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Abstract

We study an auction whose outcome in‡uences the future interaction
among agents. The impact of that interaction on agent i is assumed to
be a function of all agents’ types (which are private information at the
time of the auction). Two explicit illustrations treat auctions of patents
and takeover contests among oligopolists. We derive equilibrium bidding
strategies for second-price, sealed-bid auctions in which the seller sometimes
keeps the object, and we point out the various e¤ects caused by positive and
negative impacts. We also study the e¤ect of reserve prices and entry fees
on the seller’s revenue and on welfare. We observe that these instruments
have very di¤erent implications according to whether impacts are positive
or negative.

1. Introduction

In a variety of settings signi…cant changes of ownership in‡uence the nature of
the interaction in the respective markets. As a consequence, even agents who
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are not directly involved in a transaction are indirectly a¤ected by its outcome.
We refer to such indirect e¤ects as externalities. Well-known examples involving
externalities include1: 1) Changes of ownership in oligopolies (through takeover,
merger, privatization, etc...): since the number and characteristics of active …rms
change, all …rms operating in the industry will be a¤ected (either negatively or
positively) by the change of ownership; 2) The licensing of innovations (or the sale
of intermediate inputs) to competing downstream producers: some …rms become
more e¢cient and downstream pro…ts will be shifted away from other, relatively
less e¢cient competitors. 3) The location of enterprises, which is often in‡uenced
by the award of tax rebates: neighboring communities may enjoy positive exter-
nalities on the labor market, but also negative externalities due to environmental
hazards2. 4) A shareholder tendering his shares to a corporate raider creates a
positive externality on other shareholders.
The anticipation of externalities often leads to adjustments in trading strate-

gies. For an illustration, consider the following quotation from The Economist,
June 28th, 1997:

”The good sales run at Rolls-Royce began 18 months ago, when it
snatched a huge order to supply Singapore Airlines with engines for
its latest twin-engined Boeing 777s. Its hard-nosed American rivals,
Pratt&Whitney and General Electric, were prepared to take a loss to
land such a prestigious deal. So they assumed Rolls-Royce won the
bid by taking an even greater loss.”

The idea is that failing to get the prestigious Singapore order puts a …rm in
a disadvantageous position when bidding for later deals with other airlines. The
need to avoid this disadvantage drove the competing …rms to sacri…ce pro…ts on
the current transaction3.

1For more illustrations on bilateral contracts and externalities, see Segal, 1999.
2For example, at the end of the last century, the city of Mannheim asked a very high price

for land and the newly created BASF moved westwards to Ludwigshafen, just across the bridge
on the Rhine river. In the meanwhile, BASF became a chemical giant and it pays trade taxes
(Gewerbesteuer) to the hosting municipality. But the wind blows eastward and the Rhine ‡ows
to the North sea...

3This phenomenon will be formalized in our discussion of auctions where failing to win has
a negative impact on future expected pro…ts.
In future deals with Singapore Airlines switching costs also play a role. Business strategies in

the presence of switching costs are surveyed in Klemperer (1995).
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Jehiel et. al. (1996, 1999) look at a model where one object is auctioned and
where agents have private information about imposed or incurred externalities4.
Their focus is on mechanism design5 and on revenue maximizing sales procedures.
By devising sophisticated threats which depend on the identities of the partici-
pating buyers6, the seller can extract payments also from non-acquirers. A major
problem with such procedures is that the seller needs an unrealistically strong
commitment power7.
In this paper we take a di¤erent approach by studying a standard second-price

auction (whose speci…cations do not depend on the details of the underlying situ-
ation), and by focusing on simple revenue-enhancing instruments such as (…xed)
reserve prices or entry fees. The second-price auction is chosen for its analyti-
cal simplicity: it allows us to highlight the interplay between allocative and in-
formational interdependencies without getting too entangled in complex bidding
mechanics. A similar analysis will hold for other sealed-bid mechanisms8.
Besides allocative externalities, many applications require models that allow

also for informational externalities, e.g., the externality on buyer i depends both
on i’s characteristics (which may be private information to i); and on character-
istics of other agents, which are not observable at the transaction stage9

A classical symmetric one-object auction model allowing for informational in-
terdependencies (but not for allocative ones) has been studied by Milgrom and
Weber (1982). The main feature of that model is that bidder i’s valuation for
the object is a function of the signals obtained by all bidders. Net of payments

4These depend on the identities of the actual buyer and the su¤erer, but not on other
characteristics

5The analysis employs and further develops the optimal mechanism design methodology for
multi-dimensional type spaces.

6For example, personalized reserve prices and entry fees must be used. The seller may extract
payments even if no exchange of goods occurs. Such a ”chutzpah” mechanism has been derived
in the licensing context by Kamien et.al. (1992).

7For example, the threats that allow extraction of surplus from non-acquirers will typically
involve non-credible actions o¤ the equilibrium path.

8Since types are independent a revenue equivalence theorem holds because in our symmetric
environment all sealed bid auctions yield the same allocation. For the case of two bidders an
English ascending auction is also equivalent to our mechanism, but this does not necessarily hold
for more than two agents. An interesting comparison of revenue in sealed bid and ascending
price auctions with externalities in which bidders’payo¤s are determined by their own types in
all alternatives (which is not the case here) is contained in Das Varma (1999).

9For example, information on the post-licensing cost of another …rm in the innovation situ-
ation.
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to the seller, an unsuccessful bidder obtains a …xed payo¤, usually normalized
to be zero10. In our model, the utility of a bidder who does not get the object
is in‡uenced by the realized allocation (e.g., by events such as ”the good is not
sold” , ”the good is sold to another bidder”). Thus, bidder i’s willingness to pay
depends on i’s belief about potential auction outcomes11, and even in a complete
information framework (see Jehiel and Moldovanu, 1996) bidding strategies are
not trivial.
Allocative externalities have been often discussed in the large IO literature on

vertical and horizontal relations. The type of analysis performed in this paper
is strongly related to models considered in the literature on patent licensing (see
the survey of Kamien,1992). Arrow (1962) discussed the relation between the
value of innovations and the underlying market structure (which is assumed to be
either competitive or monopolistic). Gilbert and Newbery (1982) use an auction
model to study the interaction between a monopolist incumbent and a potential
entrant competing for an innovation. Their main result is the persistence of
the monopolist which takes into account the potential negative externality and
uses preemptive patenting. Kamien and Tauman (1986) and Katz and Shapiro
(1985, 1986) re-examine Arrow’s theme, but introduce oligopolistic downstream
industries with ex-ante symmetric …rms and speci…cally point out the presence of
externalities. These authors study models having the following common structure:
1) The inventor announces the licensing procedure (auction, …xed fee, royalty,
etc...); 2) Firms decide whether to buy a license (or howmuch to bid in an auction);
3) Licensed and unlicensed …rms compete in the downstream market12. A main
result is that, from the point of view of the seller, an auction dominates both …xed
fees and royalties contracts13. In contrast to these authors, Jehiel and Moldovanu

10In most auction formats only the winner pays. In the so-called ”all-pay auction” also losers
pay. Hence their payo¤ depends on the realized bids, but neither on the …nal allocation of the
good nor on the winner’s characteristics.
11To put it more abstractly, in Milgrom and Weber’s model bidders perceive only two payo¤-

relevant alternatives (”I win” and ”I loose”) and the bid is determined by a (conditional) ex-
pected di¤erence of payo¤s in the two alternatives. In contrast, our bidders may perceive more
than two payo¤-relevant alternatives (”I win”, ”The object is not sold”, ”The object is sold to
a competitor”, etc...).
12Kamien and Tauman look at an inventor that uses fees or royalties, and discuss the relation

between drastic innovations and the emergence of monopoly. Katz and Shapiro consider an
innovator that sells licenses via …rst-price sealed-bid auctions with (optimally set) reserve prices
and entry fees.
13Consumers in the downstream market have opposite preferences.
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(1996) allow for ex-ante asymmetries among the downstream competing …rms14;
In all papers mentioned above information is complete: all relevant param-

eters (e.g., production costs before and after the licensing process), and hence
ex-ante and ex-post downstream pro…ts are common knowledge15. In his survey,
Kamien (1992) emphasizes the need to extend licensing models by introducing
some uncertainty about production costs.
This paper is organized as follows: In Section 2 we describe the economic model

and the analyzed auction procedures. We focus on the case of two potential buyers
bidding for an indivisible object in a second-price, sealed-bid auction where the
seller may sometimes keep the object16. Besides the revenue enhancing e¤ects of
reserve prices and entry fees, the study of these tools allows us to illustrate how
related instruments can nevertheless have very di¤erent consequences on bidding
behavior.
In Section 3 we illustrate in detail two simple settings that …t in our model:

the sale of a cost-reducing innovation (negative externalities) and a merger among
…rms operating in the same industry (positive externalities).
In Section 4 we focus on auctions with reserve prices. We …rst derive an

equilibrium for the case where the reserve price is not binding17. In Subsection
4.1 we derive an equilibrium for the case of negative externalities and a binding
reserve price. Some types that are, in principle, willing to pay for preemption,
choose nevertheless to make irrelevant bids18. We next derive the seller’s optimal
reserve price, and we show that the seller should sometimes announce a reserve
price that is strictly lower than her own valuation for the object19.

14they focus on the incentives to participate in an auction for a cost-reducing innovation, and
also show how several beliefs about the …nal allocation might be consistent with equilibrium
behavior, leading to multiple equilibria.
15Most of the papers considering other settings with externalities assume complete information

(see Segal, 1999). Segal also assumes that the principal has the entire bargaining power (i.e,
auctions are excluded). These and several other assumptions made by Segal (e.g., only aggregate
trade matters) hinder a straightforward comparison between his and our results.
16We indicate the changes needed if there are more than two bidders.
17In this equilibrium a bidder takes into account both the expected pro…t if she acquires the

object (i.e., her pure valuation net of externalities) and the impact she expects in case her
competitor acquires the object.
18The lowest relevant bid is strictly higher than the reserve price.
19Setting a low reserve price is a way to increase the supply. Another, quite di¤erent context

in which increasing the supply may be bene…cial to the seller is one of common value auctions
(see Bulow and Klemperer 1998). The main phenomena in that paper are caused by ”winner’s
curse” e¤ects, whereas here the e¤ects are due to the presence of externalities.
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In Subsection 4.2 we look at the case of positive externalities and a binding
reserve price. For the case where the externality is non-increasing in the winner’s
valuation we are able to derive a (rather complex) symmetric equilibrium in pure
strategies which involves pooling at the reserve price20. For the case where the
externality increases in the winner’s valuation, we show that equilibria in pure
strategies may not exist.
In Section 5 we look at second-price auctions with entry fees. In the case

of negative externalities, there is a natural one-to-one correspondence between
entry fees and reserve prices. With positive externalities, entry fees and reserve
prices do not have the same e¤ect, since there is no analog of pooling with entry
fees. For the positive externality case we also show that, no matter what the
seller’s valuation for the object is, a strictly positive measure of types is excluded
from participation in the auction with the optimal entry fee. This result, which
sharply contrasts with the usual intuition, stems from the fact that exclusion also
mitigates the free-rider e¤ect among buyers21. Finally, we consider a simpler class
of situations where the (positive) externality term does not depend on the other
agent’s private information, and we show that, for each relevant entry fee, the
seller can …nd a reserve price that leads to a strictly higher revenue.
In Section 6 we extend our model to n > 2 buyers, and illustrate several facts

that are not immediately apparent in the 2¡buyer case22.
Concluding comments are gathered in Section 7. All proofs appear in an

Appendix.

2. The Model

We consider the following situation: A seller owns an indivisible object. The
seller’s valuation for the object is ¼S. There are 2 potential buyers. Buyer’s i
pure valuation for the object (i.e., his pro…t when he acquires the object) is given
by ¼i. Denote by ¼¡i the valuation of the other buyer.
If the good is sold to buyer i for a price p , the utilities of the agents are as

20An interesting implication of pooling is that sometimes a bidder with lower type may be
the winner of the object, thus leading to ex-post ine¢ciencies (among the set of bidders)
21Setting a positive entry fee is a way to reduce the expected number of competitors, which is

revenue enhancing when externalities are positive. Another context in which revenue may decline
with the number of competitors is one of common value auctions (see Bulow and Klemperer
1998).
22For example, we show that the optimal reserve price depends on the number of bidders.
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follows: p for the seller; ¼i ¡ p for buyer i; gj(¼j ; ¼¡j) for buyer j; j 6= i. We
normalize the utilities of the buyers to be zero in case that the seller keeps the
object (this case is called the status-quo).
The functions gk; k = 1; 2 which are common knowledge, are assumed to be

di¤erentiable. Note that the …rst argument of function gk is always the type of
the su¤erer k, and the second argument is the type of the other agent.
Buyer i0s pure valuation23 is private information, and it is drawn from interval

[¼i; ¹¼i] according with the density fi; independently of other buyers’ valuations.
We assume fi(¼) > 0 for all ¼ 2 [¼i; ¹¼i]; and we denote by Fi the cumulative
distribution of fi: Moreover, we assume that ¼i ¸ 0:
Second-price auctions with a reserve price proceed as follows: The seller an-

nounces a reserve price R ¸ 0: The buyers then simultaneously submit bids for
the object. Assume without loss of generality that the bids are b1 ¸ b2. If R > b1,
the seller keeps the good and no payments are made. If b1 ¸ R , and b1 > b2 ,
buyer 1 gets the good and pays to the seller p = max(R; b2): The other buyer pays
nothing. If b1 = b2 ¸ R , then each buyer gets the object with probability 1

2
.

The winner pays p = b2; and the other buyer pays nothing.
In second-price auctions with entry fees, the buyers who participate pay an

entry fee E at the same time as they submit a bid24. The rules of the auction are
those of a second-price sealed-bid auction with reserve price R = 0. That is, if at
least one bidder participates, the good is allocated to the bidder with highest bid.
If there is another participating bidder, the winner pays the second highest bid.
Otherwise, she gets the good for free. Buyers who choose not to pay the fee (and
hence do not bid at the auction) are still a¤ected by the outcome of the auction.
We consider here a symmetric setting in the following sense: 1) ¼1 = ¼2 = ¼

and ¹¼1 = ¹¼2 = ¹¼ . 2) There exists a function f : [¼; ¹¼] ! < such that 8¼;
f1(¼) = f2(¼) = f (¼) : 3) There exists a function g : [¼; ¹¼] £ [¼; ¹¼] ! < such
that 8¼; ¼0; g1(¼; ¼0) = g2(¼; ¼0) = g(¼; ¼0): Hence, we assume that the externality
su¤ered by agent 1 with type ¼ if agent 2 with type ¼0 gets the object is the same
as the externality su¤ered by agent 2 with type ¼ if agent 1 with type ¼0 gets the

23The reader may have noticed the following ”asymmetry” in our treatment: while we allow
externalities to depend on others’ characteristics, we assume that a bidder’s payo¤ when he gets
the object does not display this dependence. It is, of course, possible to generalize the model
allowing for such a feature, but the ensuing phenomena are well-known by Milgrom and Weber’s
analysis. We prefered the somewhat simpler model in order to focus on the interplay between
informational and allocative externalities.
24In our context, it would make no di¤erence to assume that the participating bidders can

observe who else participates before they submit their bid.
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object25.
Let Dxg denote the derivative of the function g with respect to the …rst co-

ordinate (i.e., the type of the su¤erer), and let Dyg denote the derivative of the
function g with respect to the second coordinate (i.e., the type of the causer).
Throughout the paper we assume that

8¼; ¼0 2 [¼; ¹¼] ; Dxg(¼; ¼0) · 1 (2.1)

and that
8¼ 2 [¼; ¹¼] ;Dxg(¼; ¼) +Dyg(¼; ¼) < 1 (2.2)

The …rst assumption ensures that the bene…t of winning against any competi-
tor, ¼¡g(¼; ¼0); is increasing in the winner’s type. The second assumption ensures
that the function

G(¼) ´ ¼ ¡ g(¼; ¼)
is strictly monotonically increasing on [¼; ¹¼] : Both conditions are standard: they
are used for the derivation of a separating equilibrium in Proposition 4.1 below
(see also the use of their analogs in Milgrom and Weber’s paper26).
We will speak of the negative externalities case if 8¼; ¼0 2 [¼; ¹¼] ; g(¼; ¼0) · 0;

and of the positive externalities case if 8¼; ¼0 2 [¼; ¹¼] ; g(¼; ¼0) ¸ 0: We want to
emphasize that these de…nitions make sense only in relation to a given status-quo,
which is normalized here to yield zero utility for both bidders.
We focus below on pure-strategy symmetric equilibria of the various auction

formats27.

3. Illustrations

3.1. Negative externalities: The sale of a patent

Consider 2 …rms in a Cournot oligopoly. Firm i0s cost of producing quantity qi of
a homogenous product is given by cqi, where c < 1: Let P (Q) = 1 ¡ Q be the

25This poperty is sometimes called exchangeability.
26These authors also assume that the gain from winning is increasing in the other bidders’

signals, which, translated to our framework, means Dyg · 0: But this assumption is not neces-
sary for the derivation of an equilibrium in the second-price auction, and we do not impose it
here.
27The symmetry, risk-neutrality and type-independence assumptions lead to revenue equiv-

alence for symmetric equilibria of sealed-bid formats. For the case of two bidders an English
ascending auction is also equivalent to our mechanism, but this does not necessarily hold for
more than two agents. (See also Das Varma 1999.)
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market-clearing price when the aggregate supplied quantity is Q = q1 + q2 · 1:
The Nash equilibrium the pro…ts28 are given by

¼sq1 = ¼
sq
2 =

(1¡ c)2
9

(3.1)

All parameters in the status-quo are common knowledge.
Consider an inventor that wants to sell a cost-reducing technical innovation

protected by a patent. The …rm that acquires the patent29 will be able to produce
the good with marginal cost 0 · ci · c: The new, reduced cost ci is private
information to …rm i at the time of the patent’s sale. After the sale, the new cost
structure is revealed to every competitor30. If …rm i acquires the patent it earns
a pro…t

¼owni =
(1¡ 2ci + c)2

9
¸ ¼sqi (3.2)

The other …rm j; j 6= i; produces with the old, relatively more costly technology
and it earns a pro…t

¼extj =
(1¡ 2c+ ci)2

9
· ¼sqj (3.3)

We are in the negative externalities case. Relative to the status-quo, we obtain
the following:

1. When …rm i acquires the patent, its bene…t from the innovation is given by

¼i = ¼
own
i ¡ ¼sqi =

4

9
(1¡ ci) (c¡ ci) (3.4)

2. The non-acquiring …rm j incurs a loss given by

¼extj ¡ ¼sqj =
1

9
(ci ¡ c) (2¡ 3c+ ci) (3.5)

Note that the loss su¤ered by the non-acquiring …rm is a function of the bene…t
of the acquiring …rm31 (which is not observable at the time of the auction). By

28sq stands for status-quo
29We assume that the patent can be sold only to one …rm.
30To simplify the discussion, we assume below that both …rms will produce positive quantities

also after one of them acquires the innovation and becomes more e¢cient.
31In this example, the loss of the non-acquiring …rm does not depend on its own bene…t were

it to obtain the patent i.e., it does not depend on ¼j :
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equation 3.4 we obtain

ci =
1

2

0@1 + c¡ 3
s
(1¡ c)2
9

+ ¼i

1A (3.6)

Together with equation 3.5 , this allows us to express the loss of the non-acquiring
…rm32 j as:

¼extj ¡ ¼sqj = gj(¼j ; ¼i) = gj(¼i) =

=
c2

6
¡ c

3
+
¼i
4
+
c¡ 1
2

0@s(1¡ c)2
9

+ ¼i

1A (3.7)

How much should a …rm, say …rm 1, bid to acquire the patent ? Firm’s 1 valuation
is not well-de…ned since it depends on 1’s belief about the likelihood of possible
outcomes. To see that, consider two extreme cases: 1) If …rm 1 believes that
under no circumstance will the patent be sold to …rm 2, then its valuation is
¼1 = ¼

own
1 ¡ ¼sq1 : 2) If …rm 1 believes that in case it fails to buy the patent, the

seller will surely sell to …rm 2, then its valuation is ¼1 ¡ R
g1(¼2)d¼2 > ¼1. Firm

1’s belief, on which its bidding strategy will be based, depends both on the nature
of the sale mechanism33, and on the bidding strategy of the other …rm. In an
equilibrium of a given sale procedure, bidding strategies must be optimal given
beliefs, and beliefs must be consistent with the bidding strategies.

3.2. Positive externalities: Merger of Competing Firms

Consider 3 …rms in a Cournot oligopoly. Firm i0s cost of producing quantity qi of
a homogenous product is given by cqi+C , where c < 1: Let P (Q) = 1¡Q be the
market-clearing price when the aggregate supplied quantity is Q = q1+q2+q3 · 1:
Assuming that the …xed cost C is such that operation is pro…table, the Nash-
equilibrium pro…ts are given by

¼sq1 = ¼
sq
2 = ¼

sq
3 =

(1¡ c)2
16

¡ C (3.8)

32Since @gj(¼j ;¼i)
@¼j

= 0 and @gj(¼j ;¼i)
@¼i = 1

4 +
(c¡1)
4 ¢

³
(1¡c)2
9 + ¼i

´¡ 1
2 · 1

4 ; we obtain that the

function G(¼) is strictly increasing.
33Iin particular, exclusion instruments such as reserve prices and entry fees a¤ect the proba-

bility of a sale.

10



All parameters in the status-quo are common knowledge.
Consider now the situation where …rm 3 is up for sale and where …rms 1 and

2 bid for it in a takeover battle. The winner i; i = 1; 2; can produce with …xed
cost C and with marginal cost 0 · ci · c (imagine some synergy e¤ect) The new,
reduced cost ci is private information to …rm i at the time of the contest34.
If …rm i acquires …rm 3 it will earn a pro…t

¼owni =
(1¡ 2ci + c)2

9
¡ C (3.9)

Firm j; j 6= i; that does not acquire …rm 3 will earn a pro…t

¼extj =
(1¡ 2c + ci)2

9
¡ C (3.10)

Relatively to the status-quo, we obtain the following:

1. When …rm i acquires …rm 3, its bene…t is given by

¼i = ¼
own
i ¡ ¼sqi =

(1¡ 2ci + c)2
9

¡ (1¡ c)
2

16
¸ 0 (3.11)

2. The change in pro…t for the non-acquiring …rm j is given by

¼extj ¡ ¼sqj =
(1¡ 2c+ ci)2

9
¡ (1¡ c)

2

16
(3.12)

The main thing to note is that the non-acquiring …rm obtains a positive bene…t
if the cost reduction attained by the merged …rm is relatively low35. Indeed, for
ci such that c¡ ci · 1¡c

4
, we obtain that ¼extj ¡ ¼sqj ¸ 0: Hence in such a case we

obtain a model with positive externalities36.

34As in the previous example we assume that: 1)The new cost structure is revealed after the
auction. 2) Both remaining …rms produce positive quantities after the takeover.
35In that case the loss due to being less e¢cient in the new environment is fully o¤set by the

gain of having fewer competitors.
36Another interesting illustration for the positive externalities case is o¤ered by Katz and

Shapiro (1985): Two oligopolists o¤er incompatible products, and the consumers’ utility in-
creases in the size of the group that uses the same product (there are network externalities). If
compatibility can be achieved by attaching an ”adapter” to one of the products, then one …rm
will usually bear the cost of the adapter, while the increased compatibility bene…ts both …rms.
This creates a free-rider e¤ect, and the incentives to invest in an adapter may be too low.
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By equation 3.11 we obtain

ci =
1

2

0@1 + c¡ 3
s
(1¡ c)2
16

+ ¼i

1A (3.13)

Together with equation 3.12, this allows us to express the bene…t of the non-
acquiring …rm; g(¼j ; ¼i) solely as a function37 of the pro…t of the acquirer, ¼i:

4. Auctions with a Reserve Price

We …rst analyze the case where the reserve price is not binding38. Assuming that
buyer 2 bids according to a strategy ¯(¼2) which is monotonically increasing and
di¤erentiable, buyer’s 1 maximization problem given that he has type ¼1 is:

max
b
(
Z ¯¡1(b)

¼
¡

(¼1 ¡ ¯(¼2))f (¼2) d¼2 +
Z ¹¼

¯¡1(b)
g (¼1; ¼2) f (¼2) d¼2) (4.1)

Proposition 4.1. Assume that R · G(¼): An equilibrium39 of the second-price
auction is given by

bi (¼i) = G(¼i): (4.2)

It can be shown that when R · G(¼), the equilibrium displayed in Proposition
4.1 is the unique symmetric equilibrium in pure strategies in which the reserve
price is not binding40.

37Note that Dxg = 0; and Dyg =
d(¼extj ¡¼sqj )

dci
dci
d¼i

· 0. With Katz and Shapiro’s adapter story
we can easily generate an example where Dxg 6= 0.
38 i.e., all valuations (including externality e¤ects) lie above the reserve price.
39If there are only two bidders and if the reserve price is not binding, there are only two

possible physical outcomes (the good ends up in the hands of one of the two bidders). Hence,
each bidder perceives only two payo¤ relevant alternatives and our equilibrium has the same
‡avor as the one exhibited by Milgrom and Weber in their symmetric model without allocative
externalities. Upon winning the object, the marginal type of the other bidder coincides with
the bidder’s own type.
40Standard arguments can be used to show that this is the only pure-strategy symmetric

separating equilibrium (in which the reserve price is not binding). The reason why there cannot
be pooling in a symmetric equilibrium in pure strategies (in which the reserve price is not
binding) is analogous to the argument of Lemma 8.1 below.
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We next derive equilibria for auctions with a binding reserve price. The main
di¢culty is that various types hold di¤erent beliefs about the possible …nal al-
location41. Since the impact of a loss to the other buyer is di¤erent from the
impact of the seller keeping the object42, we obtain an optimal reaction function
for each of the two possible beliefs about the …nal outcome, respectively. The two
reaction functions must be combined to form an overall optimal bidding strategy.
For the negative externality case, the two intervals of types (each holding another
belief) are separate, and we always …nd an equilibrium in pure strategies. For the
positive externality case it is usually impossible to have separate intervals, and an
equilibrium in pure strategies (if it exists!) must display a region of pooling.

4.1. Negative externalities

Assume that G(¼) · R · G(¼);and consider the type G¡1(R) which is given by
the unique solution to the equation

G(¼) = R (4.3)

Note that G¡1(R) = R + g(G¡1(R); G¡1(R)) · R for g · 0: The interesting
part in the determination of equilibrium is the prescription for buyers with val-
uations in the interval [G¡1(R); R). Given a reserve price R , these types are
interested in the good purely for preemptive reasons and they are, in principle,
willing to pay more than R for preemption. But, given the equilibrium actions of
the other bidder, a buyer with valuation in the interval [G¡1(R); R) has a chance
to get the good only when the other bidder bids less than R. In this case the
good will not be sold to the competitor, and preemption is therefore not neces-
sary. Hence, bidding zero is ultimately optimal. The lowest relevant bid is G(R)
which is strictly above R if g(R;R) < 043.

Proposition 4.2. Assume that externalities are negative. An equilibrium of the
second-price auction with reserve price R; G(¼) · R · G(¼) is given by

bi(¼i) =

(
G(¼i) for ¼i ¸ R
0 for ¼i < R

)
(4.4)

41A bidder with a relatively high valuation expects the good to be sold for sure, and the
e¤ective competition is provided by the other bidder, while for bidders with relatively low
valuations the e¤ective competition is provided by the seller’s reserve price.
42This is normalized here to be zero.
43Caillaud and Jehiel (1998) discuss this point for the case of constant negative externalities.
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Except for the indeterminacy of bids for types below R, the above displayed
strategies constitute the unique pure strategy symmetric equilibrium44.
We now turn to the seller’s optimal reserve price policy. The seller’s expected

revenue is given by:

US(R) = (F (R))2¼S + 2F (R)(1¡ F (R))R+

2
Z ¡
¼

R
(¼ ¡ g(¼; ¼))(1¡ F (¼))f(¼)d¼ (4.5)

Di¤erentiating this expression with respect to R we obtain:

@US
@R

= 2F (R)f(R)

"
¼S ¡R+ 1¡ F (R)

f(R)
+ g(R;R)

1¡ F (R)
F (R)

#
(4.6)

The thing to note is the extra term involving g(R;R)45: Assuming an interior
maximum, the equation that determines the optimal reserve price is Ropt de…ned
by:

Ropt ¡ 1¡ F (Ropt)
f(Ropt)

¡ g(Ropt; Ropt) ¢
1¡ F (Ropt)
F (Ropt)

= ¼S:

Since g(Ropt; Ropt) · 0; it may happen that the seller optimally announces a
reserve price which is strictly lower than her own valuation. The intuition is as
follows: when the seller sells more often, the buyers are more afraid that the good
will fall in the hands of the competitor, and they bid more aggressively. If the
seller’s valuation is relatively low, the gain of having higher bids fully o¤sets the
loss su¤ered in cases where the good is sold at a price below valuation.
It is instructive to relate the revenue maximizing and the welfare maximizing

levels of R46. In the negative externality case, we have seen that Ropt < ¼S is
possible. It is readily veri…ed that the welfare maximizing reserve price Rw must
satisfy Rw ¸ ¼S. The expected social welfare as a function of R is given by:

W (R) = F (R)2¼S + 2
Z ¼

R

Z ¼1

¼
[¼1 + g(¼2; ¼1)]dF (¼2)dF (¼1) (4.7)

44If G(¼) > R > ¼, there are two symmetric equilibria in pure strategies: one in which the
reserve price is binding and one in which it is not. This is related to the multiplicity of consistent
equilibrium beliefs (leading to multiple equilibria) displayed in Jehiel and Moldovanu (1996).
45Observe that without externalities the optimal reserve price, Ropt; satis…es the equation

Ropt¡ 1¡F (Ropt)
f(Ropt)

= ¼S; and hence Ropt ¸ ¼S: This con…rms the usual economic intuition about
the monopolist that restricts supply.
46Recall that, without externalities, the monopolist seller sells ”too seldom” from an e¢ciency

viewpoint.
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We obtain that

W 0(R) = 2F (R)f(R)(¼S ¡R)¡ 2
Z ¼

R
g(¼2; R)f(R)dF (¼2): (4.8)

Since g is non-positive, Rw must lie above ¼S (and hence possibly above Ropt).

Example 4.3. Let n = 2. Each buyer’s valuation ¼i is drawn from the interval
[0; 1] with density f(¼i) = 1: Let the externality be de…ned by g(¼; ¼0) ´ ¡1

2
.

We obtain that:
@US
@R

= (2R)(¼S ¡ 2R+ 1¡ 1¡R
2R

) (4.9)

The optimal reserve price Ropt, as a function of the seller’s valuation ¼S; is as
follows:

Ropt(¼S) =

8>><>>:
0; if ¼S · 0:8094
1
4
¼S +

3
8
+ 1

4

q
¼2S + 3¼S ¡ 7

4
; if 0:8094 < ¼S · 1

1; if ¼S > 1

9>>=>>; (4.10)

Note that a seller with a low positive valuation prefers to set a reservation price
equal to zero. At the cuto¤-value ¼S = 0:8094 the loss of selling below valuation
becomes too high, and the optimal reserve price displays a discrete jump (the pro…t
function is continuous though). If , for example, ¼S = 1

4
we obtain Ropt = 0;while

the welfare-maximizing reserve price is Rw = 0:78: Hence, a revenue-maximizing
seller sells ”too often”.

4.2. Positive Externalities

In this section we study equilibria for the case where the seller imposes a binding
reserve price and there are positive externalities.
Assume that G(¼) ¸ R ¸ ¼ ¸ 0 and let again G¡1(R) denote the unique

solution to the equationG(¼) = R. Note thatG¡1(R) = R+g(G¡1(R); G¡1(R)) ¸
R ¸ ¼:
We …rst observe that a pure strategy symmetric separating equilibrium does

not exist. To see this, note that in a symmetric equilibrium, buyer i with type
¼i must bid G(¼i) if he bids above R47. Thus, the only candidates for symmetric
separating equilibria are such that buyer i with type ¼i bids G(¼i) for all ¼i ¸
¼¤ and bids zero for ¼i < ¼¤; where ¼¤ ¸ G¡1(R): But, such a strategy pro…le

47Marginally, it is the competition with the other buyer that drives the bidding strategy.
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cannot constitute an equilibrium: If bidder 2 bids G(¼2) for ¼2 ¸ ¼¤ ¸ G¡1(R);
and zero otherwise, then bidder 1 with a type ¼1 slightly below G¡1(R) strictly
prefers to bid R instead of zero, since this allows her to win the good (thus making
an additional strictly positive pro…t) whenever ¼2 < ¼¤:
Hence, in a symmetric equilibrium there must be some pooling. The intuition

is as follows. Bidders with low pure valuation must compete against the seller’s
reserve price, and they must take into account that no sale is a possible outcome.
As a result, such bidders may bid more aggressively than buyers with higher
valuations who are sure that a sale will occur48. On the other hand, by incentive
compatibility arguments, buyers with lower types cannot get the good more often
than buyers with higher types. These con‡icting forces result in pooling at the
bid where the belief about potential outcomes switches, i.e., exactly at the reserve
price R. If Dyg · 049; an equilibrium can be obtained by a careful construction
of the interval of types that pool at R :

1. There is a type ~¼; R · e¼ · G¡1(R);which is indi¤erent between a bid of
zero and a bid equal to R; and there is a type ee¼; G¡1(R) · ee¼ · ¹¼; which is
indi¤erent between any two bids in the interval [R;G(ee¼)]:

2. All types in the interval [~¼; ee¼) make the same bid50, equal to R (and this
bid is strictly preferred to any other bid).

3. All types below e¼ bid zero, and, …nally, all types ¼ ¸ ee¼ bid G(¼):
The next Lemma characterizes the extremities of the pooling interval [~¼; ee¼) :

Lemma 4.4. Assume that Dyg · 0; and that for all ¼ ¸ R; ¹¼ ¡ g(¹¼; ¼) ¸ R:
The system of equations:

(u¡R) (F (u) + F (z))¡
Z z

u
g(u; ¼)f(¼)d¼ = 0

(z ¡R)(F (z)¡ F (u))¡
Z z

u
g(z; ¼)f(¼)d¼ = 0 (4.11)

48Note that, with positive externalities, a buyer believing that the good will not be sold (if
he himself does not acquire it) is prepared to pay more than than a buyer with the same pure
valuation believing that the good will be sold for sure.
49Observe that this assumption …ts with the positive externality example provided in Section

3.
50Haile (1999) illustrates this construction in an auction model with resale opportunities.

Since a loser at the auction has a chance to buy the good in the resale market, his model
displays positive externalities.
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has a solution (u; z) = (e¼; ee¼) such that R · e¼ · G¡1(R) and G¡1(R) · ee¼ · ¹¼:
Proposition 4.5. Assume thatDyg · 0 and that, for all ¼ ¸ R; ¹¼¡g(¹¼; ¼) ¸ R:
Let (e¼; ee¼) be a solution of the system 4.11 that satis…es R · e¼ · G¡1(R) and
G¡1(R) · ee¼ · ¹¼: The strategy pro…le

bi(¼i) =

8>><>>:
G(¼i) for ¼i 2 [ee¼; ¹¼]
R for ¼i 2 [~¼; ee¼)
0 for ¼i 2 [¼¡; ~¼)

9>>=>>; (4.12)

constitutes a Nash equilibrium51.

An implication of pooling is that even when the good is sold, it is not neces-
sarily sold to the e¢cient buyer.
Our next result looks at the case where the externality function does not

depend at all on the type of the acquirer. In this case the determination of the
pooling interval is somewhat simpler, as the upper end of the pooling interval is
exactly G¡1(R):
If Dyg(¼; ¼0) = 0 for all ¼; ¼0 2 [¼; ¹¼] we de…ne h(¼) ´ g(¼; ¼0): Let H(u) =

(u¡R) (F (u)+F (G¡1(R)))¡ (F (G¡1(R))¡F (u))h(u) and let ~¼ be de…ned52 by
H(~¼) = 0:

Corollary 4.6. Assume thatDyg(¼; ¼0) ´ 0 and that ¹¼¡h(¹¼) ¸ R: The strategy
pro…le

bi(¼i) =

8>><>>:
G(¼i) for ¼i 2 [G¡1(R); ¹¼]
R for ¼i 2 [~¼;G¡1(R))
0 for ¼i 2 [¼¡; ~¼)

9>>=>>; (4.13)

51Assume that for all ¼ ¸ R; and for all ¼0 such that R · ¼0 · ¼; g(¼; ¼0) > ¼ ¡ R (this
means, roughly, that the externality in all relevant cases is higher than the gain of acquiring
the object). In this case, no matter what u ¸ R is, there is no z ¸ u such that the second
equation in the system 4.11 holds. This implies that the system of equations does not have a
solution such that ee¼ 2 [G¡1(R); ¹¼]: The equilibrium of the auction is then given by bi(¼i) = R
for ¼i 2 [~¼; ¹¼) and bi(¼i) = 0 for ¼i 2 [¼¡; ~¼): Type ~¼ is de…ned by the …rst equation in the
system 4.11 at z = ¹¼: This equation (in the variable u) has always a solution ~¼ on the interval
[R; ¹¼]:
52This is the type that will be indi¤erent between a bid of R and a bid of zero.
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constitutes a Nash equilibrium.
We …nally show by way of example that equilibria in pure strategies may fail

to exist when the condition Dyg · 0 is not satis…ed53.

Proposition 4.7. Assume that each buyer’s valuation ¼i is drawn from the in-
terval [0; 1] with density f(¼i) = 1: Let the externality function be given by
g(¼; ¼0) = k¼0 where 0 < k < 1; and let the reserve price R be such that
0 < R < 1¡ k54: Then there are no equilibria in pure strategies.

5. Second-Price Auctions with an Entry Fee

Assume now that the seller sells through a second-price auction with an entry
fee E; 0 < E · ¼ (see description in Section 2). Whenever a bidder decides to
participate, it is clear that competition is against the other bidder (if any) and
not against the seller, who has committed to sell the object. This is the main
di¤erence between positive entry fees and positive reserve prices.
The following Proposition characterizes equilibrium behavior in auctions with

entry fees (irrespective of the sign of the externalities).

Proposition 5.1. Assume that G(¼¡) ¸ 0; and let ¼
E be the unique solution to

the equation E = u ¢ F (u): The strategy pro…le de…ned by

si(¼i) =

(
stay out for ¼i 2 [¼¡; ¼

E)

enter, and bid G(¼i) for ¼i 2 [¼E; ¹¼]

)
(5.1)

constitutes a Nash equilibrium55.

We now compute the seller’s revenue in an auction with an entry fee E . Since
there is a one-to-one correspondence between E and ¼E; we can write the seller’s
revenue as a function of ¼E: The revenue is :
53If Dyg > 0; we obtain ee¼ < G¡1(R): This means that a type slightly above ee¼ prefers to bid

above R; but type G¡1(R) never bids above R: Hence the single crossing of incremental returns,
which is a su¢cient condition for the existence of pure strategy equilibria, is not satis…ed (see
Athey, 1999).
54The condition R < 1 ¡ k ensures that G¡1(R) = R

1¡k < 1 = ¼: If G
¡1(R) ¸ 1; then there

is an equilibrium of the form bi(¼i) =

(
R for ¼i 2 [~¼; ¹¼)
0 for ¼i 2 [¼¡; ~¼)

)
55This is the unique pure strategy symmetric equilibrium.
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US(¼
E) = (F (¼E))2¼S + 2F (¼

E)(1¡ F (¼E)E + 2(1¡ F (¼E)2E +

2
Z ¡
¼

¼E
(¼ ¡ g(¼; ¼))(1¡ F (¼))f(¼)d¼

= (F (¼E))2¼S + 2F (¼
E)(1¡ F (¼E))¼E +

2
Z ¡
¼

¼E
(¼ ¡ g(¼; ¼))(1¡ F (¼)f(¼)d¼ (5.2)

Di¤erentiating the above expression with respect to ¼E; we obtain:

@US
@¼E

= 2F (¼E)f(¼E)

"
¼S ¡ ¼E + 1¡ F (¼

E)

f(¼E)
+ g(¼E; ¼E)

1¡ F (¼E)
F (¼E)

#
(5.3)

For the case of non-positive externalities we obtain that any entry fee policy
is revenue equivalent to an appropriately constructed reserve price policy, and
vice-versa. Indeed, observe the analogy between the expression above and the
respective expression in the reserve price policy (Equation 4.6). In particular, the
optimal entry fee is given by Eopt = Ropt ¢ F (Ropt):
We now turn to the case of positive externalities, and we …rst illustrate a rather

surprising phenomenon arising in this case.

Proposition 5.2. Assume that g(¼; ¼) > 0. Then, no matter what the seller’s
valuation is, a positive measure of buyers’ types is excluded from participation in
the auction with the optimal entry fee.

The standard economic intuition for the case without externalities is as follows:
When the demand parameters (here buyers’ valuations) are much larger than the
supply parameters (here the seller’s valuation), supply restriction (here exclusion)
does not make sense since lost sale opportunities cannot be compensated by the
higher payments. With positive externalities, exclusion has an additional e¤ect:
by selling less often the seller mitigates the free-rider e¤ect among buyers. It
is interesting that the free-riding mitigation e¤ect is always stronger than the
lost-opportunities e¤ect.

Example 5.3. Each buyer’s valuation ¼i is drawn from the interval [0; 1] with
density f(¼i) = 1: Let the externality be g(¼1; ¼2) ´ 1

2
. We obtain that:

@US
@¼E

= (2¼E)(¼S ¡ 2¼E + 1 + 1¡ ¼
E

2¼E
) (5.4)
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The optimal cut-o¤ type ¼opt(¼S) is given by :

¼opt(¼S) =

(
1
8
+ 1

4
¼S +

1
8

q
(17 + 4¼S + 4(¼S)2 ); if ¼S < 1

1; if ¼S ¸ 1

)

Note that ¼opt(¼S) > 0 for all ¼S: The optimal entry fee isEopt(¼S) = (¼opt(¼S))
2:

It is also worth noting that, with positive externalities, the welfare maximizing
entry fee is always smaller than the revenue maximizing entry fee. Denoting by
W (¼E) the expected welfare associated with entry fee E, we obtain :

W (¼E) = F (¼E)
2¼S + 2

Z ¼

¼E

Z ¼1

¼
[¼1 + g(¼2; ¼1)]dF (¼2)dF (¼1) (5.5)

W 0(¼E) = 2F (¼E)f(¼E)(¼S ¡ ¼E)¡ 2
Z ¼

¼E
g(¼2; ¼E)f(¼E)dF (¼2): (5.6)

Since g is non-negative, we obtainW 0(¼E) < 0 for ¼E > ¼S thus showing that cut-
o¤ type ¼w corresponding to the welfare maximizing entry fee Ew satis…es ¼w <
¼S. In contrast, expression 5.3 shows that the cut-o¤ type ¼opt corresponding to
the revenue maximizing entry fee Eopt must satisfy ¼opt > ¼S.
Propositions 5.1 and 4.5 reveal that entry fees and reserve prices are not equiv-

alent in the positive externality case56. We prove below that the seller is better-o¤
using a reserve price if the externality term does not depend on the competitor’s
valuation.

Proposition 5.4. Assume that 8¼; ¼0 , g(¼; ¼0) > 0, and that G(¼) ¸ 0: More-
over, assume that for all ¼; ¼0 2 [¼¡; ¹¼]; Dyg(¼; ¼

0) = 0: For each auction with an

entry fee there is an auction with reserve price that yields a strictly higher revenue
for the seller.

6. Extension to n > 2 Buyers

We now comment on the extension of our symmetric model to more than two
bidders.
56The general comparison of the seller’s revenue when using an entry fee or a reserve price

is quite di¢cult. It depends on the size of the pooling interval in the auction with a binding
reserve price, and in some cases we do not even know whether an equilibrium of the second price
auction with reserve price exists - see Proposition 4.7.
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Buyers’ pure valuations are private information, and they are all independently
drawn from the interval [¼; ¹¼] according with the density f . We denote by F the
distribution of f:
Let ¼ = (¼1; ¼2; :::; ¼n) . We denote by ¼¡ij the vector obtained from ¼ by

deleting the coordinates i; j; i 6= j; and by ¼max¡ij the largest coordinate of ¼¡ij:.
Let ¼ be the vector of pure valuations. If the good is sold to buyer i for a

price p , the utilities of the agents are as follows: p for the seller; ¼i ¡ p for buyer
i; gij(¼j; ¼i;¼¡ji) for buyer j; j 6= i. The functions gij are common knowledge.
A symmetric setting is characterized by the existence of a function g : <N ! R;
symmetric in its last n ¡ 2 coordinates, such that if any buyer i with type ¼i
obtains the object, the externality on any buyer j; j 6= i; with type ¼j is given by
g(¼j ; ¼i;¼¡ji):
With suitable assumptions that ensure monotonicity57, an equilibrium in a

pure second-price auction is given by:

bi(¼i) = ¼i ¡
Z
f¼¡ij=¼max¡ij ·¼igg(¼i; ¼i;¼¡ij)d¼¡ij (6.1)

where ¼max¡ij denoted the maximum of buyers k, k 6= i; j, types.
The symmetry assumption ensures that the above expression does not depend

on the choice of j; j 6= i; and that all buyers with the same type make the same
bid58 (i.e., the equilibrium is symmetric).
The equilibrium for the negative externality case with a binding reserve price

is similar to the one derived for the setting with only two buyers: All types below
R bid zero, and types above R bid according to expression 6.1.
A phenomenon which is not apparent for n = 2 is the fact that the optimal

reserve price does, in general, depend on the number of buyers n59: For a simple
illustration of this dependence, consider the case where for any number n ¸
2 of potential buyers, the externality if the good falls in the hands of another is
constant, and equal to ® · 0: Then, for each buyer i , the equilibrium bidding

57Denote by Dxg the derivative of the externality function with respect to own type, by
Dyg the derivative with respect to the type of the winner (when di¤erent from oneself) and by
Dzg the derivative with respect to the type of another non-acquiring buyer (by symmetry, Dyg
and Dzg do not depend on identities). By analogy to Milgrom and Weber’s model, su¢cient
conditions for monotonicity are given by: 1¡Dxg > 0 ; ¡Dyg ¸ 0 ;¡Dzg ¸ 0:
58The event that determines the bid is that where one of the other bidders has the same

valuation, and all other bidders have a lower valuation.
59The optimal reserve price in the symmetric independent private values case without exter-

nalities case does not depend on n. This is a somewhat surprising, but well known result (see,
for example, Myerson (1981)).
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strategy is given by b(¼) = 0; for ¼ 2 [¼;R) and b(¼) = ¼¡®; for ¼ 2 [R; ¹¼]: The
seller’s revenue is given by

US(R) = F n(R)¼S + nF
n¡1(R)(1¡ F (R))R+

n(n¡ 1)
Z ¡
¼

R
(¼ ¡ ®)F n¡2(¼)(1¡ F (¼))f(¼)d¼ (6.2)

Di¤erentiating this expression with respect to R we obtain:

@US
@R

= nF n¡1(R)f(R)

"
¼S ¡R+ 1¡ F (R)

f(R)
¡ (n¡ 1)®1¡ F (R)

F (R)

#
(6.3)

The optimal reserve price will depend on n unless the total externality imposed
by any buyer, (n¡ 1)®; is kept constant as n varies60.
An equilibrium for the n-buyer case with positive externalities (whenever it

exists and it is not trivial) displays a region of pooling, as before. The only
signi…cant change is the derivation61 of the critical types ~¼(n); ee¼(n) . For a
simple, example, assume that for any number n ¸ 2 of potential buyers, the
externality is constant, and equal to ® ¸ 0. Assume also that ¼¡® ¸ 0: We are
then in a similar case to the one covered by Corollary 4.6, and ee¼(n) ´ R + ®:
By keeping R constant, and by maintaining the symmetric tie-breaking rule, one
obtains that limn!1 ~¼(n) = G¡1(R) = R+ ®62:
Finally, the equilibrium for the auction with an entry fee is analogous to the

2¡ buyer case. The critical type ¼E is given by the unique solution to the equation
E = u ¢ (F (u))n¡1 : All types below ¼E do not enter the auction, and all types
above bid according to expression 6.1.

60Situations where the su¤ering decreases if it is shared among many is captured by the old
saying: ”Misery loves company”.
61It should be clear from the argument for n = 2 that this derivation depends on the number

of bidders, not the least through the speci…cation of the tie-breaking rule.
62The intuition is as follows: as n!1, the probability that the good is eventually sold (even

if there is a positive reserve price) goes to 1. Hence, as n!1 , a bid of zero becomes attractive
for higher valuation types since, in the limit, a payo¤ of ® is assured with probability one. On
the other hand, the probability of winning the good with the minimal bid R goes to zero, and
this bid is optimal for fewer and fewer types.
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7. Concluding Remarks

This paper has explored bidding behavior in contexts where there are externalities
between bidders, and where these externalities depend on characteristics that
may not be observable at the time of the auction. The main driving force is
the fact that a buyer’s willingness to pay (which determines the bid) depends
on several potential scenarios about the …nal allocation of the good (which is,
in turn, determined by the bids at the auction). While studying the e¤ects of
standard tools such as reserve prices and entry fees, we have illustrated several
important qualitative di¤erences between the cases where externalities are positive
or negative.
It is still an open question whether mixed-strategy Nash equilibria exist in

auctions with a reserve price when the positive externality increases in the com-
petitor’s valuation63.
Throughout the paper we have abstracted from the possibility that the bids

at the auction may serve as signals that in‡uence beliefs in the future interaction.
Another relevant extension is obtained by endowing the seller with several objects
(licenses, say). But the analysis of bidding behavior in standard multi-object auc-
tions with informational and allocative externalities is likely to be very complex64.
These subjects will be treated in future work.

8. Appendix

8.1. Proof of Proposition 4.1

We …rst assume that buyer 2 bids according to the strategy ¯(¼2) which is mono-
tonically increasing and di¤erentiable, and we derive the necessary FOC for buyer
1. Buyer’s 1 expected utility given that he has type ¼1, and given that he makes
a bid b is :

U(¼1; b) =
Z ¯¡1(b)

¼
¡

(¼1 ¡ ¯(¼2))f (¼2) d¼2 +
Z ¹¼

¯¡1(b)
g (¼1; ¼2) f (¼2) d¼2 (8.1)

63Note that auctions with positive externalities and binding reserve prices do not necessarily
satisfy Reny’s (1999) ”better reply security” su¢cient condition. We conjecture that equilibria
in mixed strategies do not exist.
64See Jehiel and Moldovanu (1999) for a study of di¢culties arising in direct, e¢cient mech-

anisms.
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Di¤erentiating the above expression with respect to b we obtain:

@U(¼1; b)

@b
=
d¯¡1(b)
db

f
³
¯¡1 (b)

´ h
¼1 ¡ ¯(¯¡1(b))¡ g

³
¼1; ¯

¡1(b)
´i

(8.2)

By symmetry we must have in equilibrium that ¯¡1(b) = ¼1: Hence, we obtain:

@U(¼1; b)

@b
= 0() b = G(¼1) (8.3)

We now prove that the strategy b(¼1) = G(¼1) is optimal for buyer 1 , given
that buyer 2 plays the strategy b(¼2) = G(¼2): Assume that buyer 2 has type
¼2 . When buyer 1 bids above G(¼2), he gets the good and his payo¤ is ¼1 ¡
G(¼2): When he bids below G(¼2); buyer 2 gets the good, and buyer 1’s payo¤
is g(¼1; ¼2): By the Mean Value Theorem we have that ¼1 ¡G(¼2)¡ g(¼1; ¼2) =
(¼1 ¡ ¼2) (1¡Dxg(¿ ; ¼2)) , where ¿ is between ¼1 and ¼2: By assumption, 1 ¡
Dxg(¿ ; ¼2) ¸ 0: Hence, bidding above G(¼2) is optimal if ¼1 ¸ ¼2 , and bidding
below G(¼2) is optimal if ¼1 · ¼2: By the monotonicity of the function G(¼) ,
the bidding function b(¼1) = G(¼1) satis…es all these optimality requirements for
all ¼1:

8.2. Proof of Proposition 4.2

Assume that buyer 2 bids according to the strategy in the statement of the Propo-
sition. Consider now buyer 1, and assume that ¼1 2 [¼;R): For such a type,
bidding zero (or any other bid below R) yields

U1(¼1; 0) =
Z ¹¼

R
g(¼1; ¼2)f(¼2)d¼2 (8.4)

Bidding R · b · G(R) yields

U1(¼1; b) =
Z R

¼
(¼1 ¡R)f(¼2)d¼2 +

Z ¹¼

R
g(¼1; ¼2)f(¼2)d¼2 (8.5)

Since ¼1 · R; the …rst integral is negative, and bidding zero is preferred to bidding
b; R · b · G(R): Finally, bidding b ¸ G(R), yields

U1(¼1; b) =
Z R

¼
(¼1 ¡R)f(¼2)d¼2 +

Z ¹¼

G¡1(b)
g(¼1; ¼2)f(¼2)d¼2

+
Z G¡1(b)

R
(¼1 ¡ ¼2 + g(¼2; ¼2))f(¼2)d¼2 (8.6)
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Note that

U1(¼1; G(R))¡ U1(¼1; b)
=

Z G¡1(b)

R
(¼2 ¡ ¼1 + g(¼1; ¼2)¡ g(¼2; ¼2))f(¼2)d¼2

=
Z G¡1(b)

R
(¼2 ¡ ¼1)(1¡Dx(µ; ¼2))f(¼2)d¼2 < 0 (8.7)

(The last equality holds for a certain µ 2 [¼1; ¼2] and follows by the Mean Value
Theorem). Hence bidding G(R) is preferred to any other bid b ¸ G(R): Since we
showed above that all bids below R (which are equivalent) are preferred to a bid
of G(R); we obtain that a bid of zero is optimal for all ¼1 · R:
The proof that bidding G(¼1) is optimal for types ¼1 2 [R; ¹¼] is analogous to

the one of Proposition 4.1 and is omitted here.

8.3. Proof of Lemma 4.4

Fix u such that R · u · G¡1(R); and consider the equation

(z ¡R)(F (z)¡ F (u))¡
Z z

u
g(z; ¼)f(¼)d¼ = 0 (8.8)

De…ning P (z) =
R z
u z¡R¡g(z; ¼)f(¼)d¼; the previous equation becomes P (z) = 0:

For z > G¡1(R) we obtain that

P 0(z) =
Z z

u
(1¡Dx(z; ¼)f(¼)d¼ + f(z) ¢ (G(z)¡R) > 0 (8.9)

By the de…nition of G¡1(R); and by Dyg · 0; we obtain that P (G¡1(R)) · 0: By
the Mean Value Theorem, we obtain that

P (¹¼) = (1¡ F (u))(¹¼ ¡ g(¹¼; µ)¡R) (8.10)

where u · µ · ¹¼: By the assumption that 8¼ ¸ R; ¹¼ ¡ g(¹¼; ¼) ¸ R; we obtain
that P (¹¼) ¸ 0: Since the function P (z) is strictly monotonically increasing on
the interval [G¡1(R); ¹¼] , there exists a unique z; G¡1(R) · z · ¹¼; such that
P (z) = 0:
Hence, for each u;R · u · G¡1(R); we have found a unique z = z(u) ¸

G¡1(R) such that

(z(u)¡R)(F (z(u))¡ F (u))¡
Z z(u)

u
g(z(u); ¼)f(¼)d¼ = 0 (8.11)
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By the implicit function theorem, the function z(u) is continuous.
Consider now the continuous function

H(u) = (u¡R) (F (u) + F (z(u)))¡
Z z(u)

u
g(u; ¼)f(¼)d¼: (8.12)

Note that

H(u) = (u¡R) (F (u) + F (z(u)))¡
Z z(u)

u
g(u; ¼)f(¼)d¼

+(u¡R)(F (u)¡ F (z(u)))¡ (u¡R)(F (u)¡ F (z(u)))
= 2F (z(u))(u¡R) +

Z z(u)

u
(u¡R¡ g(u; ¼))f(¼)d¼ (8.13)

We have H(R) · 0: By the Mean Value Theorem we obtain also that

H(G¡1(R)) = 2F (z(G¡1(R))(G¡1(R)¡R)
+(F (z(G¡1(R)))¡ F (G¡1(R)))(G¡1(R)¡ g(G¡1(R); ³)¡R)

where G¡1(R) · ³ · z(G¡1(R)): By the de…nition of G¡1(R) , and by Dyg · 0;
we obtain that H(G¡1(R)) ¸ 0: Hence the equation H(u) = 0 has a solution e¼
on the interval [R;G¡1(R)] :65:
The pair (e¼; ee¼) where ee¼ = z(e¼) is a solution of the system, as required.

8.4. Proof of Proposition 4.5

Assume that buyer 2 uses the above strategy, and consider a type ¼1 2 [¼;G¡1(R)]
of buyer 1. Bidding zero (or any other bid strictly below R) yields:

U1(¼1; 0) =
Z ¹¼

e¼ g(¼1; ¼2)f(¼2)d¼2 (8.14)

Bidding R yields:

U1(¼1; R) =
Z e¼
¼
(¼1 ¡R)f(¼2)d¼2 +

1

2

Z ee¼
e¼ (¼1 ¡R+ g(¼1; ¼2))f(¼2)d¼2 +

65The solution need not be unique. It is unique, if, for example, Dxg · 0: A more general suf-
…cient condition for uniqueness is given by :8z; the function log[g(v; z) ¢ (1¡ F (v))] is increasing
in v:
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Z ¹¼ee¼ g(¼1; ¼2)f(¼2)d¼2
=

1

2
(¼1 ¡R) ¢ (F (e¼) + F (ee¼)) +
1

2

Z ee¼
e¼ g(¼1; ¼2)f(¼2)d¼2 +

Z ¹¼ee¼ g(¼1; ¼2)f(¼2)d¼2 (8.15)

Type e¼ is indi¤erent between bidding zero and bidding R66, and:
U1(e¼;R)¡ U1(e¼; 0) = 0 (8.16)

Further, we have:

U1(¼1; R)¡ U1(¼1; 0) = 1

2

24(¼1 ¡R)(F (e¼) + F (ee¼))¡ Z ee¼
e¼ g(¼1; ¼2)f(¼2)d¼2

35
(8.17)

Note that

@ (U1(¼1; R)¡ U1(¼1; 0))
@¼1

= F (e¼) + 1
2

Z ee¼
e¼ (1¡Dxg(¼1; ¼2)) f(¼2)d¼2 (8.18)

Since 1¡Dxg(¼1; ¼2) ¸ 0, the function U1(¼1; R)¡ U1(¼1; 0) is increasing in ¼1 .
Hence U1(¼1; R)¡ U1(¼1; 0) ¸ 0 for all types ¼1 2 [e¼; ee¼], and bidding R is better
than bidding zero for these types. Similarly, bidding zero is better than bidding
R for types ¼1 2 [¼; e¼]: In fact, it easily follows that a bid of zero is optimal for
types ¼1 2 [¼; e¼]: Note also that ~¼ ¸ R (since the …rst equation in system 4.11
does not admit solutions with u < R .)
We now show that a bid of R is optimal for all types ¼1 2 [e¼; ee¼]:We still need

to consider alternative bids b > R: There are two cases: Assume …rst that G¡1(b)
· ee¼: Then bidding b > R yields :

U1(¼1; b) =
Z ee¼
¼
(¼1 ¡R)f(¼2)d¼2 +

Z ¹¼ee¼ g(¼1; ¼2)f(¼2)d¼2
Assume next that G¡1(b) > ee¼: Then bidding b > R yields :

66This is exactly how this type was constructed.
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U1(¼1; b) =
Z ee¼
¼
(¼1 ¡R)f(¼2)d¼2 +

Z G¡1(b)ee¼ (¼1 ¡G(¼2)) f(¼2)d¼2

+
Z ¹¼

G¡1(b)
g(¼1; ¼2)f(¼2)d¼2 (8.19)

If G¡1(b) · ee¼ we have then that67:
U1(¼1; R)¡ U1(¼1; b) = 1

2

Z ee¼
e¼ (R¡ (¼1 ¡ g(¼1; ¼2))) f(¼2)d¼2 (8.20)

If G¡1(b) > ee¼ we have then that:
U1(¼1; R)¡ U1(¼1; b) =

1

2

Z ee¼
e¼ (R ¡ (¼1 ¡ g(¼1; ¼2))) f(¼2)d¼2 +Z G¡1(b)ee¼ (G(¼2)¡ (¼1 ¡ g(¼1; ¼2))) f(¼2)d¼2(8.21)

We need to show that U1(¼1; R) ¡ U1(¼1; b) ¸ 0 for ¼1 2 [e¼; ee¼]: Consider …rst
the second integral in equation 8.21. For each ¼2 2 [ee¼;G¡1(b)] we obtain by the
Mean Value Theorem that G(¼2)¡ (¼1 ¡ g(¼1; ¼2)) = (¼2¡¼1) ¢ (1¡Dxg(¿ ; ¼2));
for a certain ¿ 2 [¼1; ¼2]: Since Dxg(¿ ; ¼2) · 1; each term in the summation is
non-negative, and therefore the integral is non-negative.
Consider now the …rst integral in equation 8.21 (which is also the only expres-

sion appearing in equation 8.20), and letK(¼1) =
R ee¼e¼ (R¡ (¼1 ¡ g(¼1; ¼2))) f(¼2)d¼2:

Observe that K(ee¼) = 0 68. This shows, in particular, that the type ee¼ is
indi¤erent between bidding R; and bidding any bid b 2 (R;G(ee¼)]: Note also that
K 0(¼1) =

R ee¼e¼ (¡1 +Dxg(¼1; ¼2)) f(¼2)d¼2 · 0; and hence that K(¼1) ¸ 0 for
¼1 2 [e¼; ee¼]: This completes the proof that a bid of R is optimal for all types in
the interval [e¼; ee¼]:
The proof that bidding G(¼1) is optimal for types ¼1 2 [ee¼; ¹¼] is analogous to

the one in Proposition 4.1, and is omitted here.

67Note that we have used the assumption that ee¼ ¸ G¡1(R) to derive the two expressions
above.
68This is how ee¼ was constructed .
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8.5. Proof of Corollary 4.6

Let h(¼) ´ g(¼; ¼0): The function

H(u) = (u¡R) (F (u) + F (G¡1(R)))¡ (F (G¡1(R))¡ F (u))h(u) (8.22)

is continuous. Since G¡1(R) ¸ R and h(u) ¸ 0; it holds that:

H(R) = ¡(F (G¡1(R))¡ F (R))h(R) · 0; (8.23)

H(G¡1(R)) = 2
³
G¡1(R)¡R

´
F (G¡1(R)) ¸ 0: (8.24)

Hence there exists e¼ 2 [R;G¡1(R)] such that H( e¼) = 0: The system of equations
4.11 becomes now

(u¡R) (F (u) + F (z))¡ (F (z)¡ F (u))h(u) = 0

(z ¡R)(F (z)¡ F (u)¡ (F (z)¡ F (u))h(z) = 0 (8.25)

We now show that the pair (u; z) = (e¼;G¡1(R)) satis…es this system of equa-
tions. The …rst equality in the system holds for this pair by the de…nition ofe¼: The second equality holds since G¡1(R) ¡ R ¡ h(G¡1(R)) = G¡1(R) ¡ R ¡
g(G¡1(R); G¡1(R)) = 0: The claim follows then by the proof of Proposition 4.5.

8.6. Proof of Proposition 4.7

Standard incentive-compatibility arguments imply that the equilibrium probabil-
ity of winning must be weakly increasing in type. It is then enough to show that
there is no pure strategy equilibrium in which the bidding strategies are weakly
increasing in type69.

69The weak monotonicity argument yields the following: Assume that there is an equilibrium
in which bidder i’s strategy displays a region [¼0; ¼00] where bids are strictly decreasing, and
let [b00; b0] be the corresponding bid range. Then there cannot be equilibrium bids of bidder j
that lie in [b00; b0]: Replacing the decreasing part of i0s strategy by a constant bid (in the range
[b00; b0]) yields another equilibrium without the decreasing region. For non-existence of a pure
strategy equilibrium it is hence enough to show non-existence of a pure strategy equilibrium
where strategies are weakly increasing.
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Lemma 8.1. Let bi(¼i) be such that bi(¼i) = b¤ > R for all ¼i in an interval
[¼a; ¼b]: Assume that 8" > 0, 9± > 0, such that for j 6= i,

Pr(bj(¼j) 2 (b¤ ¡ "; b¤]) > ± (8.26)

Then bi(¼i) cannot be part of an equilibrium strategy pro…le.

Proof. Consider …rst a symmetric equilibrium pro…le (b1; b2) such that the func-
tion b = b1 = b2 is constant on an interval as above70. By the de…nition of an
equilibrium, type ¼a of bidder 1 prefers bidding b¤ rather than b¤¡"; where " > 0:
This yields

(¼a ¡ b¤)(¼b ¡ ¼a) ¸
Z ¼b

¼a
k¼2d¼2 (8.27)

Analogously, type ¼b prefers bidding b¤ rather than b¤ + "; which yields:

(¼b ¡ b¤)(¼b ¡ ¼a) ·
Z ¼b

¼a
k¼2d¼2 (8.28)

The last two equations yield ¼a ¸ ¼b; which is a contradiction71.
Consider now the case of an asymmetric bidding pro…le, and assume that

bidder’s 1 strategy exhibits pooling at a level b¤ where b¤ is in the range of b2
(see assumption 8.26): If bidder’s 2 strategy also displays pooling at b¤; then we
conclude by the same argument as in the symmetric case. Otherwise, the optimal
bid for any ¼1 2 [¼a; ¼b] is ¼1 ¡ kb¡12 (b¤); which cannot be a constant.
Consider now the following class of strategies:

bi(¼i) =

8>><>>:
Li(¼i) for ¼i 2 [ee¼i; ¹¼]
R for ¼i 2 [~¼i; ee¼i)
0 for ¼i 2 [¼¡; ~¼i)

9>>=>>; (8.29)

where Li is a strictly increasing function. Lemma 8.1 shows that, in equilibrium,
e¤ective pooling can only take place at the reserve price. Hence, if a pure-strategy
equilibrium exists, there exists a pair of strategies in the above class that form
an equilibrium. We now show that no such pair exists. Consider …rst the case
of a symmetric equilibrium where strategies have the above form. The system of
equations 4.11 reads now

70In this case assumption 8.26 is automatically satis…ed.
71Note that this argument does not work for b¤ = R; since then a bid b¤ ¡ " has other

consequences.
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(u¡R)(u+ z)¡
Z z

u
k¼2d¼2 = 0

(z ¡R)(z ¡ u)¡
Z z

u
k¼2d¼2 = 0 (8.30)

The only relevant solution of the system is given by: u = ~¼ = 2R
2¡k2 , z =

e~¼ =
2R(k+1)
2¡k2 : As in the proof of Proposition 4.5, it is necessary for an equilibrium thatee¼ ¸ G¡1(R) = R

1¡k : However,
2R(k+1)
2¡k2 < R

1¡k for all k > 0: This concludes the
proof that no symmetric equilibrium in pure strategies exists.
Consider now an asymmetric equilibrium having the form given in 8.29. Typeee¼1 must be indi¤erent between bidding R and bidding R+ "; yielding:

(ee¼1 ¡R)(ee¼1 ¡ ~¼1) = Z ee¼2e¼2 k¼2d¼2 = 1

2
k(ee¼2 ¡ ~¼2)2 (8.31)

For type ee¼2 we obtain analogously:
(ee¼2 ¡R)(ee¼2 ¡ ~¼2) = Z ee¼1e¼1 k¼1d¼1 = 1

2
k(ee¼1 ¡ ~¼1)2 (8.32)

Combining equations 8.31 and 8.32 we obtain:

ee¼1 ¡R = k3

8

(ee¼1 ¡ ~¼1)3
(ee¼2 ¡R)2 (8.33)

Assume without loss of generality that ee¼1 < ee¼2 (if these are equal than it im-
mediately follows that ~¼1 = ~¼2; and we are in the case of a symmetric equilibrium
candidate). Equation 8.33 yields then

ee¼1 ¡R < k

2
(ee¼1 ¡ ~¼1) (8.34)

Since k < 1; and since ~¼1 ¸ R (see the proof of Proposition 4.5) we obtain a
contradiction.

8.7. Proof of Proposition 5.1

All types that decide to pay the fee face a second-price auction with a zero reserve
price. The fact that the bid G(¼i) is optimal for a type ¼i that enters the auction
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follows in the same manner as in Proposition 4.1. It remains to show that the
respective entry/non-entry decisions are optimal. Consider the type ¼E of buyer
1, and assume that buyer 2 plays according to strategy b2 . By staying out, the
payo¤ of type ¼E is given by Z ¹¼

¼E
g(¼E; ¼2)f(¼2)d¼2 (8.35)

By entering and bidding G(¼E) , his payo¤ is given by

¡E + F (¼E) ¢ ¼E +
Z ¹¼

¼E
g(¼E; ¼2)f(¼2)d¼2 =

Z ¹¼

¼E
g(¼E; ¼2)f(¼2)d¼2 (8.36)

Hence type ¼E is indi¤erent between entering and staying out72. It is then
straightforward to show that all types ¼1 > ¼E strictly prefer to enter the auction.

8.8. Proof of Proposition 5.2

By equation 5.3, we obtain

@US
@¼E

¯̄̄
¼E=¼ = 2f(¼)g(¼; ¼) > 0

Hence, any maximizer of US , ¼opt(¼S); must exceed ¼: If the seller uses the entry
fee Eopt(¼S) = ¼opt(¼S) ¢ F (¼opt(¼S)); all types in the interval [¼¡; ¼opt(¼S)) do not
pay the fee and stay out.

8.9. Proof of Proposition 5.4

Consider an auction with entry fee E, and let ¼E be the unique solution to the
equation E = uF (u): We assume below that ¼E · ¹¼: Otherwise, the claim of
the proposition is immediate. We now construct73 an auction with a reserve price
RE where the set of active types (i.e., types that bid at least the reserve price) is
exactly [¼E; ¹¼] . De…ne

H(R) =
³
¼E ¡R

´ ³
F (¼E) + F (G¡1(R)

´
¡
³
F (G¡1(R)¡ F (¼E)

´
h(¼E) (8.37)

72The equality in the expression above follows by the de…nition of ¼E.
73The construction is the converse of the one used to determine the type ~¼ in Corollary 4.6.
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Note that H(R) is well-de…ned and continuous in the interval [G(¼E); ¼E] . We
obtain that74:

H(G(¼E)) = 2F (¼E)h(¼E) > 0; (8.38)

H(¼E) = ¡
³
F (G¡1(¼E))¡ F (¼E)

´
h(¼E) < 0 (8.39)

Hence, the equation H(R) = 0 has a solution RE in the interval [G(¼E); ¼E]:
By the construction of RE , and by the proof of Corollary 4.6, equilibrium

behavior in an auction with reserve price RE is given by

bi(¼i) =

8>><>>:
G(¼i) for ¼i 2

h
G¡1(RE); ¹¼

i
RE for ¼i 2 [¼E; G¡1(RE))
0 for ¼ 2 [¼¡; ¼

E)

9>>=>>; (8.40)

If all types ¼i in the interval [¼E; G¡1(RE)) were to bid G(¼i) in the auction
with reserve priceRE, then this auction would be revenue equivalent to the auction
with entry fee E = ¼EF (¼E): But, equilibrium behavior in the auction with
reserve price RE requires that all types ¼i 2 [¼E; G¡1(RE)) bid instead RE: Since
G(¼i) < R

E for ¼i < G¡1(RE) , the seller’s revenue in the auction with reserve
price RE is strictly higher than the revenue in the auction with entry fee E
(although both auctions induce the same interval of active types.
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