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Abstract

Each one of several impatient agents has a job that needs to be processed by a server. The

server can process the jobs sequentially, one at a time. Agents are privately informed about the

realization of a random variable representing processing time. If the cost of delay is represented

by a concave function of waiting time till job completion, the efficient shortest processing time

first schedule arises in the equilibrium of a simple auction where agents bids for slots in the

queue. If the cost function is convex, the equilibrium yields the anti-efficient longest processing

time first schedule. In this case, the performance of the auction (both efficiency and revenue)

can be improved by capping bids from above. Finally, we show that the ex-post incentive

compatible mechanisms that minimize the expected total waiting cost cannot depend on the

private information available to the agents.

1 Introduction

Imagine that you arrive with a bulky package at the department’s copier machine together with one

of your esteemed colleagues. He/She says to you: ”I have only a few pages to copy. May I copy first

?” Most of us usually agree to this request, and indeed this courtesy is well-founded in economic

theory: total waiting cost is minimized if shorter jobs are processed before longer ones. Moreover, it

seems intuitive that your colleague should be willing to pay more than you for the right to be first

since he/she can thus avoid a longer delay than you. But sometimes the colleague’s job turns out to

be longer than the announced few pages (”I just noticed that I also need this chapter”), and in other

situations everyone claims to have the shorter job... Are these announcements sincere? Should we

base the queue discipline upon them? This paper is about the design of simple pricing mechanisms

(e.g., auctions or lotteries) for allocating slots in a queue among impatient, privately informed agents.

Queuing theory1 builds models in order to predict the behavior of systems providing service for

randomly fluctuating customer demand. Besides a very large and valuable theoretical literature, there

∗Kittsteiner: Nuffield College, Oxford University; Moldovanu: Department of Economics, University of Bonn;

mold@wiwi.uni-bonn.de
1see for example the recent textbook by Gross and Harris (1998).
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are many practical applications to traffic flow (e.g., vehicles at toll booths, aircraft at airport landing

or take-off gates, network communication), scheduling (e.g., patients in hospitals, jobs on machines,

programs on computers) and facility design (e.g., banks, post offices, amusement parks and fast-food

restaurants). A standard task for the queuing analyst is to determine an appropriate measure for

system performance (which depends of course on the customers’ and system’s characteristics) and

to design an ”optimal system” according to such a measure.

A queuing system is generally described by several basic characteristics pertaining to the stochas-

tic arrival pattern of possibly impatient customers (e.g., inter-arrival times, the possibility to balk

before or renege after entering the queue, the possibility to jockey for position, etc..) and to the

pattern of service (e.g., system capacity, number of service channels, queue discipline, etc...).

Almost the entire queuing literature views customers as non-strategic agents endowed with some

(possibly) random characteristics. Several papers consider the agents’ decision on whether to queue

or not, given a fixed queue discipline such as first-come first-served. This literature originated with

Naor (1969). His main result is that a first-come first-served discipline leads to inefficient entry

decisions, due to the externalities joining agents exert on their successors. If agents can submit a bid

or bribe, and priority is given to agents with higher bids, Hassin (1995) showed that agents’ joining

decisions are socially optimal (see also the book of Hassin and Haviv, 2002 for a survey of these

topics).

In the queueing literature the process generating the agents’ characteristics is assumed to be

common knowledge. In particular, the theory does not consider the interplay between system design

(e.g., queue discipline) and the strategic incentives to manipulate accessible information arising from

the desire to improve one’s position in the queue and thus to increase one’s utility.

In this paper we consider the most basic scheduling problem with one server and with impatient

customers all arriving at the same time. Each customer has a job that needs to be processed, and

the server can sequentially process one job at a time2. The design problem reduces to determining

the allocation of slots in the waiting line. Each customer is privately informed about her needed

processing time, and agents incur costs of delay. From the point of view of other agents, the processing

time of a specific agent is a random variable governed by a common-knowledge distribution. The

total waiting cost born by an agent i that is allocated the j ′th slot depends both on i′s privately

known processing time and on the processing times of the agents scheduled to slots 1, 2, ..j− 1. Thus

agent i′s utility depends both on the allocation of slots to other agents and on information that is

ex-ante available to other agents. In the language of mechanism design, we obtain a setting with both

allocative and informational externalities. An important assumption that is implicit in our analysis

is that processing times are too costly to monitor ex-post or, equivalently, that no additional fees

can be imposed after processing times have been realized and service has been completed.

In the above framework we first consider a natural auction procedure in which agents bid for

slots: the highest bidder gets the first slot, the second-highest bidder gets the second slot, and so

2We assume here that all agents can be served, but our results do not qualitatively change if the number of slots

is less than the number of jobs to be processed.

2



on till all slots are allocated. All agents pay their own bid. It turns out that the performance

of this auction crucially depends on the form of the function describing the costs of delay. If this

function is concave, agents with a shorter processing time bid in a Bayes-Nash equilibrium more than

agents with a longer processing time and, for any realization of the stochastic processing times, the

auction implements the efficient shortest processing time first (SEPT) schedule. In contrast, if the

cost function is convex, agents with longer processing times bid in equilibrium more than agents with

shorter times, and the auction implements the ”anti-efficient” longest processing time first (LEPT)

schedule.

Since the case of convex cost functions is the more pertinent one for most applications (e.g.,

consider the ubiquitous exponential cost functions or the presence of deadlines) it makes sense to

inquire whether there are mechanisms that perform better than the auction in this case. We first

analyze auctions with bid caps, i.e., auctions where agents are constrained to make bids that are lower

than a pre-determined maximum. Since with convex cost functions the high bids come from agents

with long processing times, constraining such bidders to a maximum bid implies that the allocation

of slots among these bidders will contain a random element. Such a lottery necessarily improves

upon the welfare attained by the LEPT schedule implemented by the unconstrained auction.

In many situations of interest the server is owned by an agent that needs to raise revenue in

order to maintain operation and/or to make a profit (think about a data processing firm or an

airport operator). At first sight it seems that, whenever revenue raising is important, constraining

the high bidders via a bid cap will lower expected revenue. But this intuition is misleading since

in the constrained auction there are in fact agents with low processing times that bid higher than

their respective bids in the unconstrained auction. While bid caps are shown never to be revenue

enhancing in an auction with concave cost functions, we find that bid caps may raise revenue if the

cost function is convex (in some cases it is even revenue maximizing to impose an extremely low cap

such that the auction degenerates to a pure lottery where agents pay a fixed fee). Thus, with convex

cost functions, schedule auctions constrained by bid caps may perform better than unconstrained

auctions on both efficiency and revenue measures.

Since we found that we can enhance performance by using procedures that do not, or only

partially condition on privately available information (lotteries and capped auctions, respectively)

we are next interested to characterize mechanisms that achieve the highest possible welfare for the

customers (i.e., minimize total expect waiting costs) subject to the incentive compatibility constraint

(i.e., subject to the requirement that their outcome arises in an equilibrium of a game played by

strategic, privately informed agents). It turns out that, in an important class of mechanisms, lotteries

are indeed optimal if the agents have the same expected processing time. If more information

about the respective distribution of processing time is available (e.g, if it is known that one agent’s

distribution stochastically dominates another), this information can be used to determine optimal

schedules. Surprisingly, even if it is the case that the individual distributions of processing times

are stochastically ordered in the usual sense, it is not necessarily the case that the random variable

governing the total costs of delay associated with the SEPT schedule (based on the expectations of
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processing times) is stochastically dominated by all other schedules. But such a result holds if the

individual processing times are ordered in the likelihood ratio sense.

The basic scheduling problem with interdependent costs has been introduced by Hain and Mitra

(2002)3. These authors show that concavity of the cost function is a necessary condition for the

implementability of the efficient schedule in ex-post equilibria (note that any ex-post equilibrium is

Bayes-Nash). Their main result is that, for cost functions that are concave polynomials of degree

less than or equal to n− 2 (where n is the number of agents and slots), a generalized Clarke-Groves-

Vickrey mechanism can be constructed4 that is efficient and ex-post budget balanced. Note that in

our framework the auction’s designer (who has no private information) is a residual claimant and

budget balancedness is satisfied per definition.

Wellmann et. al. (2001) study private values scheduling problems without waiting costs: agents

derive the same utility if their jobs are completed early or late as long as this is done before a deadline.

These authors apply insights gained from the theory of matching markets. Holt and Sherman (1982)

model a waiting-line as an auction. In their model buyers that differ in their opportunity costs for

waiting queue to purchase one of several goods which are sold at fixed and known prices and points

in time. The buyers’ arrival time at the queue, which determines their probability of receiving one

of the goods, can be interpreted as a bid in an all-pay auction5.

Gavious, Moldovanu and Sela (2002) analyze a private value all-pay auction for a single object

(there are no externalities of any kind) where the seller can impose bid caps. While a bid-cap is

disadvantageous if the function describing the bid cost is linear or concave, it is shown that a bid cap

may increase revenue if this function is convex. Note that in their framework the concavity/convexity

issue pertains to the cost of bids, while in the present paper it pertains to the determination of values

themselves. This crucial difference yields some contrasting insights.

This paper is organized as follows: In Section 2 we describe the design problem arising from a

scheduling problem with waiting costs. In Section 3 we derive Bayes-Nash equilibria of a multi-object

auction that allocates slots in the queue based on the respective bids. In Section 4 we study auctions

with bid caps and analyze the effects of these on auction efficiency and revenue. In Section 5 we

focus on the case of convex cost functions and show, for the case of two agents, that the welfare

maximizing ex-post incentive compatible mechanism (which minimizes expected processing time)

does not condition on the agents’ private information. Finally, we connect this result to well-known

insights about the application of stochastic orders to queuing problems.

3Mitra (2001) focuses on efficiency and budget-balancedness for simpler scheduling problems with private values.
4The construction of the CGV mechanism is based on general insights about efficient implementation for multi-

object auctions with interdependent valuations due to Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2001).
5Or in a discriminatory price auction if buyers can observe whether it is already too late to queue.
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2 The Model

A processing unit (e.g., a computer, a landing/take-off gate, a repair tool) is available to n risk-

neutral agents. Each agent needs to perform a task (or job), and the agents’ jobs can be processed

sequentially, one job at a time. Each agent i has information about her own needed processing time

ti, which is the realization of a random variable with support [t, t]. The distribution of ti is given by

a strictly increasing and continuous distribution function F with density f. F is common knowledge

and the individual processing times are independently distributed6.

A schedule is a permutation σ ∈ Σn, σ = (σ (1) , . . . , σ (n)) where Σn is the set of all one to one

mappings σ : {1, . . . , n} �→ {1, . . . , n}. In particular, σ (1) is the index of the agent who is served

first, σ (2) the index of the agent served second, and so forth. All agents bear a cost of waiting given

by a strictly increasing function C : R+ �→ R
+, i.e. an agent waiting for t time units for her job to

be finished bears a cost C (t) . Given a schedule σ ∈ Σn, the cost borne by an agent who is served

j ′th is given by C
(∑j

k=1 tσ(k)

)
,

All agents derive an utility V from the completion of their job (net of time costs). This utility

is assumed to be common knowledge. We assume that V ≥ E(t2,...,tn)C
(
t+

∑n

k=2 tk
)
to ensure that

expected waiting costs never exceed V .

Given a realization of types (t1, . . . , tn) and a schedule σ, the utility of an agent i with σ (i) = j

is given by V −C
(∑j

k=1 tσ(k)

)
since her waiting time is given the sum of processing times for all

predecessors and her own processing time. Hence we have a model with interdependent valuations:

an agent’s utility is directly influenced by private information available only to other agents (the

processing time of her predecessors in the queue).

Denote by Π(Σn) the set of all probability distributions on Σn. In a direct revelation mechanism7

(φ, p) each agent i reports a processing time t̂i ∈
[
t, t

]
. Given reports t̂ =

(
t̂1, . . . , t̂n

)
, the designer

implements a schedule σ ∈ Σn according to the scheduling rule φ :
[
t, t

]n
�→ Π (Σn) , and receives

payments p = (p1, . . . , pn) ,where pi
(
t̂1, . . . , t̂n

)
denotes the payment of agent i .

A mechanism (φ, p) truthfully implements the rule φ if truth-telling is a Bayes-Nash equilibrium

in the game induced by (φ, p) and the agents’ utility functions. Such a mechanism is called incentive

compatible (IC).

The interim utility of agent i given her type ti, her announcement t̂i and given truthtelling of

the other agents is given by:

Ui

(
ti, t̂i

)
: = Et

−i

[
ui

(
ti, t̂i, t−i

)]
: = V −Et

−i

∑
σ∈Σn

φ
(
t̂i, t−i

)
(σ)

C
σ(i)∑

k=1

tσ(k)

+ pi
(
t̂i, t−i

)].
We use the following notation:

Ui (ti) := Ui (ti, ti) .

6We will relax this assumption in Section 5.
7As usual, a revelation principle applies here.
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The overall performance of a mechanism (φ, p) is measured by the total expected cost due to waiting,

i.e. by

P (φ) = Et

 n∑
i=1

∑
σ∈Σn

φ (ti, t−i) (σ)

C
σ(i)∑

k=1

tσ(k)

 .

We call an incentive compatible mechanism optimal if it minimizes P (φ) in the class of all incentive

compatible mechanisms. Note that, for a given and fixed vector of processing times, total waiting

cost is minimized by the well known shortest processing time first (SEPT) schedule where agents

with a shorter processing time are served before those with longer processing time. A scheduling rule

φ∗ is called ex-post efficient if it yields the SEPT schedule for any realization of the random vector of

processing times. Obviously, an incentive compatible mechanism that implements an ex-post efficient

allocation rule is optimal.

3 Auction-based queue disciplines

In this section we analyze the equilibrium schedules arising in the following auction: agents simul-

taneously submit sealed bids; the highest bidder is served first, the second highest bidder is served

second, and so forth; finally, each bidder has to pay his bid. This multi-object auction for n slots

constitutes a simple and natural way of implementing a schedule based on the agents’ information

about processing times. Obviously, bidders do not make losses by participating in this auction since

they can assure themselves a positive payoff by bidding zero and being queued last. The next result

shows that equilibrium behavior crucially depends on the structure of the cost function C. We define:

C1 (x) : = C1 (x) = C (2x)−C (x) ,

Cl (x) : = E(t2,...,tl)

[
C

(
2x+

l∑
j=2

tj

)
− C

(
x+

l∑
j=2

tj

)
| tj ≤ x, j = 2, . . . , l

]
, l ≥ 2,

C l (x) : = E(t2,...,tl)

[
C

(
2x+

l∑
j=2

tj

)
− C

(
x+

l∑
j=2

tj

)
| tj ≥ x, j = 2, . . . , l

]
, l ≥ 2.

Theorem 1

1. If C is strictly concave, the unique symmetric equilibrium of the slot auction is given by the

strictly decreasing function

bcave (t) = (n− 1)
n−1∑
l=1

(
n− 2

l − 1

)∫ t

t

(1− F (x))n−l−1 F l−1 (x)Cl (x) f (x) dx (1)

Hence, the auction implements the efficient SEPT discipline.

2. If C is strictly convex, the unique symmetric equilibrium of the slot auction is given by the

strictly increasing function

bvex (t) = (n− 1)

n−1∑
l=1

(
n− 2

l − 1

)∫ t

t

F (x)n−l−1 (1− F (x))l−1C l (x) f (x) dx (2)
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Hence, the auction implements the anti-efficient LEPT discipline.

Proof. The proof is given for strictly concave C, the case of strictly convex C is similar and

therefore omitted.

Assume that all agents other than agent 1 bid according to a strictly decreasing function b. The

expected utility of agent 1 with processing time t1 who bids as if she were of type t̂1 is given by

U
(
t1, t̂1

)
= V −

n∑
l=1

(
n− 1

l − 1

)(
1− F

(
t̂1
))n−l

F
(
t̂1
)l−1

(3)

E(t2,...,tl)

[
C

(
l∑

j=1

tj

)
| tj ≤ t̂1, j = 2, . . . , l

]
− b

(
t̂1
)
.

Differentiating with respect to t̂1 yields

∂U
(
t1, t̂1

)
∂t̂1

= − (n− 1)
(
1− F

(
t̂1
))n−2

f
(
t̂1
)
C (t1)−

n−1∑
l=2

(
n− 1

l − 1

)[
(l − 1)

(
1− F

(
t̂1
))n−l

F
(
t̂1
)l−2

f
(
t̂1
)

E(t2,...,tl)

[
C

(
t̂1 +

l−1∑
j=1

tj

)
| tj ≤ t̂1, j = 2, . . . , l − 1

]

− (n− l)
(
1− F

(
t̂1
))n−l−1

F
(
t̂1
)l−1

f
(
t̂1
)
E(t2,...,tl)

[
C

(
t̂1 +

l∑
j=1

tj

)
| tj ≤ t̂1, j = 2, . . . , l

]]

− (n− 1)F
(
t̂1
)n−2

f
(
t̂1
)
E(t2,...,tn−1)

[
C

(
t̂1 +

n−1∑
j=1

tj

)
| tj ≤ t̂1, j = 2, . . . , n− 1

]
−

db
(
t̂1
)

dt̂1

= − (n− 1)
n−1∑
l=1

(
n− 2

l − 1

)(
1− F

(
t̂1
))n−l−1

F
(
t̂1
)l−1

f
(
t̂1
)

E(t2,...,tl)

[
C

(
t̂1 +

l∑
j=1

tj

)
− C

(
l∑

j=1

tj

)
| tj ≤ t̂1, j = 2, . . . , l

]
−

db
(
t̂1
)

dt̂1
.

The first order condition
∂U(t1,̂t1)

∂̂t1

∣∣∣∣
̂t1=t1

= 0 is obviously fulfilled for bcave as given by (1). The

sufficient condition
∂2U(t1,̂t1)
∂̂t1∂t1

> 0 for all t1, t̂1 is satisfied, since C is strictly concave (which implies

that C ′ = d
dt
C (t) is strictly decreasing) and since

∂2U
(
t1, t̂1

)
∂t̂1∂t1

= − (n− 1)
n−1∑
l=1

(
n− 2

l − 1

)(
1− F

(
t̂1
))n−l−1

F
(
t̂1
)l−1

f
(
t̂1
)

E(t2,...,tl)

[
C ′

(
t̂1 +

l∑
j=1

tj

)
− C ′

(
l∑

j=1

tj

)
| tj ≤ t̂1, j = 2, . . . , l

]
.

Q.E.D.
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The above result shows that the efficient SEPT schedule is implemented by the auction if the

cost function C is concave. In the case of a convex cost function the equilibrium bidding function is

strictly increasing in processing time. Hence, agents are queued in the reverse order meaning that

those with longer processing time are served first (this is the well known LEPT policy). In this case

the auction yields the worst possible schedule since it maximizes P (φ).

The reason for these contrasting results is as follows: Agent’s i cost from being delayed for a

period of time t, C (t+ ti)− C (ti) , is increasing in ti if C is convex and decreasing if C is concave.

Hence, if C is convex, it is more costly for an agent with a longer processing time to queue for some

time t (before her own job is processed) than for an agent with a shorter processing time. The need to

avoid the higher cost is expressed by a higher bid in the auction, yielding the increasing bid function

for the case of convex cost functions. The opposite occurs for a concave cost function. Note that a

linear cost function (as used in much of the queuing literature) yields a ”degenerate” model where

the difference C (t+ ti)−C (ti) = t does not depend at all on ti. In this case the auction admits both

an increasing and a decreasing symmetric equilibrium.

The ”anti-efficient” auction outcome for convex cost functions suggests to look for mechanisms

that perform better in this case. We study such mechanisms in the next section.

4 Slot auctions with bid caps

Assume that bidders are not allowed to submit bids that are above a predetermined common-

knowledge maximum bid b̃. If m > 1 agents submit bids equal to b̃, then each of these bidders

is given any of the first m slots in the queue with probability 1
m
.

Theorem 2 1) Let C be concave and assume that the bid cap b̃ satisfies

E(t2,...,tn)

[
C

(
t+

n∑
j=2

tj

)
−

1

n

n−1∑
k=0

C

(
t+

n−k∑
j=2

tj

)]
< b̃ < b (t) . (4)

The schedule auction with bid cap b̃ has a unique symmetric equilibrium characterized by a type t̃

= t̃(̃b), strictly decreasing in b̃, such that

b̃cave

(
b̃, t

)
=

{
bcave(t) if t > t̃

b̃ if t ≤ t̃.,
(5)

2) Let C be convex and assume that the bid cap b̃ satisfies

E(t2,...,tn)

[
C

(
t+

n∑
j=2

tj

)
−

1

n

n−1∑
k=0

C

(
t+

n−k∑
j=2

tj

)]
< b̃ < b

(
t
)
. (6)

The schedule auction with bid cap b̃ has a unique symmetric equilibrium characterized by a type t̃

= t̃(̃b), strictly increasing in b̃, such that

b̃vex

(
b̃, t

)
=

{
bvex(t) if t ≤ t̃

b̃ if t > t̃,
(7)
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Proof. See Appendix.

By choosing an appropriate bid cap the auctioneer is able to determine the types of agents that

pool in equilibrium. Whereas the auctioneer can only decrease efficiency by introducing a bid cap

b̃ < b (t) in the case of a concave cost function (note that performance is monotonically decreasing

in b̃), an effective bid cap b̃ < b
(
t
)
necessarily increases performance in the case of a convex cost

function since, in that case, the auction performs worst among all possible scheduling mechanisms.

Moreover, overall performance is increasing in b̃ if C is convex. In particular, by setting a bid cap

equal to the lower bound in (6) all agents bid b̃ and hence are given a certain position in the queue

with probability 1
n
. In this case all agents pay a fixed fee, and the schedule is determined by an equal

chance lottery among all agents.

4.1 Revenue considerations

We now turn to an analysis of bid caps on the designer’s revenue. We first show that, if the cost

function is concave, the designer cannot profit by setting an effective bid cap. Thus, the ensuing

efficiency loss in this case has necessarily a negative effect on her revenue. The result is not trivial

since some bidders bid in the constrained auction more than in the unconstrained one. Hence, an

auctioneer interested in revenue needs to balance this positive effect of bid caps with the negative

effect caused by the fact that some other bidders cannot bid more than b̃.

Theorem 3 Assume that C is concave. Then the designer’s revenue in an auction with an effective

bid cap is lower than her revenue in the auction without bid cap.

Proof. see Appendix

In the case of a convex cost function it is interesting to note that the introduction of a bid cap

causes low-type bidders to bid b̃ even if they submitted lower bids in the unrestricted auction (because

this significantly increases their probability of getting a better slot). The next result shows that if

the cost function is not ”too convex”, then it is optimal for a revenue-maximizing designer to set the

lowest relevant effective a bid cap. Thus, increasing the efficiency of the auction is also beneficial in

terms of revenue, and the optimum is achieved with a lottery that does not condition on the agents’

private information

Theorem 4 Assume that C is convex. For any distribution function F and for any number of jobs

n, there exists a constant Kn > 0 such that if C ′′ < Kn the revenue maximizing bid cap is given by

b̃M = E(t2,...,tn)

[
C

(
t +

n∑
j=2

tj

)
−

1

n

n−1∑
k=0

C

(
t +

n−k∑
j=2

tj

)]
.

Proof. see Appendix

In contrast to the finding above, there exist environments with strongly convex cost functions

where the unrestricted auction yields more revenue than any auction with an effective bid cap. The

intuition is that more convexity leads to more aggressive bidding by agents with high processing
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costs. The revenue loss resulting from limiting these bidders cannot be anymore compensated by the

low-type bidders’ willingness to increase their bids up to the bid cap.

Example 5 Assume n = 2, C (t) = et and ti ∼ U [0, 1]. The following graph shows the dependence

of a bidder’s expected bid on the marginal type t̃. Since the marginal bid increases in t̃ (which, in

turn, increases in the bid cap b̃) it is optimal not to restrict the auction with an effective bid cap.

10.750.50.250
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0
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Finally, note that in many standard auctions the auctioneer can increase her revenue by rationing

the auctioned good through the imposition of a reserve price. Apart from the fact that this has a

negative effect on overall efficiency and hence is not desirable if efficiency is the auctioneer’s concern,

it might be difficult to commit to an exclusion of bidders ex-post. In contrast, we analyzed here the

effect of an instrument (bid caps) that ensures that all agents are served.

5 Optimal Mechanisms

In the previous section we showed that, for the case of convex cost functions, it may be advantageous

(both for revenue and for efficiency purposes) not to use any private information about processing

times, i.e., both the revenue maximizing and the performance maximizing auction may sometime

coincide with a lottery where slots in the queue are allocated at random. But, it is conceivable that

scheduling mechanisms other than the above described auctions do perform better. In this section we

show that mechanism that do not depend on the available private information do minimize expected

waiting costs in an important class of mechanisms.

Definition 6 A direct revelation mechanism (φ, p) is called ex-post incentive compatible if truthful

announcement of processing times constitutes an ex-post equilibrium, i.e. for any realization of types,

it is optimal for any agent i to announce his true type given that all other agents also announce their

processing times truthfully.

Ex-post equilibria do not depend on the underlying distribution functions (in particular, they do

not depend on the assumption of independency of agents’ processing times).

A mechanism (φ, p) that minimizes P (φ) in the class of all ex-post incentive compatible mecha-

nisms is called an optimal ex-post incentive compatible mechanism.
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The following result shows that, for the case of two agents, the best allocation that can be

implemented in ex-post equilibrium is given by a lottery giving the first position in the queue to

both agents with probability 1
2
. In fact, any mechanism that does not depend on reports is such an

optimal mechanism. More generally, if the types t1, t2 are distributed on
[
t1, t1

]
and

[
t2, t2

]
according

to different distribution functions F1 and F2 (with densities f1 and f2) the best allocation in ex-post

equilibrium is given by the ex-ante efficient allocation, i.e., by scheduling first the agent with the

lowest expected processing cost. In particular, an agent with a stochastically smaller distribution of

processing time should be served first. In other words, it is optimal to choose the SEPT schedule

based on the ex-ante expected processing time.

Theorem 7 Let n = 2 and assume that C is convex. The optimal ex-post incentive compatible

mechanism is to always schedule first the agent with the smaller ex-ante expected processing costs∫ ti

t
i

C (ti) fi (ti) dti. If the ex-ante expected processing costs are the same for both agents, then any

random schedule is optimal.

Proof. Appendix

While we believe that an analogous result holds any number of agents, a formal proof seems

difficult because general ex-post incentive compatible mechanisms may have the complex feature

that information available to one agent influences also the service order of other agents, i.e a change

in i′s report leads to a different permutation on agents other than i. This problem does not appear

if there are only two agents.

5.1 Delay Costs and Stochastic Dominance

In many situations the designer is not only interested in minimizing expected total waiting costs for

the agents, but additionally prefers that this cost stays below a given threshold as often as possible.

Such a constraint arises for example if there is an overall budget constraint with costly overdraws.

The following stylized example (which can be approximated in our model) shows that these two

goals might not be simultaneously attainable.

Example 8 Assume that there are two agents and that the (convex) cost function is given by

C (t) = t2. Consider the following distribution of processing times:

t1 =

{
1 with probability 1

5

3 with probability 4
5

∣∣∣∣∣ , t2 =

{
2 with probability 1

5

5 with probability 4
5

∣∣∣∣∣ .
Note that t2 stochastically dominates t1 hence, according to Theorem 7, it is optimal to serve agent

1 first. On the other hand, the probability that overall processing cost is below 30 is higher if agent

2 is queued first, i.e.

Pr{C (t1) + C (t1 + t2) ≤ 30} =
4

25
<

1

5
= Pr{C (t2) + C (t1 + t2) ≤ 30}.
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We now proceed to offer a sufficient condition guaranteeing that the distribution of overall

processing cost achieved by the SEPT discipline where agents with stochastically lower processing

times are served first is stochastically dominated by the distribution of processing time in any other

discipline. We use the following definition:

Definition 9 The random variable t2 is larger then t1 in the sense of likelihood ratio, t2 ≥LR t1, if
f2(t)
f1(t)

is (weakly) increasing in t.

Note that the likelihood ratio order implies standard stochastic dominance. In particular, t2 ≥LR

t1 implies that E(C (t2)) ≥ E(C (t1)).

The following is a well-known property of the likelihood ratio ordering:

Proposition 10 Assume that t2 ≥LR t1,and let h (x, y) be a real-valued function satisfying h (t2, t1) ≥

h (t1, t2) for all t2 ≥ t1. Then the random variable h (t1, t2) is stochastically dominated by h (t2, t1)
8.

Proof. See Ross (1983), Proposition 8.4.2 on page 268.9

It is immediate that the above condition is satisfied for the function h that measures total waiting

costs, i.e., h (t1, t2) = C (t1)+C (t1 + t2) . Hence, if t2 ≥LR t1, it follows that the probability of overall

costs being below an arbitrary threshold is higher if agent 1 is served before agent 2 than the other

way round. In other words, if in a deterministic scheduling problem with known processing times it

is optimal to interchange two jobs, then it is also stochastically optimal to interchange two jobs with

random processing times that are likelihood ratio ordered. In conjunction with Theorem 7, these

observations yield the following result:

Theorem 11 Assume that t2 ≥LR t1 and that C is convex. The random total cost in the optimal

ex-post incentive compatible mechanism is then stochastically dominated by the random cost in any

mechanism that does not depend on announcements.

6 Conclusion

We have combined a simple queuing problem with an incentive problem arising if impatient agents

are privately informed about the processing time needed to complete their respective jobs. We have

shown that auction-based queue disciplines are efficient if the delay cost function is concave, and anti-

efficient if it is convex. For the later case, the auction’s performance can be enhanced by imposing

bid caps. Finally, for the case of convex cost functions, we have shown that the best performance

is attained by mechanisms that do not attempt to condition on the private information. These

mechanisms take into account only ex-ante available information.

8This result easily generalizes to more than two players.
9For an extensive analysis of the uses of stochastic orders in queueing see Chang and Yao (1993) and Shanthikumar

and Yao (1991).
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While the model analyzed here is very simple, the vast queuing literature has considered much

more complicated models with random arrivals, multiple servers, preemptive service, multi-stage

service, etc...In principle, the performance of various pricing mechanisms similar to those studied here

can be studied in such frameworks. We think that the combination of queuing and incentive models

constitutes a fruitful avenue and that such studies will have many significant real-life applications.

7 Appendix

We use the following abbreviation: dF (tl+1, . . . , tn) := f (tl+1) . . . f (tn) dtl+1, . . . dtn.

Proof of Theorem 2: The proof is performed for the case of a convex cost function. The case

of a concave cost functions follows along the same line.

Given that other bidders bid according to a strictly increasing bidding function b if their type is

smaller than t̃ and bid b̃ otherwise, the interim expected utility of a bidder with type t1 who bids

according to b as if he were of type t̂1 < t̃ is identical to the utility in the case without bid caps, i.e.

it is given by

U
(
t1, b

(
t̂
))

= V −
n∑
l=1

(
n− 1

l − 1

)
F l−1

(
t̂
) ∫ t

̂t

. . .

∫ t

̂t︸ ︷︷ ︸
n−l

C

(
t1 +

n∑
j=l+1

tj

)
dF (tl+1, . . . , tn)− b

(
t̂
)
.

As in the proof of Theorem 1 , it can be shown that the necessary and sufficient optimality conditions

(for t̂1 < t̃) are fulfilled by b (t1) = bvex(t1) .

If a bidder with type t1 bids b̃ , his interim expected utility is given by:

U
(
t1, b̃

)
= V −

n∑
l=1

(
n− 1

l − 1

)
F l−1

(
t̃
) ∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

1

n− l + 1

n−l∑
k=0

C

(
t1 +

n−k∑
j=l+1

tj

)
dF (tl+1, . . . , tn)− b̃.

Given b̃, the marginal type t̃ is determined by the condition U
(
t̃, b

(
t̃
))

= U
(
t̃, b̃

)
, i.e. by

b̃ = b
(
t̃
)
+

n−1∑
l=1

(
n− 1

l − 1

)
F l−1

(
t̃
)

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
C

(
t̃+

n∑
j=l+1

tj

)
−

1

n− l + 1

n−l∑
k=0

C

(
t̃+

n−k∑
j=l+1

tj

)]
dF (tl+1, . . . , tn). (8)

For b̃ = b
(
t
)
we get t̃ = t whereas for

b̃M =

∫ t

t

. . .

∫ t

t︸ ︷︷ ︸
n−1

[
C

(
t+

n∑
j=2

tj

)
−

1

n

n−1∑
k=0

C

(
t+

n−k∑
j=2

tj

)]
dF (t2, . . . , tn)

we obtain t̃ = t.
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We show next that the derivative with respect to t̃ of the r.h.s. of (8) is strictly positive. This

implies that t̃ is uniquely defined ,and that a higher bid cap b̃ yields a higher marginal type t̃. Using

d

dt
b (t) = (n− 1)

n−1∑
l=1

(
n− 2

l − 1

)
F l−1 (t) f (t)

∫ t

t

. . .

∫ t

t︸ ︷︷ ︸
n−l−1

[
C

(
2t +

n∑
j=l+2

tj

)
− C

(
t +

n∑
j=l+2

tj

)]
dF (tl+2, . . . , tn).

we obtain

d

dt̃
b̃ =

d

dt̃
b
(
t̃
)
+

n−1∑
l=2

(
n− 1

l − 1

)
(l − 1)F l−2

(
t̃
)
f
(
t̃
)

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
C

(
t̃+

n∑
j=l+1

tj

)
−

1

n− l + 1

n−l∑
k=0

C

(
t̃ +

n−k∑
j=l+1

tj

)]
dF (tl+1, . . . , tn)

−
n−1∑
l=1

(
n− 1

l − 1

)
F l−1

(
t̃
)
f
(
t̃
) ∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l−1

[
(n− l)C

(
2t̃+

n∑
j=l+2

tj

)

−
n−l−1∑
k=0

((
n− l − k

n− l + 1
C

(
2t̃+

n−k∑
j=l+2

tj

)
+

k + 1

n− l + 1
C

(
t̃ +

n−k∑
j=l+2

tj

)))]
dF (tl+2, . . . , tn)

+
n−1∑
l=1

(
n− 1

l − 1

)
F l−1

(
t̃
)

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
∂

∂t̃
C

(
t̃+

n∑
j=l+1

tj

)
−

1

n− l + 1

n−l∑
k=0

∂

∂t̃
C

(
t̃ +

n−k∑
j=l+1

tj

)]
dF (tl+1, . . . , tn)

=
d

dt̃
b
(
t̃
)
+ (n− 1)

n−2∑
l=1

(
n− 2

l − 1

)
F l−1

(
t̃
)
f
(
t̃
)

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l−1

[
C

(
t̃+

n∑
j=l+2

tj

)
−

1

n− l

n−l−1∑
k=0

C

(
t̃+

n−k∑
j=l+2

tj

)
− C

(
2t̃+

n∑
j=l+2

tj

)

+
1

n− l

n−l−1∑
k=0

((
n− l − k

n− l + 1
C

(
2t̃ +

n−k∑
j=l+2

tj

)
+

k + 1

n− l + 1
C

(
t̃+

n−k∑
j=l+2

tj

)))]
dF (tl+2, . . . , tn)

− (n− 1)F n−2
(
t̃
)
f
(
t̃
) 1
2

[
C

(
2t̃
)
− C

(
t̃
)]

+
n−1∑
l=1

(
n− 1

l − 1

)
F l−1

(
t̃
)

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
∂

∂t̃
C

(
t̃+

n∑
j=l+1

tj

)
−

1

n− l + 1

n−l∑
k=0

∂

∂t̃
C

(
t̃ +

n−k∑
j=l+1

tj

)]
dF (tl+1, . . . , tn)
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= (n− 1)
n−2∑
l=1

(
n− 2

l − 1

)
F l−1

(
t̃
)
f
(
t̃
)

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l−1

1

n− l

[
n−l−1∑
k=0

((
n− l − k

n− l + 1
C

(
2t̃+

n−k∑
j=l+2

tj

)
+

k + 1

n− l + 1
C

(
t̃+

n−k∑
j=l+2

tj

)))

−
n−l−1∑
k=0

C

(
t̃+

n−k∑
j=l+2

tj

)]
dF (tl+2, . . . , tn)

+ (n− 1)F n−2
(
t̃
)
f
(
t̃
) 1
2

(
C

(
2t̃
)
− C

(
t̃
))

+
n−1∑
l=1

(
n− 1

l − 1

)
F l−1

(
t̃
)

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
∂

∂t̃
C

(
t̃ +

n∑
j=l+1

tj

)
−

1

n− l + 1

n−l∑
k=0

∂

∂t̃
C

(
t̃ +

n−k∑
j=l+1

tj

)]
dF (tl+1, . . . , tn).

The above last expression is (strictly) positive since C is strictly increasing and convex. For all

t2, . . . , tn and l = 1, . . . , n− 2 we thus have

n−l−1∑
k=0

(
n− l − k

n− l + 1
C

(
2t̃ +

n−k∑
j=l+2

tj

)
+

k + 1

n− l + 1
C

(
t̃+

n−k∑
j=l+2

tj

)
− C

(
t̃+

n−k∑
j=l+2

tj

))
> 0,

∂

∂t̃
C

(
t̃ +

n∑
j=l+1

tj

)
−

1

n− l + 1

n−l∑
k=0

∂

∂t̃
C

(
t̃+

n−k∑
j=l+1

tj

)
> 0.

Obviously, it is not optimal to deviate to a bid b < b̃ if t1 > t̃ or to a bid b > b
(
t̃
)
if t1 < t̃. Q.E.D.

Proof of Theorem 3: In order to have a transparent proof, we restrict attention here to the

case n = 2. Given a bid cap b̃ , and given the uniquely defined corresponding marginal type t̃, the

auctioneer’s expected revenue per agent is:

R(̃b) := b̃F
(
t̃
)
+

∫ t

˜t

bcave (x) f (x) dx.

It suffices to show that d

d˜t
R(̃b) = d

d˜t
b̃F

(
t̃
)
+

(
b̃− bcave

(
t̃
))

f
(
t̃
)
< 0 for t̃ < t. We have that :

U
(
t̃, bcave

(
t̃
))

= V −

∫
˜t

t

C
(
t̃+ x

)
f (x) dx−

(
1− F

(
t̃
))

C
(
t̃
)
− bcave

(
t̃
)
,

U
(
t̃, b̃

)
= V −

1

2

∫
˜t

t

[
C

(
t̃+ x

)
− C

(
t̃
)]

f (x) dx−
(
1− F

(
t̃
))

C
(
t̃
)
− b̃

and hence we obtain

b̃− bcave
(
t̃
)
=

1

2

∫
˜t

t

[
C

(
t̃ + x

)
− C

(
t̃
)]

f (x) dx.

Using

d

dt̃
b̃ = f

(
t̃
) [

C
(
t̃
)
−

1

2

(
C

(
t̃
)
+ C

(
2t̃
))]

+
1

2

∫
˜t

t

[
d

dt̃
C

(
t̃ + x

)
−

d

dt̃
C

(
t̃
)]

f (x) dx
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we obtain

d

dt̃
R(̃b) = f

(
t̃
) 1
2

∫
˜t

t

[
C

(
t̃+ x

)
− C

(
2t̃
)]

f (x) dx+
1

2
F

(
t̃
) ∫ ˜t

t

[
d

dt̃
C

(
t̃+ x

)
−

d

dt̃
C

(
t̃
)]

f (x) dx.

The statement follows since C is strictly increasing and concave. Q.E.D.

Proof of Theorem 4: It suffices to show that a bid cap b̃M leads to a strictly higher revenue

than any other bid cap for the linear cost function C (x) = x . The result follows then by a continuity

argument.

Given a bid cap b̃ , and given the uniquely defined corresponding marginal type t̃, the auctioneer’s

expected revenue per agent is:

R(̃b) := b̃
(
1− F

(
t̃
))

+

∫
˜t

t

bvex (x) f (x) dx.

We show below that d

d˜t
R(̃b) = d

d˜t
b̃
(
1− F

(
t̃
))

+
(
bvex

(
t̃
)
− b̃

)
f
(
t̃
)
< 0 for t̃ < t. Thus, the optimal

marginal type is t, and, accordingly, the optimal bid cap is b̃M .

For C (x) = x we have:

d

dt̃
R(̃b) = (n− 1)

n−2∑
l=1

(
n− 2

l − 1

)
F l−1

(
t̃
)
f
(
t̃
) (

1− F
(
t̃
))

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l−1

1

n− l

[
n−l−1∑
k=0

n− l − k

n− l + 1
t̃

]
︸ ︷︷ ︸

(1−F(˜t))
n−l−1

1

2
˜t

dF (tl+2, . . . , tn)

+ (n− 1)F n−2
(
t̃
)
f
(
t̃
) 1
2
t̃
(
1− F

(
t̃
))

−f
(
t̃
) n−1∑

l=1

(
n− 1

l − 1

)
F l−1

(
t̃
) ∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
n∑

j=l+1

tj −
1

n− l + 1

n−l∑
k=0

n−k∑
j=l+1

tj

]
dF (tl+1, . . . , tn)
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= (n− 1)
n−1∑
l=1

(
n− 2

l − 1

)
F l−1

(
t̃
)
f
(
t̃
) (

1− F
(
t̃
))n−l 1

2
t̃

−f
(
t̃
) n−1∑

l=1

(
n− 1

l − 1

)
F l−1

(
t̃
) ∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
n∑

j=l+1

j − l

n− l + 1
tj

]
dF (tl+1, . . . , tn)

=
n−1∑
l=1

(n− 1)!

(n− l)! (n− l − 1)!
F l−1

(
t̃
)
f
(
t̃
)

(
1− F

(
t̃
))n−l 1

2
t̃−

1

n− l

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

[
n∑

j=l+1

j − l

n− l + 1
tj

]
dF (tl+1, . . . , tn)



<

n−1∑
l=1

(n− 1)!

(n− l)! (n− l − 1)!
F l−1

(
t̃
)
f
(
t̃
)(

1− F
(
t̃
))n−l 1

2
t̃−

∫ t

˜t

. . .

∫ t

˜t︸ ︷︷ ︸
n−l

1

2
t̃ dF (tl+1, . . . , tn)


= 0.

Q.E.D.

Proof of Theorem 7: Since the suggested mechanisms do not depend on announcements,

truthtelling is an ex-post equilibrium. To simplify notation, let ki
(
t̂1, t̂2

)
denote the probability that

agent i is served first, given announcements t̂1, t̂2. Obviously we must have k2 = 1 − k1. For an

allocation (k1, k2) to be implementable in ex-post equilibrium we must have for all ti ≥ t̂i:

ui
(
ti, t̂i, t−i

)
− ui

(
t̂i, t̂i, t−i

)
≤ ui (ti, ti, t−i)− ui

(
t̂i, ti, t−i

)
for all t−i.

For i = 1 this yields for all t2:[
C (t1)−C

(
t̂1
)]

k1
(
t̂1, t2

)
+

[
C (t2 + t1)− C

(
t2 + t̂1

)] (
1− k1

(
t̂1, t2

))
≥

[
C (t1)−C

(
t̂1
)]

k1 (t1, t2) +
[
C (t2 + t1)− C

(
t2 + t̂1

)]
(1− k1 (t1, t2))

This is equivalent to: [
C (t2 + t1)−C (t1)− C

(
t2 + t̂1

)
+ C

(
t̂1
)]

k1
(
t̂1, t2

)
≤

[
C (t2 + t1)−C (t1)− C

(
t2 + t̂1

)
+ C

(
t̂1
)]

k1 (t1, t2) .

Since C is convex, the above condition is equivalent to k1
(
t̂1, t2

)
≤ k1 (t1, t2) for all t2. This last

condition implies in turn that ex-post implementability requires that∫ t2

t
2

k1 (t1, t2) f2 (t2) dt2 is increasing in t1. (9)

Equivalently, by looking at i = 2 we get the requirement that∫ t1

t
1

k1 (t1, t2) f1 (t1) dt1 is decreasing in t2. (10)
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We are now looking for the solution of the following problem:

min
(k1,k2)

∫ t1

t
1

∫ t2

t
2

[C (t1) k1 (t1, t2) + C (t2) k2 (t1, t2)) + C(t1 + t2)]f1 (t1) f2 (t2) dt1dt2

subject to incentive compatibility constraints.

Since k2 = 1− k1, and since the cost C(t1 + t2) is incurred for sure in any allocation, the above

problem becomes:

min
k1

∫ t1

t
1

∫ t2

t
2

(C (t1)− C (t2)) k1 (t1, t2) f1 (t1) f2 (t2) dt1dt2 (11)

s.t. (9) , (10) .

We have that ∫ t1

t
1

∫ t2

t
2

(C (t1)− C (t2)) k1 (t1, t2) f1 (t1) f2 (t2) dt1dt2

=

∫ t1

t
1

C (t1)

∫ t2

t
2

k1 (t1, t2) f2 (t2) dt2f1 (t1) dt1

−

∫ t2

t
2

C (t2)

∫ t1

t
1

k1 (t1, t2) f1 (t1) dt1f2 (t2) dt2.

For the solution k1 of (11) define:∫ t1

t
1

∫ t2

t
2

k1 (t1, t2) f1 (t1) f2 (t2) dt1dt2 := K ∈ [0, 1].

Since C is increasing and because of (9) and (10) we obtain that∫ t1

t
1

C (t1)

∫ t2

t
2

k1 (t1, t2) f2 (t2) dt2f1 (t1) dt1

is minimized if
∫ t2

t
2

k1 (t1, t2) f2 (t2) dt2 = K and that∫ t2

t
2

C (t2)

∫ t1

t
1

k1 (t1, t2) f1 (t1) dt1f2 (t2) dt2

is maximized if
∫ t1

t
1

k1 (t1, t2) f1 (t1) dt1 = K. Hence, for the solution of (11), we must have:∫ t1

t
1

∫ t2

t
2

(C (t1)− C (t2)) k1 (t1, t2) f1 (t1) f2 (t2) dt1dt2

= K

(∫ t1

t
1

C (t1) f1 (t1) dt1 −

∫ t2

t
2

C (t2) f2 (t2) dt1dt2

)
.

This last expression is minimized at:

K = 0 if
∫ t1

t
1

C (t1) f1 (t1) dt1 ≥
∫ t2

t
2

C (t2) f2 (t2) dt1dt2

K = 1 if
∫ t1

t
1

C (t1) f1 (t1) dt1 ≤
∫ t2

t
2

C (t2) f2 (t2) dt1dt2

any K ∈ [0, 1] if
∫ t1

t
1

C (t1) f1 (t1) dt1 =
∫ t2

t
2

C (t2) f2 (t2) dt1dt2.

The mechanism suggested in the statement of the theorem obviously fulfills these requirements.

Q.E.D.
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