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Abstract

We show that two non-Bayesian learning procedures lead to very
permissive implementation results concerning the e¢ cient allocation
of resources in a dynamic environment where impatient, privately
informed agents arrive over time, and where the designer gradually
learns about the distribution of agents� values. This contrasts the
rather restrictive results that have been obtained for Bayesian learn-
ing in the same environment.

1 Introduction

We analyze the implementation of the e¢ cient dynamic policy in a model
where impatient, privately informed agents arrive over time, and where the
designer gradually learns about the distribution of agents�values using non-
Bayesian updating procedures. We show that some simple but not trivial
non-Bayesian updating procedures that were used in the classical literature
lead to very permissive implementation results, contrasting the rather re-
strictive results that have been obtained for Bayesian learning in the same
mechanism design environment. This highlights the role of the learning pro-
cedure in dynamic mechanism design problems.

�We wish to thank Philippe Jehiel for helpful remarks. We are grateful to the German
Science Foundation for �nancial support. Moldovanu: Department of Economics, Univer-
sity of Bonn, mold@uni-bonn.de; Gershkov: Department of Economics, Hebrew University
of Jerusalem, alexg@huji.ac.il
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The allocation model studied here is based on a classical model due to
Derman, Lieberman and Ross [5] (DLR hereafter). In the DLRmodel, a �nite
set of heterogenous, commonly ranked objects needs to be assigned to a set
of agents who arrive one at a time. After each arrival, the designer decides
which object (if any) to assign to the present agent1. Both the attribute of
the present agent (that determines his value for the various available objects)
and the future distribution of attributes are known to the designer in the DLR
analysis.
Learning about future values in the complete-information DLR model

has been analyzed by Albright [1]. Gershkov and Moldovanu [6] added in-
complete information to Albright�s model, and derived an implicit condition
on the structure of the allocation policy ensuring that e¢ cient implementa-
tion is possible. Roughly speaking, implementation is possible if the impact
of currently revealed information on today�s values is higher than the im-
pact on option values. This insight replaces in the dynamic framework with
learning the single-crossing idea appearing in the theory of static e¢ cient
implementation with interdependent values2.
Gershkov and Moldovanu [7] focused on Bayesian learning and o¤ered

conditions on the exogenous parameters of the model - the prior beliefs about
the agents�values- that allow e¢ cient implementation. Since these results are
relatively restrictive, they also characterized the incentive-e¢ cient, second-
best mechanism.
In the present paper we study two adaptive, non-Bayesian learning processes

that have been used for the classical, complete-information one-object search
framework (see Rothschild [11]) by Bickchandani and Sharma [2], and by
Chou and Talmain [3], respectively3. The �rst learning process constructs
a posterior that is a convex combination of a prior and the empirical dis-
tribution, with more and more weight given to the empirical distribution.
The second process starts with a maximum entropy prior and constructs a
quantile preserving posterior based on the observations made so far.
For both processes, we prove that the e¢ cient allocation is always im-

1In a framework with several homogenous objects the decision is simply whether to
assign an object or not.

2See for example Dasgupta and Maskin [4] and Jehiel and Moldovanu [9] who analyzed
static models with direct informational externalities.

3Both processes are consistent in the sense that they uniformly converge to the true
distribution as the number of observations goes to in�nity. In both cases, this is a conse-
quence of the well known Glivenko-Cantelli Theorem.
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plementable since new information is incorporated in option values at a slow
rate, so that the impact of new information on present values is always higher.
As in the case of standard Bayesian learning, the e¢ cient allocation maxi-
mizes at each decision period the sum of the expected utilities of all agents,
given all the available information. The only di¤erence to the Bayesian ap-
proach is in the inference made from new information.
A word of caution is needed here: Our results do not imply that the con-

sidered non-Bayesian procedures are "better" than Bayesian updating for the
purposes of e¢ cient implementation! They just say that the complete infor-
mation e¢ cient allocation - whose calculation proceeds given the assumed
learning procedure - can always be implemented for the particular adaptive
processes studied here. An example below will illustrate this issue.
In a one-object search model with complete information, Rothschild fo-

cused on reservation price search policies, i.e., policies where for each infor-
mation state s there exists a priceR(s) such that prices above are rejected and
prices below are accepted. Our implementation results hinge on a monotonic-
ity property that generalize such reservation prices for settings with several
heterogenous objects. Rothschild showed that the optimal Bayesian search
rule need not generally have this property4. He also computed an example
where the reservation property holds: the searcher obtains price quotations
from a multinomial distribution with a parameter that follows a Dirichlet dis-
tribution5. Interestingly, it turns out that in this special case, the Bayesian
learning process coincides in fact with one of the non-Bayesian procedures
analyzed here.

The paper is organized as follows: In Section 2 we present the dynamic
allocation and learning model. In Section 3 we �rst recall two results: 1. The
characterization of the e¢ cient allocation policy under complete information
due to Albright [1]; 2. An implicit condition on the structure of the e¢ cient
policy ensuring that this policy can be implemented also under incomplete
information, due to Gershkov & Moldovanu [6]. In Section 4 we focus on
the two non-Bayesian learning models. Theorems 2 and 3 show that, given
these learning models, the implicit condition is always satis�ed, and hence
the corresponding e¢ cient allocation policy is always implementable. Section

4See Rosen�eld and Shapiro [10], Seierstad [12] for conditions where optimal search in
the Rothschild model displays the reservation price property.

5The Dirichlet is the conjugate prior of the multinomial distribution, so the posterior
is also Dirichlet in this case.
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5 concludes. All proofs are relegated to an Appendix

2 The Model

There are m items and n agents. Each item i is characterized by a "quality"
qi; and each agent j is characterized by a "type" xj. If an item with quality
qi � 0 is assigned to an agent with type xj and this agent is asked to pay p,
then this agent enjoys a utility given by qixj � p. Getting no item generates
utility of zero. The goal is to �nd an assignment that maximizes total welfare.
Agents arrive sequentially, one agent per period of time, and each agent

can transact (in both physical and monetary terms) only upon arrival.
Note that in a static problem, total welfare is maximized by assigning the

item with the highest quality to the agent with the highest type, the item
with the second highest quality to the agent with the second highest type,
and so on (assortative matching).
Let period n denote the �rst period, period n�1 denote the second period,

..., period 1 denote the last period. If m > n we can obviously discard the
m � n worst items without welfare loss. If m < n we can add "dummy"
objects with qi = 0. Thus, we can assume without loss of generality that
m = n.
While the items�properties 0 � q1 � q2::: � qm are assumed to be known,

the agents�types are assumed to be independent and identically distributed
random variables Xi on [0;+1) with common cumulative distribution func-
tion F .
The function F is not known to the designer nor to the agents. At the

beginning of the allocation process the designer has a prior �n over possi-
ble distribution functions, and he updates his beliefs after each additional
observation. Denote by �k (xn; :::; xk+1) the designer�s beliefs about the dis-
tribution function F after observing types xn; :::; xk+1. Given such beliefs,
let eFk(xjxn; :::; xk+1) denote the distribution of the next type xk, conditional
on observing xn; :::; xk+1. Finally, we assume that each agent, upon arrival
observes the whole history of the previous play.
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3 The Dynamic E¢ cient Allocation

Albright [1] derived the e¢ cient dynamic policy under complete information,
i.e., when the agent�s type is revealed to the designer upon the agent�s ar-
rival. The e¢ cient allocation maximizes, at each decision period, the sum
of the expected utilities of all agents, given all the information available at
that period, and is de�ned in terms of cuto¤s. Gershkov and Moldovanu
[6] displayed an implicit su¢ cient condition on these cuto¤s ensuring that
the e¢ cient allocation is implementable also under incomplete information.
These observations are gathered in the next Theorem.
Let the history at period k, Hk, be the ordered set of all signals reported

by the agents that arrived at periods n; :::; k + 1, and of allocations to those
agents. Let Hk be the set of all histories at period k. Denote by �k the
ordered set of signals reported by the agents that arrived at periods n; :::; k+1.

Theorem 1 1. (Albright, 1977) Assume that types xn; ::; xk+1 have been
observed, and consider the arrival of an agent with type xk in pe-
riod k � 1. There exist functions 0 = a0;k (�k; xk) � a1;k (�k; xk) �
a2;k(�k; xk)::: � ak;k(�k; xk) =1 such that the e¢ cient dynamic policy
- which maximizes the expected value of the total reward - assigns the
item with the i � th smallest type if xk 2 (ai�1;k(�k; xk); ai;k(�k; xk)].
The functions ai;k(�k; xk) do not depend on the q

0s.

2. These functions are related to each other by the following recursive
formulae:

ai;k+1(�k+1; xk+1) =

Z
Ai;k

xkd eFk(xkj�k+1; xk+1)
+

Z
Ai;k

ai�1;k(�k; xk)d eFk(xkj�k+1; xk+1)
+

Z
Ai;k

ai;k(�k; xk)d eFk(xkj�k+1; xk+1) (1)

where6

Ai;k = fxk : xk � ai�1;k(�k; xk)g
Ai;k = fxk : ai�1;k(�k; xk) < xk � ai;k(�k; xk)g
Ai;k = fxk : xk > ai;k(�k; xk)g

6We set +1 � 0 = �1 � 0 = 0:
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3. (Gershkov & Moldovanu, 2009) If for any k, �k and for any i 2
f0; ::; kg, the cuto¤ ai;k (�k; xk) is di¤erentiable with respect to the sig-
nal of the agent arriving at k, xk; and if @

@xk
ai;k (�k; xk) < 1 for any

xk and �k, then, the �rst-best policy can be implemented also under
incomplete information.

The above policy is the dynamic analogue of the assortative matching
policy that is optimal in the static case where all agents arrive simultaneously.
The associated cuto¤s have a natural interpretation: for each object i and
period k the cuto¤ ai;k(�k; xk) equals the expected value of the agent�s type
to which the item with i � th smallest type is assigned in a problem with
k � 1 periods before the period k � 1 signal is observed.7 The last point
requires the e¤ect of the current information on the current value to be
stronger than the e¤ect on the option value. If this is the case, an agent
with a higher value obtains a higher quality at each period and for any
remaining inventory - a monotonicity property that allows implementation
under incomplete information.

4 Non-Bayesian Optimal Search

In this Section we study two adaptive, non-Bayesian learning process that
have been analyzed in the classical one-object search framework by Bickchan-
dani and Sharma [2], and by Chou and Talmain [3], respectively. For both
processes, we prove that the e¢ cient allocation is always implementable.

4.1 Learning Based on the Empirical Distribution

Assume that before stage n (the �rst stage), the designer�s prior belief about
the distribution of the �rst type xn is given by a distribution H. Then,
conditional on sequentially observing xn; xn�1:::; xk+1 at stages n; n�1; :::k+
1, the designer�s belief about the distribution of the next type x = x

k
is given

by:

eFk(xjxn; :::; xk+1) = (1��nk)H(x)+�nk 1

n� k

nX
i=k+1

1[xi;1)(x); k = 1; 2; :::n�1

7Note also that if eFk(xkj�k+1; xk+1) is symmetric with respect to the observed signals,
then ai;k+1(�k+1; xk+1) is symmetric as well.
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where 0 < �nk < 1 , and where 1[z;1)(x) denotes the indicator function of the
set [z;1): Thus at each stage, the posterior distribution is a convex combina-
tion of the prior distribution and of the empirical distribution. Since, by the
Glivenko-Cantelli theorem, the empirical distribution uniformly converges to
the true underlying distribution, the posterior distribution also converges to
the true distribution if the weight on the empirical distribution satis�es: 8k;
limn!1 �

n
k = 1:

Theorem 2 Assume that the designer learns based on the empirical distri-
bution. Then, the e¢ cient dynamic policy can always be implemented under
incomplete information.

Proof. See Appendix.
For special prior distributions, the process studied above does in fact co-

incide with the standard Bayesian learning. This is the case, for example, for
a multinomial Dirichlet prior or for a Dirichlet process prior. Thus, for such
priors, Theorem 2 also asserts the implementability of the e¢ cient dynamic
allocation under Bayesian learning. Bickchandani and Sharma [2] showed
that the above learning model induces optimal search with the reservation
price property in Rothschild�s one object model with complete information
(where implementation issues do not play any role). Our result can also be
interpreted as saying that their insight continues to hold for the case with
several heterogenous objects.

4.2 Maximum Entropy/Quantile Preserving Learning

We now assume that designer believes that types distribute continuously
on a �nite interval, which we normalize here to be the interval [0; 1]: It is
well known that the maximum entropy distribution among all continuous
distributions with support on an interval [a; b] is the uniform distribution on
this interval8. More generally, consider a sub-division a = a0 < a1 < ::am = b
and probabilities p1; ::pm which add up to one, and consider the class of all
continuous distributions supported on [a; b] such that

Prfai�1 � X � aig = pi; i = 1; ::;m
8Similar exercises can be performed starting with other initial beliefs. For example,

the maximum entropy distribution given that a continuous random variable is known to
have (normalized) zero mean and unit variance is the standard normal distribution. See
Jaynes [8].
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Then, the density of the maximum entropy distribution for this class is con-
stant on each of the intervals [aj�1; aj). Guided by this principle, Chou and
Talmain [3] looked at the following quantile preserving updating procedure9:
Prior to any observation, the designer estimates the unknown distribution by
the uniform distribution. Suppose that m observations were observed, and
order them in increasing order

�
x(1); :::; x(m)

	
. Let x(0) = 0 and x(m+1) = 1.

Then, the type of the next arrival is estimated according to the density

fk (xjxn; :::; xn�m+1) =
m+1X
i=1

1[x(i�1);x(i))(x)

(m+ 1)
�
x(i) � x(i�1)

� .
In other words, each interval of the form [x(i�1); x(i)) gets assigned a probabil-
ity pi = 1

m+1
; and the density within the interval is constant10. The rationale

behind the equal weights of 1
m+1

for each interval becomes apparent by re-
calling that, for m large,

E[Xi;m] � F�1(
i

m+ 1
) and F (E[Xi;m])� F (E[Xi�1;m] �

1

m+ 1

where the Xi;m is the i � th highest order statistic, i = 1; ::m; of a random
variable X distributed according to distribution F:

Theorem 3 Assume that the designer uses the maximum entropy/quantile
preserving learning procedure. Then the e¢ cient dynamic policy can always
be implemented under incomplete information.

Proof. See Appendix.
It is illustrative to compare Bayesian and non-Bayesian learning in a sim-

ple example where the dynamically e¢ cient allocation is not implementable
under Bayesian learning.

Example 4 1. There are two periods and one indivisible object. Before
starting the allocation process, the designer believes that the distribution
of values is uniform on the interval [0; 1

2
] with probability 1

2
; while with

probability 1
2
he believes that it is uniform on [1

2
; 1]: Under Bayesian

9They studied search with recall and did not look at the reservation price property for
search without recall.
10As above, the Glivenko-Cantelli theorem implies that the above estimated distribution

uniformly converges to the true distribution.
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learning, the posterior after observing x2 < (>)12 ; is that x1 is uniformly
distributed on [0; 1

2
] ([1

2
; 1]). This yields

aB12(x2) =

8<:
1
4
if x2 <

1
2

1
2
if x2 =

1
2

3
4
if x2 >

1
2

Thus, the �rst arriving agent should e¢ ciently get the object if x2 2
[1
4
; 1
2
][ [3

4
; 1]: This policy is not monotone and cannot be implemented

(see GM [6])

2. Consider now the learning process based on the empirical distribution
with weight 0 < � < 1 on the empirical distribution, and with the
same prior as above. Then, after having observed x2; the beliefs of the
designer are given by F (x1jx2) = (1��)U([0; 1])+�1[x2;1]; which yields

aED12 (x2) =
1

2
(1� �) + �x2.

Thus, the �rst arriving agent should get the object if and only if x2 �
aED12 (x2) , x2 � 1

2
; which can be implemented by a take-it-or-leave-

it o¤er at a price of 1
2
: Note however that the implemented allocation

di¤ers here from the one that needs to be implemented under Bayesian
learning.

3. Finally consider the maximum entropy/quantile preserving procedure.
Then, after having observed x2; the beliefs of the designer are given by
the density

fk (x1jx2) =
1

2

�
1[0;x2](x)

x2
+
1[x2;1](x)

1� x2

�
.

which yields

aME
12 (x2) =

1

4
+
1

2
x2.

Thus, the �rst arriving agent should get the object if and only if x2 �
aME
12 (x2) , x2 � 1

2
; which can again be implemented by a take-it-or-

leave-it o¤er at a price of 1
2
11:

11The fact that the e¢ cient policies given the non-Bayesian procedures coincide here
is a mere coincidence, due to the uniform prior assumed in this example for the learning
based on the empirical distribution.
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5 Conclusion

We have displayed several non-Bayesian learning models that always allow
the dynamic implementation of the corresponding e¢ cient allocation. This
is in sharp contrast to the rather restrictive conditions under which e¢ cient
dynamic implementation is possible under Bayesian learning. Our results
highlight the importance of the learning/updating procedure for dynamic
mechanism design models, and point to other fruitful combinations of non-
Bayesian statistical methods and strategic dynamic models, e.g., in the area
of revenue/yield management.

6 Appendix

For the proof of Theorem 2 we need the following well-known Lemma:

Lemma 5 Let u(x) be a function on the interval [a; b] such that there exist
a division of the interval a = z0 < z1:: < zn = b and values c1; :::cn with u(x)
= ci for zi < x < zi+1; i = 0; 1; ::n � 1: Then, for any continuous function
v(x) on [a; b]; it holds thatZ b

a

v(x)du(x) =
nX
i=0

v(zi)(ci+1 � ci)

where
R
denotes here the Stieltjes integral.

Proof of Theorem 2. By Theorem 1-2, we can write

ai;k+1(�k+1; xk+1) = Exkjxk+1Gi;k(xk; xk+1; �k+1) (2)

where the function Gi;k(xk; xk+1; �k+1) is given by:8<:
ai�1;k(�k+1; xk+1; xk) if xk � ai�1;k(�k+1; xk+1; xk)

xk if ai�1;k(�k+1; xk+1; xk) < xk � ai;k(�k+1; xk+1; xk)
ai;k(�k+1; xk+1; xk) if xk > ai;k(�k+1; xk+1; xk)

.

(3)
In words, Gi;k(xk; xk+1; �k+1) is the second-highest order statistic out of the
set fai�1;k(�k+1; xk+1; xk); xk ; ai;k(�k+1; xk+1; xk)g. Let mx = (x; x; :::x)

denote an m�vector of x:We show by induction that 8m; m � n�k+1, the
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function ai;k (xn; ::xk+m;mx) is continuously di¤erentiable in the observed
signals with

8i; k; @ai;k (xn; ::xk+m;mx)

@x
< 1.

Since the conditional distribution eFk(xjxn; :::; xk+1) does not have here a well-
de�ned density, we use below the notion of Stieltjes integral. In the last but
one period k = 2; the only relevant, non-trivial cuto¤ is:

a1;2(xn; :::; x2) =

Z 1

0

x1d eF1 (x1jxn; ::; x2)
= (1� �n2 )

Z 1

0

x1dH(x1) + �
n
2

Z 1

0

x1d

 
nX
i=2

1[xi;1)(x1)

!

= (1� �n2 )E(H) + �n2
1

n� 1

nX
i=2

xi

The second equality follows by the additivity property of the Stieltjes
integral. The third equality follows by Lemma 5 since

Pn
i=2 1[xi;1)(x) is a step

function. Thus, as required, we obtain that a1;2(xn; :::; x2) is continuously
di¤erentiable in the observed signals and that

@a1;2 (xn; ::; x2+m;mx)

@x
� m�n2
n� 1 < 1; m = 1; 2; :::n� 1

Assume now that the statement holds for all periods up to k (recall that
period 1 is the last period, and so on...), and let us look at period k+1; and
at m � n � k. Since ai;k (xn; ::xk) is continuous, the induction hypothesis
implies that for any i 2 f1; :::; k � 1g there exists at most one solution to
the equation ai;k (xn; ::; xk+1; x) = x. Denote this solution by a�i;k(xn; ::xk+1).
By the induction hypothesis, and by the Implicit Function Theorem, we
obtain that a�i;k(xn; ::xk+1) is continuously di¤erentiable in the observed sig-
nals. If ai;k (xn; ::xk+1; x) > x for any x, de�ne a�i;k(xn; ::xk+1; x) = 1, and
if ai;k (xn; ::xk+1; x) < x for any x de�ne a�i;k(xn; ::xk+1; x) = 0. Then we can
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write

ai;k+1(xn; ::xk+1) =

a�i�1;k(�k)Z
0

ai�1;k(xn; ::xk+1; xk)d eFk (xkjxn; ::; xk+1)
+

a�i;k(�k)Z
a�i�1;k(�k)

xkd eFk (xkjxn; ::; xk+1)
+

1Z
a�i;k(�k)

ai;k(xn; ::xk+1; xk)d eFk (xkjxn; ::; xk+1) .
By the induction hypothesis we obtain that ai;k+1(xn; ::xk+1) is continuously
di¤erentiable. We obtain moreover that:

ai;k+1 (xn; ::xk+m+1;mx)

=

Z 1

0

Gi;k(xn; ::xk+1+m;mx; xk)d eFk(xkj(xn; ::xk+1+m;mx))
= (1� �nk+1)

Z 1

0

Gi;k(xn; ::xk+1+m;mx; xk)dH(xk)

+
m�nk+1
n� k [Gi;k(xn; ::xk+m; (m+ 1)x)]

+
�nk+1
n� k

nX
j=k+m

Gi;k(xn; ::xk+m;mx; xj)

where the second equality follows from Lemma 5. Hence, for any m � n� k,
we obtain that:

@ai;k+1 ((xn; ::xk+m+1;mx)

@x

= (1� �nk+1)
Z 1

0

@Gi;k(xn; ::xn�k�m;mx; xk)

@x
dH(xk)

+
m�nk+1
n� k

@Gi;k(xn; ::xk+1+m; (m+ 1)x)

@x

+
�nk+1
n� k

nX
j=k+m

@Gi;k(xn; ::xk+m;mx; xj)

@x

< (1� �nk+1) + �nk+1(
m

n� k +
n� k �m
n� k ) = 1
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where the inequality follows by the induction hypothesis. By setting m = 1;

we obtain from the above that:

8i; k @ai;k (xn; :::; xk+1)

@xk+1
< 1

Together with Theorem1-3, this proves the result.

For the proof of Theorem 3 we �rst need the following Lemma:

Lemma 6 Assume that for any k, and for any pair of ordered lists of reports
�k � �0k that di¤er only in one coordinate eFk (xj�k) %FOSD eFk (xj�0k) : Then
the cuto¤ ai;k(�k; xk) is non-decreasing in xk.

Proof. The proof is by induction on the number of remaining periods. For
k = 2 we have

a2;2(�2; x2) = 1

a1;2(�2; x2) =

Z 1

0

x1d eF1 (x1j�2; x2)
a0;2(�2; x2) = 0

12First order stochastic dominance immediately implies that the cuto¤s are
non-decreasing in x2. We now apply the induction argument, and assume
that, for any �k and for any i; ai;k(�k; xk) is non-decreasing in xk. This
implies that the function Gi;k(xk; xk+1; �k+1) (see the proof of Theorem 2 for
its de�nition) is non-decreasing in xk , and that for any i we have:

ai;k(�k+1; xk+1; xk) = ai;k(�k+1; xk; xk+1) �
ai;k(�k+1; xk; x

0
k+1) = ai;k(�k+1; x

0
k+1; xk)

where both equalities follow from the symmetry property whereby switching
the order of the observations does not a¤ect the �nal beliefs13. Therefore
we obtain Gi;k(xk; xk+1; �k+1) � Gi;k(xk; x0k+1; �k+1) for any xk. Moreover we
have that

ai;k+1(�k+1; xk+1) = Exkjxk+1Gi;k(xk; xk+1; �k+1)

� Exkjxk+1Gi;k(xk; x
0
k+1; �k+1)

� Exkjx0k+1Gi;k(xk; x
0
k+1; �k+1) = ai;k+1(�k+1; x

0
k+1)

12This property also holds for Bayesian updating and for the non-Bayesian updating
procedure analyzed in the previous Section.
13This property holds for both procedures analyzed in this paper. It also holds for

Bayesian updating.
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where the second inequality follows from �rst order stochastic dominance,
and from the fact that, by the induction argument, Gk(xk; x0k+1; �k+1) is
non-decreasing in xk.
Proof of Theorem 3. We shall show that for any i, k, �k and xk; the cuto¤
ai;k (�k; xk) is continuously di¤erentiable in xk with

@
@xk
ai;k(�k; xk) � 1

n�k+2 .
We prove this result by induction on k; the number of remaining periods.
Note �rst that Lemma 6 above yields the monotonicity of ai;k+1(�k+1; xk+1)
in xk+1:
We denote by x(i), the i�th lowest observation among the n � k + 1

observations made up to and including period k, with x(0) = 0 and x(n�k+2) =
1. For k = 2, we have:

a1;2 (xn; :::; x2) =
nX
i=1

x(i)Z
x(i�1)

x

n
�
x(i) � x(i�1)

�dx

=

1 + 2
n�1P
i=1

x(i)

2n
=

1 + 2
nP
i=2

xi

2n
)

@a1;2 (xn; :::; x2)

@x2
=

1

n
:

Assume now that the statement holds for all periods up to k. This implies
that there exists at most one solution to the equation ai;k(�k; xk) = xk, de-
noted by a�i;k(�k). Let l = max

�
j : x(j) � a�i�1;k(�k)

	
andm = max

�
j : x(j) � a�i;k(�k)

	
,

and assume, for simplicity, that m > l (the case m = l is analogous). Using
the de�nition of ai;k+1(�k+1; xk+1) we obtain

ai;k+1(�k+1; xk+1)

=

lX
j=1

x(j)R
x(j�1)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

� +
a�i�1;k(�k)R

x(l)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(l+1) � x(l)

�

+

x(l+1)R
a�i�1;k(�k)

xkdxk

(n� k + 1)
�
x(l+1) � x(l)

� + mX
j=l+2

x(j)R
x(j�1)

xkdxk

(n� k + 1)
�
x(j) � x(j�1)

�
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+

a�i;k(�k)R
x(m)

xkdxk

(n� k + 1)
�
x(m+1) � x(m)

� +
x(m+1)R
a�i;k(�k)

ai;k(�k; xk)dxk

(n� k + 1)
�
x(m+1) � x(m)

�

+

n�k+1X
j=m+1

x(j)R
x(j�1)

ai;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

� .
Let j be the index satisfying x(j) = xk+1.There are three di¤erent cases: 1.
xk+1 � x(l) ; 2. x(m) � xk+1 > x(l) ; 3. xk+1 > x(m). We prove the result for
the �rst case; the proofs of the other two cases are very similar, and we omit
them here. We obtain:

@ai;k+1(�k+1; xk+1)

@xk+1

=
ai�1;k(�k; x(j))

(n� k + 1)
�
x(j) � x(j�1)

� � ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

�

+
lX

j=1

x(j)R
x(j�1)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(j) � x(j�1)

� +
a�i�1;k(�k)R

x(l)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(l+1) � x(l)

�

+

x(m+1)R
a�i;k(�k)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(m+1) � x(m)

� + n�k+1X
j=m+1

x(j)R
x(j�1)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(j) � x(j�1)

�

�

x(j)R
x(j�1)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

�2 +
x(j+1)R
x(j)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j+1) � x(j)

�2

15



Note that

lX
j=1

x(j)R
x(j�1)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(j) � x(j�1)

� +
a�i�1;k(�k)R

x(l)

@ai�1;k(�k;xk)
@xk+1

dxk

(n� k + 1)
�
x(l+1) � x(l)

� (4)

+

x(m+1)R
a�i;k(�k)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(m+1) � x(m)

� + n�k+1X
j=m+1

x(j)R
x(j�1)

@ai;k(�k;xk)

@xk+1
dxk

(n� k + 1)
�
x(j) � x(j�1)

�
� 1

(n� k + 1)
n� k �m+ l + 1

n� k + 2 � 1

(n� k + 1)
n� k

n� k + 2

where the �rst inequality follows from the inductive assumption ( @ai�1;k(�k;xk)
@xk+1

�
1

n�k+2 ) while the second inequality follows because m > l. In addition,

ai�1;k(�k; x(j))

(n� k + 1)
�
x(j) � x(j�1)

� � ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

� (5)

�

x(j)R
x(j�1)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j) � x(j�1)

�2 +
x(j+1)R
x(j)

ai�1;k(�k; xk)dxk

(n� k + 1)
�
x(j+1) � x(j)

�2
�

ai�1;k(�k; x(j))

(n� k + 1)
�
x(j) � x(j�1)

� � ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

�
�

ai�1;k(�k; x(j�1))

(n� k + 1)
�
x(j) � x(j�1)

� + ai�1;k(�k; x(j+1))

(n� k + 1)
�
x(j+1) � x(j)

�
=

ai�1;k(�k; x(j))� ai�1;k(�k; x(j�1))
(n� k + 1)

�
x(j) � x(j�1)

� +
ai�1;k(�k; x(j+1))� ai�1;k(�k; x(j))

(n� k + 1)
�
x(j+1) � x(j)

�
=

1

n� k + 1

�
@

@xk+1
ai�1;k(�k; x

0
k) +

@

@xk+1
ai�1;k(�k; x

00
k)

�
� 1

n� k + 1
2

n� k + 2
where x0k 2

�
x(j�1); x(j)

�
and x00k 2

�
x(j); x(j+1)

�
: The �rst inequality follows

from the monotonicity of ai�1;k(�k; xk), and the last inequality follows from
the induction argument. Combining (4) and (5) we obtain

@ai;k+1(�k+1; xk+1)

@xk+1
� 1

n� k + 1 .

as desired.
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