reserve price x0 : if each buyer's
bid is below the reserve price x0 , the object remains with the seller; other-
wise, the highest bidder gets the object and pays a price equal to the largest
of the second highest bid and the reservation price x0 . The one-dimensional
case suggests that reserve prices may enhance the seller's revenue, and we
are interested in determining the optimal reserve price x0 .

Equilibrium. We construct a symmetric equilibrium B=(B1 , ..., BN)
with the following characteristics. There is a convex region M0 such that
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11 Here, in contrast to our general setup, the dimensionality of the type spaces does not
coincide with the number of players. Nevertheless, all our previous analysis extends to this
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player 1 bids his summary type B1*(t1) if t1 � M0 , and bids below x0 if
t1 # M0 , where B1*(t1) is as defined in Section 5.12

As we argue more precisely below (for the case N=2, although the
analysis easily extends to the case N>2 as well), bidding B1*(t1) for types
t1 � M0 is optimal for very much the same reasons of Proposition 4. In
order for B to constitute an equilibrium, the induced conditional probability
assignment function q1 must be conservative in T1 . Clearly, q1 is conservative
in M0 and T1"M0 , respectively. However, q1(t1) is discontinuous as t1 crosses
the boundary between M0 and T1"M0 . Therefore, by Proposition 2, the
vector field q1 is conservative iff the jump in q1(t1) is perpendicular to the
boundary of M0 as t1 crosses that boundary. It turns out that this condi-
tion together with a boundary condition (see below) fully characterizes the
region M0 . Thus, there is a unique candidate equilibrium B. In an example,
we explicitly construct that B, and verify that it is an equilibrium. For this
model, Proposition 2 proves to be a very powerful characterization result.

Formally, suppose the boundary of M0 can be parametrized by a func-
tion h: RN&1 � R. That is,

M0=[(t1
1 , t1

&1) # T1 | v0�t1
1�h(t1

&1)].

Then, t1 # T1 is in the boundary of M0 iff t1
1=h(t1

&1), and vector normal to
the boundary of M0 at t1 is

n=\ 1
&{h(t1

&1)+ .

Hence, by Proposition 2, the jump 2q1(t1) must be parallel to n for all
t1 # T1 with t1

1=h(t1
&1). That is,

2q1
j (t1)< �h

�t1
j

(t1
&1)=&2q1

1(t1) for each j>1.
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12 Alternatively, we could have introduced entry fees instead of (or in addition to) reserve
prices. However, one can view an entry fee as an equivalent reserve price, and vice-versa. For
example, in the equilibrium just described, we could replace the reservation price x0 by an
entry fee e=mN&1

0 x0 , where m0 is the probability that t1 # M0 . Then, the symmetric equi-
librium B for the auction with reserve price corresponds to the following ``equivalent''
symmetric equilibrium for the auction with entry fees. Types t1 # M0 do not participate, and
types t1 � M0 pay the entry fee and bid B1*(t1), as before. The reader can check that in this
equilibrium, the winner and each player's total expected payment is the same as in the equi-
librium B of the auction with reserver price. A type t1 � M0 , for example, now pays the entry
fee e for sure. But, he also pays nothing when all his opponents' types are in (their corre-
sponding) region M0 , while with reserve prices, he would pay x0 . Ex-ante, the expected value
of the this payment in the auction with reserve price is exactly e.
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FIGURE 1

This is a system of first-order partial differential equations, whose solution
yields the equilibrium for the second price auction with reserve price x0 .

We now illustrate the above technique for the case N=2, where T1=
[0, v1]_[e0 , 0], T2=[e0 , 0]_[0, v1], and f2(t1 , t2)= f1(t2 , t1) for all
(t1 , t2) # T2 . This is a negative externalities case, and thus we just need to
consider nonnegative reserve prices x0 . Since by symmetry we only study
buyer 1's strategy, the superindex for types will be omitted. Observe that
the type t=(x0 , 0), who suffers no externality, must be on the boundary of
M0 because he is indifferent between getting the object at price x0 and not
getting the object (and paying nothing). When x0 is relatively small,
the region M0 is contained between the line segments [0, x0]_[0],
[0]_[&:, 0], and the curve t1=h(t2), t2 # [&:, 0], between the points
(x0 , 0) and (0, &:), as shown in Fig. 1.13 The observation above implies
that h(0)=x0 . We will show that when x0 is not too large, the solution of
the differential equation satisfies 0<h$(t2)<1 for all t2 # [&:, 0]. (Note
that this implies that :>x0 .)
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13 Figure 1 is drawn for v1=1 and e0=&1. When x0 is relatively large, h(t2)>0 for all
t2 # [e0 , 0], and if e0>&�, there exists : # [0, v1] such that the boundary of M0 is made of
the four segments: [0, x0]_[0], [0]_[e0 , 0], [0, :]_[e0], and a curve from (:, e0) to
(x0 , 0).



For each t # T1 , let

M1(t) :=[(s1 , s2) # T1 "M0 | s1&s2�t1&t2], and

m1(t) :=Prob(M1(t)), where Prob(A)=|
A

f1(t1) dt1

denotes the measure of A/R2 according with the probability density f1 .
Also define m0 :=Prob(M0), and m(t2) :=m1(h(t2), t2) for each t2 # [&:, 0].

If the players bid according to B, then each player's conditional prob-
ability assignment vector is piecewise continuous. Player 1's conditional
probability assignment vector q1(t) is equal to

\ 0
1&m0+

and

\ m0+m1(t)
1&m0&m1(t)+

for t # M0 and t # T1"M0 , respectively. Using the test proposed in footnote 4,
for example, it is easy to check that q1(t) is conservative in each region M0

and T1"M0 . Moreover, q1(t) has a discontinuity at the boundary between
regions M0 and M1 . Consider a type t=(t1 , t2) in the boundary between
M0 and T1 "M0 . That is, such that t1=h(t2). Let q1(t+) be the conditional
probability assignment vector given that bidder 1 bids t1&t2 (and bidder
2 uses strategy B2). Similarly, let q1(t&) be the conditional probability
assignment vector if bidder 1 bids 0 instead. Then

2q1(t) :=q1(t+)&q1(t&)=\m0+m(t2)
&m(t2) + .

The vector ( 1
&h$(t2)

) is normal to the boundary of M0 at t, and the condition
that it is parallel to 2q1(t) (Proposition 2) becomes in this case

(m0=m(t2)) h$(t2)&m(t2)=0. (1)

Since m0>0 and m(t2)�0, Eq. (1) implies that h$(t2) # [0, 1) for all
t2 # [&:, 0], as was claimed earlier. The differential equation (1) assumes
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that the parameter m0 is known. However, it is related to the function
h by

m0=|
0

&:
|

h(t2 )

0
f1(t1 , t2) dt1 dt2 . (2)

Lemma 3. Assume buyer 2 plays according to strategy B2 . Then, buyer
1 with type t # T1 is indifferent between bidding B1*(t) and 0 iff t satisfies
Eq. (1) and h(0)=x0 .

The proof of Lemma 3 is in the Appendix.

Proposition 6. Assume that (h, m0) solves the pair of Eqs. (1) and (2),
with the initial condition h(0)=x0 . Then B (as defined above) is an equi-
librium of the second price auction with reserve price x0 .

Proof. Suppose t # T1"M0 , and let b1=B1*(t). The argument that b1 is
a better response to B2 than any b$1 {b1 with b$1 # [x0 , 2] is exactly the
same as in Proposition 4. On the other hand, Lemma 3 above establishes
that Eq. (1) exactly characterizes the set of types t # T1 who are indifferent
between bidding 0 and B1*(t) given that buyer 2 uses the strategy B2 . Let
t # T1 with t2>&: and t1>h(t2) (that is, t1 # T1 "M0), and consider the
type t$ :=(h(t2), t2), which is on the boundary of M0 . Then, when both
types t and t$ bid h(t2)&t2 , type t expects strictly more than type t$. Also,
t$ expects the same payoff when he bids h(t2)&t2 or 0. Finally, since
t$2=t2 , when types t and t$ bid 0, they both expect the same payoff. These
inequalities imply that type t strictly prefers bidding B1*(t) to bidding 0.
Similar arguments show that type t # T1 with t2� &: strictly prefers
bidding B1*(t) to bidding 0 (in this case, consider the type t$=(0, &:) for
the argument), and that a type t # M0 strictly prefers the bid 0 to any bid
above x0 . K

Example. Let v1=1, e0=&1, and f1 #1 in [0, 1]_[&1, 0] (that is,
f1 is the density of a uniform distribution). In this case, there is a unique
solution of Eqs. (1) and (2), which is given by

h(t2)=t2&- m0 ln(t2+- m0+t2
2 )+x0+- m0 ln(- m0 ),

where

c1 =- 2+2 - 2, c2 :=[c1+ln(&c1+- 1+c2
1 )]&1

m0=(c2x0)2=2.23569x2
0 , and :=c1 c2x0=3.28555x0 .

The intermediate steps are provided in the Appendix.

282 JEHIEL, MOLDOVANU, AND STACCHETTI



Optimality and exclusion. We now wish to use the example above to
provide some insights for the optimality of reserve prices in our multidimen-
sional setting with externalities. In a symmetric model without externalities,
Myerson has shown that the optimal auction is a second-price auction with
a reserve price. The seller may announce a reserve price that is higher than
her true reservation value, in which case the seller excludes some types of
buyers from consumption. Exclusion in Myerson's one-dimensional setting
has two effects that go in opposite directions. By excluding some types:
(1) the seller restricts supply, and is able to collect higher prices; (2) the
seller foregoes potentially profitable trades. In standard one-dimensional
problems, the relative strength of those effects is determined by the relation
between the seller's and buyers' valuations.

For his model of a multiproduct monopolist, Armstrong proves that the
first effect is always dominant. The intuition is as follows. Consider the
constrained optimal pricing policy in which all consumers must be served.
Naturally, with this policy there are consumers with ``low'' valuations who
are just indifferent between buying a bundle and nonparticipation. The
seller can then raise its total revenues by increasing uniformly the price of
every bundle it offers by a small amount =>0. With the new pricing policy,
all the consumers who still participate, buy the same bundle as before, but
pay = more. The new pricing policy excludes those consumers who before
were obtaining a surplus less than =. However they represent a fraction of
the total mass of consumers of order o(=).14 Thus, exclusion of a fraction
of consumers is always optimal, even if the consumers' valuations are much
higher than the production costs.

In our model, however, there is a third effect due to competition: when
the seller excludes some types, buyers are less afraid that the good might
go to another buyer. Consequently, nonparticipation becomes more attrac-
tive, and the seller must decrease the revenue it extracts from each type of
every participating buyer.

Lemma 4. There exists $>0 such that the optimal reserve price is x0=0
for all t0 with t0

0&t0
1=t0

0&t0
2�$. Moreover, a reserve price in the interval

(0, 0.2071] is never optimal. That is, if it is optimal to set a positive reserve
price for some value of t0

0&t0
1 , it must be that x0>0.2071.

The proof of Lemma 4 is in the Appendix; here we provide some intui-
tion. Consider the effects of increasing the reserve price from 0 to x0==, for
a small =>0: (a) the seller now keeps the object when both bidders' types
are in M0 ; (b) the seller now gets = instead of min [B1*(t1), B2*(t2)] when
one bidder's type is in M0 and the other bidder's type is outside M0 . As in
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Armstrong's paper, the first effect is of smaller order than the second (the
orders are =4 and =3 respectively��see the proof of Lemma 4). Hence, the
valuation of the seller plays no role in determining whether a small amount
of exclusion is desirable. However, in contrast to the setting where a multi-
product monopolist faces a measure of non-interacting buyers, the sign of
the second effect is ambiguous. This is due to the additional competition
effect among buyers. The sign of this term depends on whether the average
bid Bi*(t i) of types in M0 (who are excluded when the reserve price = is
imposed) is below or above =.15 In our example, it turns out that this
average bid is above =, and hence exclusion is suboptimal. Compared to
Myerson's result for the standard case, this result by itself is not surprising:
if the seller cost is sufficiently lower than the minimum buyer's valuation,
in his model too the optimal reserve price is 0. However, contrary to his
case, here the optimal reserve price is not a continuous function of the
difference t0

0&t0
1=t0

0&t0
2 . As this difference increases, the optimal reserve

price function eventually jumps from 0 to a strictly positive value.
Consider now the class of standard bidding mechanisms16 satisfying the

following property. For each player i, there exists a set Xi /Ti such that
�i pi (t1, ..., tN)=0 if ti # X i for all i, and �i p i (t1, ..., tN)=1 otherwise.
Observe that this class of mechanisms covers the type of exclusion achieved
by instruments such as reserve prices and entry fee.17 For this class, it can
be shown that the second-price auction with a (possibly zero) reserve price
is the revenue maximizing mechanism. Thus, in this class, exclusion is not
always optimal. The argument relies on the following observations: (1) in
the region where the object is transferred with probability 1, the object
must be allocated to the player with the highest summary type Bi*(t i);
(2) the monotonicity and integrability conditions imply that for any player
i, the set Xi coincides with the set M0 for some reserve price x0 .

7. APPENDIX

Proof of Proposition 2. Since the set of piecewise constant functions is
dense in the set of piecewise continuous functions (with the sup norm), it
is enough to prove the result for piecewise constant functions. Suppose then
that qi is piecewise constant: [M1 , ..., Mk] is a partition of Ti , and for each
j, there exists z j # RN such that qi (ti)=z j for all t i # Mj . Let Mj and Mm be
two adjacent regions, and for each si # Mj & Mm , let n(s i) denote the
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unitary exterior normal to the boundary of Mj at si. Thus, for sufficiently
small =>0, si+=n(si) is in the interior of Mm and si&=n(si) is in the
interior of Mj . Pick any two points si, ti # Mj & Mm , and let 1 be a piece-
wise continuously differentiable path from si to ti completely contained in
Mj & Mm . That is, 1: [0, 1] � M j & Mm is a piecewise continuously dif-
ferentiable function such that 1(0)=si and 1(1)=ti. For sufficiently small
=>0, define the two paths 1j : [0, 1] � Mj and 1m : [0, 1] � Mm by

1j (x) :=1(x)&=n(1(x)) and 1m(x) :=1(x)+=n(1(x)),

for each x # [0, 1]. Also, let 1jm be the straight path from s i&=n(si) to
si+=n(si), and 1mj be the straight path from ti+=n(ti) to ti&=n(t i). Then
the path formed by concatenating the paths 1jm , 1m , 1mj and &1j , in that
order, is a closed path. Since qi is conservative, its line integral along this
path must be 0. As = � 0, this implies that

|
1

0
2qi (1(x)) } 1 $(x) dx=0.

Since this is true for every path 1 in the common boundary between Mj

and Mm , we must have that for every ti # Mj & Mm , 2qi (ti) is perpendicular
to any vector tangent to the common boundary Mj & Mm at t i. That is,
2qi (ti) must be a multiple of n(ti). K

Proof of Proposition 3. As we explained before the statement of
Proposition 3, when y(C)= y*(C), Si (Oi)=; :=min[e1 , 0]. Since q i is
monotone, Si is convex, and S i (ti)�S i (Oi)+qi (O i) } (t i&O i) for all ti # Ti

(because qi (Oi) # �S i (Oi)). Therefore

Si (ti)�;+qi (Oi) } (ti&Oi) for all t i # Ti .

Thus, it suffices to show that

;+qi (Oi) } (ti&Oi)�\i } ti for all t i # Ti . (3)

For the proof of case (i), when e1<0, choose for example

1
� j{i q i

j(C i)
(q i

1(C
i), ..., q i

i&1(C i), 0, q i
i+1(C i), ..., q i

N(C i))

\i :={ if q i
i(C i)<1

1
N

(1, ..., 1, 0, 1, ..., 1) if q i
i(C i)=1.
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Recall that in this case ;=e1 and O i=C i. Since \i } C i=e1 , inequality (3)
is equivalent to (qi (C i)&\i) } (t i&C i)�0. But q i

i(C
i)�0=\ i

i and t i
i�

v0=C i
i , and for j{i, q i

j(C i)�\ i
j and t i

j�e1=C i
j . Therefore

(qi (C i)&\i) } (ti&C i)= :
j # I

(q i
j(C

i)&\ i
j)(t

i
j&C i

j)�0.

In case (ii), when e0>0, ;=0, and \ i } ti=0 for each t i # Ti . Also,
t i

i�v0=O i
i , and t i

j�e0=O i
j for all other j. And since q i

j(O
i)�0 for all j,

qi (Oi) } (t i&Oi)�0, as desired.
Finally, in case (iii), when e0�0�e1 , ;=0, and \i } Oi=0. Therefore,

inequality (3) becomes again (qi (Oi)&\i) } (ti&Oi)�0, which by the
definition of \i is equivalent to

qi
i(O

i)(t i
i&v0)�0.

The last inequality is satisfied because t i
i�v0 . K

Proof of Lemma 1. To prove the first equality, it is enough to show
that for any b1 # [b

�
, b� ] and 1<i< j,

q1
i (b1)=q1

j (b1).

To simplify the notation, we prove this equality for the case i=2 and j=3.
Let b1 # [b

�
, b� ]; then, by (A2),

q1
2(b1)=|

T&1

p2(b1 , B1(612(t2)), ..., B1(61N(tN))) f&1(t&1) dt&1

=|
T&1

p3(b1 , B1(613(t3), B1(612(t2), ..., B1(61N(tN)))

_f&1(t&1) dt&1=: :,

Since

p3(b1 , B1(613(t3)), B1(612(t2)), ..., B1(61N(tN))) f3(t3) f2(t2)

= p3(b1 , B1(613(t3)), B1(612(t2)), ..., B1(61N(tN)))

_f2(t3
1 , t3

3 , t3
2 , ...) f3(t2

1 , t2
3 , t2

2 , ...)

= p3(b1 , B1(613(t3)), B1(612(t2)), ..., B1(61N(tN)))

_f2(t3
2 , t3

3 , t3
1 , ...) f3(t2

3 , t2
1 , t2

2 , ...)

= p3(b1 , B1(612(s2)), B1(613(s3)), ..., B1(61N(sN))) f2(s2) f3(s3),
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where s2 :=(t3
2 , t3

3 , t3
1 , ...), s3 :=(t2

3 , t2
1 , t2

2 , ...), and si :=t i for all i>3, we
have that

:=|
T&1

p3(b1 , B1(612(s2)), B1(613(s3)), ..., B1(61N(sN)))

_f&1(s&1) ds&1=q1
3(b1).

We have then shown that there is some : # [0, 1] such that q1
i (b1)=: for

all i>1. Since the coordinates of q1(b1) add up to 1, we must have that
q1

0(b1)+q1
1(b1)+(N&1) :=1; this shows the first equality. The second

equality is shown analogously. K

Proof of Lemma 3. For any t2 # [&:, 0], consider the type (h(t2), t2)
in the boundary between M0 and T1 "M0 . Let 8(t2) be the difference in
expected payoff for that type when he bids t1&t2 and when he bids 0. That
is,

8(t2) :=(1&m0&m(t2)) t2+(m0+m(t2)) t1

&\m0 x0+|
M1 (h(t2), t2)

(s1&s2) f1(s) ds+&(1&m0) t2

=m0(t1&x0)+m(t2)(t1&t2)&|
M1(h(t2 ), t2 )

(s1&s2) f1(s) ds

=m0(h(t2)&x0)+m(t2)(h(t2)&t2)

&|
0

t2
|

h(t2 )&t2+s2

h(s2 )
(s1&s2) f1(s) ds.

To prove the lemma, we need to show that 8(t2)=0 for all t2 # [&:, 0].
Since h(0)=x0 and m(0)=0, we have that 8(0)=0. Hence, 8(t2)=0 for
all t2 # [&:, 0] is equivalent to 8$(t2)=0 for all t2 # [&:, 0]. Define
9(s2 , t2) :=�h(t2 )&t2+s2

h(s2 )
(s1&s2) f1(s) ds1 . Then

d
dt2

|
0

t2

9(s2 , t2) ds2=&9(t2 , t2)+|
0

t2

�9
�t2

(s2 , t2) ds2 .

Since 9(t2 , t2)=0 and (�9��t2)(s2 , t2)=(h(t2)&t2) f1(h(t2)&t2+s2 , s2)
_(h$(t2)&1), we have
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8$(t2)=m0h$(t2)+m$(t2)(h(t2)&t2)+m(t2)(h$(t2)&1)

&
d

dt2
|

0

t2

9(s2 , t2) ds2

=m0h$(t2)+m$(t2)(h(t2)&t2)+m(t2)(h$(t2)&1)

&(h(t2)&t2)(h$(t2)&1) |
0

t2

f1(h(t2)&t2+s2 , s2) ds2

=[(m0+m(t2)) h$(t2)&m(t2)]+(h(t2)&t2)

__m$(t2)&(h$(t2)&1) |
0

t2

f1(h(t2)&t2+s2 , s2) ds2& .

One can check using the same differentiation technique as above that

m$(t2)=
d

dt2
|

0

t2
|

h(t2 )&t2+s2

h(s2 )
f1(s1 , s2) ds1 ds2

=(h$(t2)&1) |
0

t2

f1(h(t2)&t2+s2 , s2) ds2 .

Therefore,

8$(t2)=(m0+m(t2)) h$(t2)&m(t2),

which is 0 iff h solves the differential equation (1). Thus, the condition that
each type t=(h(t2), t2), t2 # [&:, 0], be indifferent between bidding t1&t2

and bidding 0 is equivalent to the differential equation (1). K

Solution of differential equation (1). We now solve the differential equa-
tion (1) for the case in which v1=1=&e0 and f1 represents the uniform
distribution in [0, 1]_[&1, 0]. By definition

m(t2)=|
0

t2
|

h(t2 )&t2+s2

h(s2 )
f1(s1 , s2) ds1 ds2

=|
0

t2

[h(t2)&t2+s2&h(s2)] ds2=|
0

t2

[k(t2)&k(s2)] ds2 ,

where k(t2) :=h(t2)&t2 . Note that k$(t2)=h$(t2)&1 and that m$(t2)=
&t2 k$(t2). Therefore, the differential equation (1) becomes

(m0+m(t2))(t2&m$(t2))&t2m(t2)=0. (4)
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The solution of (4) is given by

m(t2)=&m0+- m2
0+m0 t2

2+c,

for some constant c. Since m(0)=0, c=0. Now,

k$(t2)=
&m$(t2)

t2

=
&m0

- m2
0+m0 t2

2

,

and therefore

k(t2)=- m0 [ln(- m0 )&ln(t2+- m0+t2
2 )]+c,

where c is another integration constant. Finally, since h(t2)=t2+k(t2) and
h(0)=x0 , we have that c=x0 and

h(t2)=t2&- m0 ln(t2+- m0+t2
2 )+x0+- m0 ln(- m0 ).

To determine the parameters m0 and :, we use the conditions: m0=
�0

&: h(t2) dt2 and h(&:)=0. That is

m0 =(x0+- m0 ln(- m0 )) :&
:2

2
&- m0 |

0

&:
ln(t2+- m0+t2

2 ) dt2 (5)

0=x0+- m0 ln(- m0 )&:&- m0 ln(&:+- m0+:2). (6)

Since

| ln(t2+- m0+t2
2 ) dt2=&- m0+t2

2 +t2 ln(t2+- m0+t2
2 ),

Eq. (5) becomes

0=(x0+- m0 ln(- m0 )) :&
:2

2

&- m0 [- m0+:2+: ln(&:+- m0+:2)]. (5$)

Multiplying (6) by : and subtracting the result from (5$) yields

0=
:2

2
&- m0 - m0+:2 or equivalently

0=:4&4m0:2&4m2
0 . (7)
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The relevant solution of (7) is

:=c1 - m0 where c1 :=- 2+2 - 2.

Finally, let c2 :=[c1+ln(&c1+- 1+c2
1 )]&1=1.49522 and substitute : in

(6) to get

m0 =(c2x0)2=2.23569x2
0 , and

:=c1c2 x0=3.28555x0 ,

which are valid provided 0�x0�0.30436=(c1c2)&1 (since our analysis
assumed that :�1).

Proof of Lemma 4. For each reserve price x0 , we now compute the
seller's expected revenue. Let the random variables X and B denote respec-
tively the seller's revenue and player 1's bid. For each x # [0, 2], let
FX (x) :=Prob[X�x] and FB(x) :=Prob[B�x]. Finally, let l :=k&1

(where k(t2)=h(t2)&t2 and h is the function that parametrizes the bound-
ary of M0). For any x # [x0 , :], the set of types for player 1 that bid less
than or equal to x is M0 _ M(t2), where t2 is such that x=h(t2)&t2=k(t2).
Therefore

FB(x)={
m0

m0+m(l(x))
p2�2
1&(2& p)2�2

if 0�x<x0

if x0�x�:
if :�x�1
if 1�x�2.

Let fX and fB denote respectively the Radon�Nikodym derivative of the
absolutely continuous parts of FX and FB . Since

FX (x)=[FB(x)]2+2FB(x)[1&FB(x)]=FB(x)[2&FB(x)],

we have

fX (x)=2[1&FB(x)] fB(x)

={
0
2(1&m0&m(l(x))) m$(l(x)) l$(x)
(2& p2) p
(2& p)3

if 0�x<x0

if x0�x�:
if :�x�1
if 1�x�2.
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Note that by Eq. (2), (m0+m(t2)) m$(t2)=m0 t for all t2 # [&:, 0].
Hence, the seller's expected revenue is

E[X]=2m0(1&m0) x0+|
2

x0

pfX (x) dx

=2m0(1&m0) x0+|
:

x0

2p(1&m0&m(l(x))) m$(l(x)) l$(x) dx

+|
1

:
x2(2&x2) dx+|

2

1
x(2&x)3 dx

=2m0(1&m0) x0+|
:

x0

2x[m$(l(x))&m0l(x)] l$(x) dx

+
7&10:3+3:5

15
+

3
10

=2m0(1&m0) x0+|
&:

0
2k(t)[m$(t)&m0 t] dt+

23
30

+
3:5&10:3

15

=2m0(1&m0) x0&2m0 |
0

&:
tk(t) _ 1

- m2
0+m0 t2

&1& dt

+
23
30

+
3:5&10:3

15
.

In the previous to the last line we have used the change of variables
t=l(x), and the fact that h(&:)=0 implies that k(&:)=: and h(0)=x0

implies k(0)=x0 .
Albeit complex, the last integral can be computed explicitly in closed

form, and we can express the expected revenue as a function of the reserve
price as follows:

E[X]= 23
30&2.86852x3

0+1.39374x5
0 .

E[X] is a decreasing and concave function of x0 in the interval [0, 0.30436],
and its slope is 0 at x0=0. This can be seen directly in Fig. 2, where we
plot E[X] as a function of x0 .

Although our explicit analysis applies for x0 # [0, 0.30436] only, one can
show that E[X] is decreasing in x0 throughout the whole relevant interval
[0, 2].
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FIGURE 2

Since the seller keeps the object when both buyers' types are in M0 , and
this happens with probability m2

0 , the seller's total expected payoff when
x0 # [0, 0.30436] is

E[X]+t0
1+m2

0(t
0
0&t0

1)

=t0
1+

23
30

&2.86852x3
0+4.99831(t0

0&t0
1) x4

0+1.39374x5
0 .

The externality term m2
0(t

0
0&t0

1)=4.99831(t0
0&t0

1) x4
0 is convex and increas-

ing in x0 . But, it is also flat at x0=0. Since this term changes at a slower
rate (x4

0) than the expected revenue (&x3
0) near x0=0, the latter term

dominates the changes in the seller's total expected payoff for x0 near 0, for
any value of t0

0&t0
1 . Moreover, for t0

0&t0
1=2, the optimal reserve price is

clearly x0=2. Now, for any t0
0&t0

1�2, the externality term m2
0(t0

0&t0
1) is

bounded above by 10x4
0 (and its derivative is bounded above by 40x3

0).
Thus,

d
dx0

E[X]�x2
0(7x2

0+40x0&8.6)<0

for all x0 # [0, 0.2071]. Hence, x0 # (0, 0.2071] is never optimal, independent
of the value of t0

0&t0
1 . K
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