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Abstract

We study an elimination tournament with heterogenous contestants whose

ability is common-knowledge. Each pair-wise match is modelled as an all-pay

auction. Equilibrium e¤orts are in mixed strategies, yielding complex dynamics:

endogenous win probabilities in each match depend on other matches�outcome

through the identity of the expected opponent in the next round. The designer

seeds competitors according to their ranks. For tournaments with four players

we �nd optimal seedings for three di¤erent criteria: 1) maximization of total

tournament e¤ort; 2) maximization of the probability of a �nal among the two

top ranked teams; 3) maximization of the win probability for the top player. We

also �nd the seedings ensuring that higher ranked players have a higher win-

ning probability. We compare our predictions with data from NCAA basketball

tournaments.
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1 Introduction

Kentucky and Arizona, the highest-ranked teams to reach the Final Four during the

2003 National Collegiate Athletic Association (NCAA) Basketball March Madness,

were on the same bracket and therefore could meet only in the semi�nal. Not for the

�rst time, an emotional debate began: should the Final Four teams be reseeded after

the regional �nals, placing the two top teams in separate national semi�nals with the

highest ranked team facing the lowest ranked?1

The present paper o¤ers a simple game-theoretic model of an elimination tourna-

ment and an analysis of the e¤ect of seedings on several performance criteria. For

example, our model predicts that the probability of a �nal among the two top-ranked

teams without reseeding (i.e., as occurring under random seeding) is in fact equal to

the probability of such a �nal if reseeding is done according to the method described

above.2 But, we also show that careful reseeding will increase the probability that the

top-ranked team actually wins the tournament, and we show that there exists a reseed-

ing method - di¤erent from the one described above - which increases the probability

of a �nal among the two top-ranked teams. Finally, we compare our theoretical results

with historical data from the NCAA basketball tournament.

In single elimination (or knockout) tournaments teams or individual players play

pair-wise matches. The winner advances to the next round while the loser is elimi-

nated from the competition. Many sportive events (or their respective �nal stages,

sometimes called playo¤s) are organized in such a way. Examples are the ATP tennis

tournaments, professional playo¤s in US-basketball, -football, -baseball and -hockey,

NCAA college basketball, the FIFA (soccer) world-championship playo¤s, the UEFA

champions�league, Olympic disciplines such as fencing, boxing and wrestling, and top-

1For example, a similar event occurred in 1996 where the top ranked Kentucky and Massachusetts

also met in a semi�nal that was thought to be the �real��nal. For the full story see USA Today,

March 25, 2003. We assume that all US readers are experts in the mechanics of this tournament.

Ignorant individuals (this group previously included the present authors) can �nd useful information

at http://www.sportsline.com/collegebasketball/.
2I.e., where the top team meets the lowest ranked team in one semi�nal, while the second and

third ranked teams meet in the other.
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level bridge and chess tournaments. There are also numerous elimination tournaments

among students that solve scienti�c problems, and even tournaments among robots or

algorithms that perform certain tasks. Less rigidly structured variants of elimination

tournaments are also used within �rms, for promotions or budgeting decisions, and by

committees who need to choose among several alternatives.

A widely observed procedure in elimination tournaments is to rank competitors

based on some historically observed performance, and then to match them according

to their ranks: the team or player that is historically considered to be best (or ranks

�rst after some previous stage of the tournament) meets the lowest ranked player, the

second best team meets the second lowest team and so on. In the second round, the

winner of the highest ranked vs. lowest ranked match meets the (expected) lowest

ranked winner from the �rst round, and so on3. The above design logic is deeply

ingrained in our mind. For example, Webster�s College Dictionary de�nes the relevant

meaning of the verb �to seed�as:

�a. to rank (players or teams) by past performance in arranging tour-

nament pairings, so that the most highly ranked competitors will not play

each other until later rounds. b. to arrange (pairings or a tournament) by

means of such a ranking.�

As the above quotation makes clear, the raison d�être of seeding is to protect top

teams from early elimination: two teams ranked among the top 2N should not meet

until the �eld has been reduced to 2N or fewer teams. In particular, the two highest

ranked teams can meet only in the �nal, and, with the above seeding method, indeed

meet there if there are no surprises along the way. Presumably, this delivers the most

thrilling match in the �nal !. An outcome where these teams meet in an earlier round

greatly reduces further interest in the tournament and probably does not make �nancial

sense4

3This design is used, for example, in the professional basketball (NBA)- and ice hockey (NHL)-

playo¤s.
4See also Chan, Courty and Li (2007) who analyze incentives in a dynamic contest among two

players under a preference for close outcomes.
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>From the large literature on contests, however, we know that expected e¤ort

and win-probabilities in any two-player contest do not solely depend on the absolute

strength (win valuations) of the respective players, but also on their relative strength

(see for example Baye et al. (1993)). For example, if the di¤erence in strength between

the best and second-best team is larger than the di¤erence between the second and the

third, a �nal between the second and third best teams may induce both more e¤ort and

�thrill�(in the sense of more symmetric expected probabilities of winning) than a �nal

between the two strongest teams. Consequently, there might be (at least theoretically)

rationales for various seedings.

There are many possible seedings in an elimination tournament. The reader may

amuse herself/himself by calculating that, with 2N players, there are (2N )!

2(2
N�1) di¤erent

seedings. This yields 3 seedings for 4 players, 315 seedings for 8 players, 638,512,875

seedings for 16 players and 1. 2253�1026 seedings for 32 players.

There is a signi�cant statistical literature on the design of various forms of elim-

ination tournaments. The pioneering paper5 is David (1959) who considered the win

probability of the top player in a four player tournament with a random seeding. This

literature assumes that, for each encounter among players i and j; there is a �xed,

exogenously given probability that i beats j: In particular, this probability does not

depend on the stage of the tournament where the particular match takes place, and

does not depend on the identity of the expected opponent at the next stage6. Most

results in that literature o¤er formulas for computing overall probabilities with which

various players will win the tournament. For speci�c numerical examples it has been

noted that the seeding where best meets worst, etc...yields for the top ranked player

a higher probability of winning than a random seeding. Several papers (see for exam-

ple, Hwang (1982), Horen and Reizman (1985) and Schwenk (2000)) consider various

optimality criteria for choosing seedings. Given the sheer number of possible seedings

and match outcomes, there are no general results for tournaments with more than four

5See also Glenn (1960) and Searles (1963) for early contributions.
6Additional assumptions are that i0s probability to win against j is larger than vice-versa if i

is higher ranked than j (and thus it is at least 50%); and that the win probability decreases if

the opponent�s rank is increased. Probability matrices satisfying these conditions are called doubly-

monotone.
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players. In particular, the optimal seeding for a given criterion may depend on the

particular matrix of win probabilities (see Horen and Reizman (1985) who consider

general, �xed win probabilities and analyze tournaments with four and eight players).

In contrast to the above mentioned literature, we consider here a tournament model

where forward looking agents exert e¤ort in order to win a match and advance to the

next stage. We assume that players have di¤erent, common knowledge valuations for

winning, and we model each match among two players as an all-pay auction: the prize

for the winner of a particular match is either the tournament�s prize if that match was

the �nal, or else the right to compete at the next round. As a result, win probabilities in

each match become endogenous - they result from mixed equilibrium strategies, and are

positively correlated to win valuations. Moreover, the win probabilities depend on the

stage of the tournament where the match takes place, and on the identity of the future

expected opponents (which are determined in other parallel matches). Thus, in order

to determine the tournament�s outcome, we need to compute a dynamically intertwined

set of pair-wise equilibria for each seeding. We provide here full analytic solutions for

the case of four players which yields three di¤erent seedings in the semi�nals.

The players�ranking can be used by the designer in order to determine the tour-

nament�s seeding structure, and we look for the optimal seeding from the designer�s

point of view. In reality there are many possible designer�s goals, tailored to the role

and importance of the competition, to local idiosyncracies (such as fan support for a

home team), to commercial contracts with large sponsors (that may be also related to

prominent competitors), or with media companies. We consider here three separate

optimality criteria, and, additionally, a �fairness�criterion:

1. Find the seeding(s) that maximizes the probability of a �nal among the two

highest ranked players.

2. Find the seeding(s) that maximizes the win probability of the highest ranked

player.

3. Find the seeding(s) that maximizes total expected e¤ort in the tournament.

4. Find the seeding(s) with the property that higher ranked players have a higher
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probability of winning the tournament.

Our third optimality criterion is �conservative� in the sense that it treats all

matches in the tournament symmetrically, and it does not a-priori bias the decision in

favor of top players. The statistical literature did not analyze this criterion since there

are no strategic decisions (e.g., about e¤ort) in their models. In contrast, the other

two optimality criteria have been discussed in the statistical literature, and seem to

be prevalent in practice. The last criterion poses a constraint on the unfairness of a

seeding by requiring that the overall win probabilities are naturally ordered according

to the players�ranking. If this property does not hold for a given seeding, anticipating

players have a perverse incentive to manipulate their ranking (e.g., by exerting less

e¤ort in a qualifying stage).

Our main �ndings are as follows: Let the four players be ranked in decreasing order

of strength: 1,2,3,4. Seedings specify who meets whom in the semi�nals. It turns out

that the seeding most observed in practice7, A:1-4,2-3, maximizes the win probability

of the strongest player, and is the unique one with the property that strictly stronger

players have a strictly higher probability of winning (criteria 3 and 4). On the other

hand, seeding B:1-3,2-4 maximizes both total e¤ort across the tournament and the

probability of a �nal among the two top players (criteria 1 and 2). Seeding C:1-2,3-4,

under which the two top players meet already in the semi�nal, does not satisfy any of

the optimality or fairness criteria, and the same holds for a random seeding8.

Our results do not depend on cardinal di¤erences between players�strength (win

valuations), but only on the ordinal ranking specifying who is stronger than whom. It

is this feature that allows us to compare the theoretical predictions to real-life tour-

naments where, in most cases, the remaining players in the semi�nals need not be the

a-priori highest ranked four players.

To understand the nature of such an empirical exercise, consider the four regional

brackets of the NCAA basketball tournament. In each bracket 16 ranked teams play

7This is also the seeding method proposed for the Final Four.
8Schwenk (2000) argues for cohort randomized seeding based on three fairness criteria. In cohort

randomized seeding players are �rst divided in several cohorts according to strength (say top, middle,

bottom) and players in the same cohort are treated symmetrically in the randomization.
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in an elimination tournament whose winner goes on to play in the national semi�nals.

Needless to say, the bracket semi�nals are not necessarily played by the four originally

highest ranked teams. For example, the 2002 Midwest semi�nals where Kansas (1)-

Illinois (4) and Oregon (2)-Texas (6). Since the top ranked team (Kansas) played

against the third highest ranked team among the remaining ones (Illinois), this semi�nal

corresponds to our seeding B:1-3,2-4. The West semi�nals were Oklahoma (2)-Arizona

(3) and UCLA (8)-Missouri (12). Since the two top remaining teams (Oklahoma and

Arizona) meet already in the semi�nal, this corresponds to our seeding C:1-2,3-4 .

The 2001 South semi�nals were Tennessee (4)-N.Carolina (8) and Miami (6)-Tulsa (7).

Since the highest ranked remaining team (Tennessee) plays against the lowest ranked

remaining one (N.Carolina), this corresponds to seeding A. In this way, available data

can generate observations for all three possible seedings, even if the initial method of

seeding at the beginning of the tournament is �xed. We �nd that the data from college

basketball tournaments is broadly in line with our theoretical predictions.

We conclude our Introduction by mentioning several related papers from the eco-

nomics literature. In a classical piece, Rosen (1986) looks for the optimal prize struc-

ture in an elimination tournament with homogeneous players where the probability of

winning a match is a stochastic function of players�e¤orts. In the symmetric equilib-

rium, the winner of every match is completely determined by the exogenous stochastic

terms9. In Section IV he also considers an example with four players that can be either

�strong� or �weak�. Rosen �nds (numerically) that a random seeding yields higher

total e¤ort than the seeding where strong players meet weak players in the semi�nals.

He did not consider the seeding strong/strong and weak/weak in the semi�nals, but,

in his numerical example, it turns out that this seeding (which corresponds then to our

seeding C:1-2,3-4) yields the highest total e¤ort.

As a by-product of our analysis, we show that total expected e¤ort in the elimi-

nation tournament where the two strongest players meet in the �nal with probability

9His main result is that rewards in later stages must be higher than reward in earlier stages in

order to sustain a non-decreasing e¤ort along the tournament. Other works on allocation of resources

in sequential contests are, among others, Konrad (2004), Warneryd (1998) and Klumpp and Polborn

(2006).
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one (seeding B:1-3,2-4) equals total e¤ort in the all-pay auction where all players com-

pete simultaneously. This should be contrasted with the main �nding of Gradstein

and Konrad (1999) who study a rent-seeking contest à la Tullock (with homogenous

players). They found that simultaneous contests are strictly superior if the contest�s

rules are discriminatory enough (as in an all-pay auction). In a setting with heteroge-

nous valuations, our analysis indicates that, for the Gradstein-Konrad result to hold,

it is necessary that the multistage contest induces a positive probability that the two

strongest players do not reach the �nal with probability one (e.g., our seedingsA:1-4,2-3

and C:1-2,3-4)

Baye et al. (1993) look for the optimal set of contestants in an all-pay auction, and

they �nd that it is sometimes advantageous to exclude the strongest player. These au-

thors do not consider explicit mechanisms by which �nalists are selected. Our analysis

suggests that, given the rigid constraints imposed by the structure of an elimination

tournament, it is not advantageous to exclude the strongest player from the �nal in

our model.

The paper is organized as follows. We present the tournament model in Section

2. In Section 3 we present the optimality results, and brie�y illustrate the employed

techniques. In Section 4 we compare the theoretical results with historical data from

the NCAA tournament. In Section 5 we gather several concluding remarks. All proofs

are in an Appendix.

2 The Model

There are four players (or teams) i = 1; :::; 4 competing for a prize. The prize is

allocated to the winner of a contest which is organized as an elimination tournament.

First, two pairs of players simultaneously compete in two semi�nals. The two winners

(one in each semi�nal) compete in the �nal, and the winner of the �nal obtains the

prize. The losers of the semi�nals do not compete further. We model each match among

two players as an all-pay auction: both players exert e¤ort, and the one exerting the

higher e¤ort wins.

Player i values the prize at vi, where v1 � v2 � v3 � v4 > 0. Valuations are
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common-knowledge. We assume that each �nalist obtains a payment k > 0, indepen-

dent from his performance in the �nal10, and we consider the limit behavior as k ! 0.

This technicality is required in order to ensure that all players have positive present

values when competing in the semi�nals - this is a necessary condition for the existence

of equilibria in the semi�nals.

In a �nal between players i and j, the exerted e¤orts are eFi , e
F
j . Net of k; the

payo¤ for player i is given by

uFi (e
F
i ; e

F
j ) =

8>>>><>>>>:
�eFi if eFi < e

F
j

vi
2 � e

F
i if eFi = e

F
j

vi � eFi if eFi > e
F
j

(1)

and analogously for player j: Player i0s payo¤ in a semi�nal between players i and j is

given by

uSi (e
S
i ; e

S
j ) =

8>>>><>>>>:
�eSi if eSi < e

S
j

EuFi + k
2 � eSi if eSi = e

S
j

EuFi + k � eSi if eSi > e
S
j :

(2)

and analogously for player j: Note that each player�s payo¤ in a semi�nal depends on

the expected utility associated with a participation in the �nal. In turn, this expected

utility depends on the expected opponent in the �nal. It is precisely this feature that

can be �manipulated�by designing the seeding of the semi�nals. The contest designer

chooses the structure s of the semi�nals out of the set of feasible seedings fA;B;Cg ,
where: A:1-4,2-3, B:1-3,2-4 and C:1-2,3-4.

The following well-known Lemma characterizes behavior in an all-pay auction

among two heterogenous players.

Lemma 1. Consider two players i and j with 0 < vj � vi that compete in an all-pay
auction for a unique prize. In the unique Nash equilibrium both players randomize on

the interval [0; vj]: Player i�s e¤ort is uniformly distributed, while player j�s e¤ort is

distributed according to the cumulative distribution function11 Gj(e) = (vi� vj + e)=vi.
10There are many examples where such a feature is indeed present.
11Note that this distribution has an atom of size (vi � vj)=vi at e = 0:
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Given these mixed strategies, player i0s winning probability against j is given by qij =

1 � vj
2vi
: Player i�s expected e¤ort is vj

2
, and player j�s expected e¤ort is

v2j
2vi
. Total

expected e¤ort is therefore vj
2
(1 +

vj
vi
): The respective expected payo¤s are ui = vi � vj

and uj = 0:

Proof. See Hillman and Riley (1989) and Baye et al. (1993).

3 Semi�nals Design

We provide here optimal seedings for the last crucial stage requiring design - the semi-

�nals. This Section has the following structure: We �rst verbally sketch the main

intuition behind the results. We next o¤er an illustration for the simple special case

where there are two equally strong and two equally weak players (this can be compared

to Rosen�s example mentioned in the Introduction). Finally, we present the general

optimality results for the various criteria.

3.1 Intuition

Let us �rst look at design A:1-4,2-3. As k goes to zero, player 1 reaches the �nal

with almost certainty. This happens because player 4 expects a limit payo¤ of zero

no matter which player (either 2 or 3) she meets in a �nal. A-priori, players 2 and 3

are not in a symmetric position: while both would obtain a limit payo¤ of zero in a

�nal against player 1, their expected payo¤s are positive but di¤erent in a �nal against

player 4 (with 2 having the higher valuation). But, since the event of meeting 4 in

a �nal has a zero limit probability, the position of 2 and 3 becomes symmetric: since

both know that they are going to meet the stronger player 1 in the �nal, their limit

expected valuation for the �nal is zero. Hence, both reach the �nal with probability

one-half and meet there player 1.

In design B:1-3,2-4, player 4 has a limit expected utility of zero in any �nal (where

he meets either 1 or 3 - both stronger players), whereas player 2 has a positive expected

value stemming from the event where he meets player 3 in the �nal. In the limit, player

2 reaches the �nal with probability one. But then, player 3 does not expect a positive
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payo¤ in the �nal. Hence, player 1 reaches the �nal with probability one, and meets

there player 2.12

Since the expected �nal in design B:1-3,2-4 (among players 1 and 2 ) is tighter

than the expected �nal in design A:1-4,2-3 (where 1 meets either 2 or 3 , each with

probability one-half), design B:1-3,2-4 dominates design A:1-4,2-3 with respect to total

e¤ort.

The comparison with respect to total e¤ort between seedings B:1-3,2-4 and C:1-2,3-

4 is more subtle. In design C:1-2,3-4 all four possible �nals have a positive probability

since both stronger players expect a positive payo¤ in a �nal, and both weak players

expect a zero payo¤. An important observation is that, in our elimination tournament,

a semi�nal among players 1 and 2 yields less total e¤ort than a �nal among these players

because in the semi�nal both players anticipate that, in order to ultimately win the

tournament, they need to exert an additional e¤ort in the �nal. The decrease in e¤ort

caused by the fact that 1 and 2 meet already in the semi�nal cannot be compensated

by the additional e¤ort in a �nal among one of the stronger players and one of the

weaker players, and seeding B:1-3,2-4 also dominates seeding C:1-2,3-4 with respect to

total e¤ort.

Recall that in seeding B:1-3,2-4 there is a �nal among players 1 and 2 with limit

probability one. Hence, player 1�s overall win probability equals the probability with

which he wins a �nal against player 2. In seeding A:1-4,2-3 player 1 also reaches the

�nal with limit probability one, but meets there either player 2 or player 3 (with equal

limit probabilities). Since player 1 is more likely to win a �nal against player 3 than

a �nal against player 2, we obtain that seeding A:1-4,2-3 dominates seeding B:1-3,2-4

with respect to the top player�s win probability.

The comparison between seedings C:1-2,3-4 and A:1-4,2-3 with respect to the top

player�s win probability is more subtle: player 1 is more likely to win the �nal in seeding

C:1-2,3-4 (where he meets either player 3 or player 4) than in seeding A:1-4,2-3 (where

he meets either 2 or 3) . But, in seeding A:1-4,2-3 player 1 makes it to the �nal for

12Of course, as k gets small, neither 2 nor 4 have a positive valuation for the �nal where they meet

player 1 for sure; but player 2�s valuation converges to zero at a slower rate, con�rming the above

logic.
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sure, while in seeding C :1-2,3-4 only with some probability less than one (since he

�rst has to win the semi�nal against player 2). It turns out that this last handicap is

signi�cant, and it is always the case that seeding A:1-4,2-3 yields a higher overall win

probability for player 1.

3.1.1 The Two-Type Case

We now brie�y consider here the case where v1 = v2 = vH > vL = v3 = v4. Obviously,

seedings A:1-4,2-3 and B:1-3,2-4 are here equivalent.

Seedings A:1-4,2-3 and B:1-3,2-4. Let qSij(k) denote the probability that i

beats j in a semi�nal among i and j. Based on these probabilities we can compute

expected values for the �nal, conditional on winning a semi�nal.

Conditional on winning the semi�nal, player 1 faces player 2 in the �nal with

probability qS23(k). This results in a payo¤ of zero for both �nalists since they are of

equal strength. Player 1 meets player 3 in the �nal with probability 1� qS23(k). Since
3 has valuation vL < vH ; player 1 expects a payo¤ of vH � vL in that case. In any case,
there is the additional payo¤ k for making it to the �nal. Thus, player 1�s expected

value from winning the semi�nal is given by

qS23(k) � 0 + (1� qS23(k))(vH � vL) + k = (1� qS23(k))(vH � vL) + k: (3)

Analogously, the expected value for player 2 is given by

(1� qS14(k))(vH � vL) + k; (4)

In the �nal player 4 faces player 2 with probability qS23(k) and player 3 with probability

1� qS23(k). Player 4�s expected payo¤ is k in both cases, and analogously for player 3.

Given the above computed values, Lemma 1 tells us that the winning probabilities

qS14(k) and q
S
23(k) are determined by the following system of equations:

qS14(k) = 1�
k

2[(1� qS23(k))(vH � vL) + k]
(5)

qS23(k) = 1�
k

2[(1� qS14(k))(vH � vL) + k]
: (6)
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Solving the above system (under the restriction q 2 [0; 1]) yields the symmetric solution

qS14(k) = q
S
23(k) = 1 +

k

2(vH � vL)
� 1

2(vH � vL)
p
(2(vH � vL) + k)k (7)

By Lemma 1, in each of the two semi�nals the expected e¤ort in each of the two

semi�nals is given by

1

2
k +

1

2

k2

(1� qS(k))(vH � vL) + k
(8)

where qS(k) 2 fqS14(k); qS23(k)g. Note that

lim
k!0

qS14(k) = lim
k!0

qS23(k) = 1 (9)

Intuitively, the weak players have only a small chance to win the �nal, and hence exert

almost no e¤ort. This implies that the strong players do not have to exert a lot of

e¤ort in the semi�nals either. Moreover, each of the strong players knows that he is

going to meet the other strong player in the �nal (and thus that the payo¤ from the

�nal will be low). This reduces the strong players�valuation for winning the semi�nals.

Players 1 and 2 meet in the �nal with probability 1 (as k tends to zero). Since

both 1 and 2 have the same valuation vH , total expected e¤ort in the �nal is vH :

Seeding C:1-2,3-4. The �nal will be between a player with valuation vH and a

player with valuation vL. Hence, by Lemma 1, expected e¤ort in the �nal is vL2

�
1 + vL

vH

�
.

Consider �rst the semi�nal between the strong players 1 and 2. Since the winner of

this semi�nal will meet a weak player in the �nal, both 1 and 2 expect a payo¤vH�vL+k
in the �nal: By Lemma 1, total expected e¤ort in this semi�nal is vH � vL + k (note
that, for small k; this is less than total e¤ort in a �nal among two strong players, which

yields a total e¤ort of vH):

Consider now the semi�nal between the weak players. Both have an expected

payo¤ of k in the �nal since this is the payo¤ in a �nal against a strong competitor

with valuation vH . Hence, total expected e¤ort in this semi�nal is also k.

Total limit e¤ort in seeding C:1-2,3-4 is thus given by:

TEC = lim
k!0
[
1

2
vL

�
1 +

vL
vH

�
+ vH � vL + 2k] = vH �

1

2
vL

�
1� vL

vH

�
(10)

We can conclude that

TEA = TEB = vH > vH �
1

2
vL

�
1� vL

vH

�
= TEC : (11)
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3.2 Total E¤ort

We now return to the general four-player case, and we assume �rst that the designer

chooses the seeding s in order to maximize total expected tournament e¤ort TEs . Let

R be the set of all players, and let eF (s) be the random set of players reaching the �nal
for a given seeding s. The designer solves

max
s2fA;B;Cg

f
X
i2R

E(eeSi ) + [X
i>j

(E(eeFi ) + E(eeFj )) � Prob(i; j 2 eF (s))]g (12)

Proposition 1. For any valuations v1 > v2 > v3 > v4, the limit total tournament

e¤ort (as k goes to zero) is maximized in seeding B:1-3,2-4; where it equals 1
2
(v2 +

v22
v1
)

.

Proof: See Appendix.

3.3 Probability of a Final among the Two Top Players

We now assume that the designer chooses the seeding s in order to maximize the

probability of a �nal among the two top players. As already indicated in the previous

section, seeding B:1-3,2-4 is again optimal.

Proposition 2. For any valuations v1 > v2 > v3 > v4, a �nal among players 1 and

2 occurs with limit probability one in seeding B:1-3,2-4, and with limit probability of

one-half in seeding A:1-4, 2-3.13

Proof: See Lemmas 2, 3, 4 in the Appendix.

Interestingly, our model predicts that the probability of a �nal among the two top

players under random seeding (roughly corresponding to the method now employed by

the NCAA for the Final Four) is 1
3
(1+ 1

2
+0) = 1

2
; which equals the probability of such

a �nal under seeding A:1-4,2-3: Thus, reseeding according to A:1-4,2-3 is not likely to

increase the probability of a �nal among the two top players, but, as we show in the

next section, it will increase the probability that the top team wins the tournament.

Let us brie�y discuss the relevance of the above �nding for elimination tournaments

among 2N players where N > 2 is the number of rounds needed to produce a winner.
13The probability for seeding C:1-2,3-4 is obviously zero.
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Order the agents by their valuations v1 � v2::: � v2N Let Mij denote a match among

players i and j; and letMw
(ij)(hl) denote a match among the winners in the matchesMij

and Mhl.

De�nition 1. We say that seeding s eliminates player i in round l < N if, as k tends

to zero, the probability that i reaches stages l+1 (given that she reached stage l) tends

to zero.14

For example, recall our results for round l = 1 of a tournament with 4 players (see

Lemmas 2, 3 and 4 in the Appendix): Seeding C:1-2,3-4 does not eliminate any player,

and all four possible �nals have positive probability. Seeding A :1-4,2-3 eliminates only

player 4 and the �nals 1-2 and 1-3 have both positive probability. Finally, the optimal

seeding B :1-3,2-4 eliminates both players 3 and 4, and only the �nal 1-2 has positive

probability (one).

It turns out that it is always possible to seed the players such that the two strongest

players participate in the �nal with probability one (as k tends to zero): Consider for

example a tournament among 8 players with the following structure of matches: Round

1: M18;M27;M36;M45;Round 2: Mw
(18)(36);M

w
(27)(45); Round 3: �nal among winners in

semi�nals. It is easy to see that player 8 is eliminated at stage 1 from the same reason

that player 4 is eliminated at stage 1 in seedings A :1-4,2-3 and B :1-3,2-4. Now, since

player 8 does not reach the second stage for sure, player 7 is eliminated at the �rst

stage from the same reason that player 3 is eliminated at the �rst stage in seeding

B :1-3,2-4. By induction, player 6 is eliminated at stage 1 as well. This seeding does

not eliminate players 4 and 5 at stage 1 since they are in symmetric positions given

their possible future opponents. Thus we obtain either the semi�nals 1-3,2-4 or 1-3,2-5:

By the logic of seeding B:1-3,2-4, the two respective weaker players get eliminated in

stage 2, and we again obtain the desired �nal among the two best players.

It is important to note that, whereas in the four-player case seeding B:1-3,2-4 was

the unique one with the property that it ensures a �nal among the two best players,

there is more design freedom if there are 2N > 4 players.

14Obviously, at most 2N�l players can be eliminated at stage l:
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3.4 The Top Player�s Win Probability

Seeding B:1-3,2-4 was found to be optimal for the previous two criteria. But recall that

seeding A:1-4,2-3 is the one most often observed in real tournaments. It is reassuring

to �nd that seeding A:1-4,2-3 is optimal with respect to the important criterion of

maximizing the top player�s win probability.

Proposition 3. For any valuations v1 > v2 > v3 > v4, player 1�s limit win probability

(as k goes to zero) is maximized in seeding A:1-4,2-3.

Proof: See Appendix.

3.5 Fairness

We study now the win probabilities of all players, and check which seedings have the

property that the probabilities to win the tournament are naturally ordered according

to the players�ranking.

Proposition 4. Assume that v1 > v2 > v3 > v4: Let pi(s) denote the probability that

player i wins the tournament for a given seeding s 2 fA;B;Cg. We have:

1. p1(A) > p2(A) > p3(A) > p4(A) = 0:

2. p1(B) > p2(B) > p3(B) = p4(B) = 0:

3. In seeding C :1-2,3-4 it may happen that vi > vj but pi(s) < pj(s):

Proof: See Appendix.

4 Some Empirical Observations

In order to investigate the empirical relevance of our theory, we confront the theoreti-

cal predictions with data from semi-�nals and �nals from 100 regional NCAA college

basketball tournaments. We use data from the four regional elimination tournaments

(East, West, Midwest, South) over the period 1979 to 2003. All 16 participating teams
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in a region are ranked (during the selection process) according to their previous per-

formance.15 The rankings in each region at the beginning of the respective tournament

allows us to determine the relative ranking of the four teams playing in the semi-�nals

and the resulting seeding. Moreover, seedings should be random. In the NCAA tour-

naments, two rounds have already been played prior to the semi-�nals. To rule out

any selection e¤ects, we exclude semi-�nals that are implied by a particular initial

seeding.16 Then, the constructed seedings for the semi-�nals are presumably random

and una¤ected by the initial seeding.17 We observe all seedings although A:1-4,2-3 (25

observations) and B:1-3,2-4 (25 observations) are much more common than C:1-2,3-4

(14 observations).

The raw frequencies of winner types by seeding provide support for the prediction

of Proposition 4 that the probability of winning the tournament is positively correlated

with the contestants�ranking. Higher ranked teams or players are more likely to win

a tournament in all seedings. Proposition 3 predicts that the winning probability of

the strongest team is maximized by seeding A:1-4,2-3. The raw NCAA data support

this hypothesis. Under seeding A:1-4,2-3, the best team wins the tournament in 22

15Data and relevant links can be found on the internet under

http://old.sportsline.com/u/madness/2002/history/index.html. During the selection process, a

committee determines the 64 �best� college teams of the respective season and allocates them to

the regional conferences. This selection is based on several measures re�ecting the teams� recent

performance. Roughly speaking, teams are split into groups of four according to rankings. The four

highest ranked teams are allocated to the four regions with one team per region, followed by next

group of four teams, etc., until all teams are allocated. The aim of this procedure is to balance the

brackets in all regions. The regional brackets are initially seedings of type A for the respective 16

teams. A team�s regional allocation may change from year to year and bears no relation to geography.

More details can be found under http://www.ncaa.org/library/handbooks/basketball/2003.
16As a consequence of the initial seeding, which in the the case of the NCAA regional conferences

is type A, particular pairings of cardinal rankings are not possible (e.g. a semi-�nal among the two

strongest regional teams). We also analyzed all semi-�nals without modi�cation to test the robustness

of the results and to rule out any potential biases due to selection e¤ects stemming from initial seeding.

The results are qualitatively identical to those obtained from the full sample.
17We make the identifying assumption that during the �rst two rounds of the tournament there is

su¢ cient noise in match outcomes in order to generate a random selection of teams, and thus random

(ordinal) seedings at the level of the semi-�nal. Note that winning streaks, or �hot hand�should work

against �nding evidence for the e¤ects of the seeding according to initial strength.
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out of 25 cases, under seeding B:1-3,2-4 only in 17 out of 25 cases. In 9 out of 14

cases, the strongest team wins the tournament under seeding C:1-2,3-4, constituting

the smallest percentage. To investigate this result in more depth, we estimate a logit

model of the probability that the team ranked 1 prior to the tournament wins the �nal,

on a measure of ranks based on the expected round of elimination of a team as well as

on the respective seed.18 Compared to seeding A:1-4, 2-3, both seedings B:1-3,2-4 and

C:1-2,3-4 entail a signi�cantly smaller probability of the strongest team winning the

NCAA basketball tournament. The respective coe¢ cients for seedings B and C are

signi�cant and negative on the 10 percent level. Alternatively, compared to any other

seeding, seeding A:1-4, 2-3 exhibits a signi�cantly higher probability for the best team

winning, again on the ten percent level. In the raw data, this e¤ect is even stronger and

signi�cant on the 5 percent level. The data also do not allow us to reject the prediction

of Proposition 2 that the probability of a �nal among the two strongest teams is higher

in seeding B:1-3,2-4 than in A:1-4, 2-3 (while it is zero by de�nition in C:1-2,3-4). We

refrain from testing predictions about e¤ort exertion as in Lemma 1 and Proposition

1, because it is di¢ cult to �nd a good and observable measure for e¤ort in basketball

data. To sum up, data from the NCAA college basketball tournaments are broadly in

line with the theoretical predictions. We �nd similar results for data from the semi-

�nals and �nals of 12 tournaments for male tennis professionals for the years 1990 until

2002.19 We interpret these empirical observations as corroborating evidence for the

relevance of the problem and the applicability of the theory.

5 Concluding Remarks

We have analyzed optimal seedings in an elimination tournament where players have to

exert e¤ort in order to advance to the next stage. We established that seedings involving

a delayed encounter among the top players are optimal for a variety of criteria. We

have also exhibited the e¤ects of switching the ranks of the opponents that play against

the top players in the semi�nals. In principle, it is possible to generalize the analysis

18The rank of a team i, ri, is given by ri = 2� log2(ranki), see Klaassen and Magnus (2003).
19See the discussion paper version for more detailed results and robustness checks.
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conducted here to tournaments with more players (and possibly more prizes). But,

the exponentially growing number of seedings, and the complexity of the �xed-point

arguments suggest that analytic solutions are di¢ cult to come by.

Our model and results o¤er a wealth of testable hypotheses. We have compared its

predictions to the results of NCAA tournaments. The data do not refute the theory and

provide some support for theoretical predictions. A-priori, it seems possible that other,

more complex models (e.g, where some exogenous noise is added, where some dynamic

�exhaustion�e¤ects are introduced, or where the probability of winning with a higher

e¤ort is not equal to one) may better re�ect some aspects of real-life tournaments.

The crucial di¤erence between such models and ours will mainly consist of the win-

probabilities they produce for each match. These probabilities ultimately drive the

results, and are easily measurable (in contrast to e¤ort). In this context, it is important

to note that Horen and Riezman (1985) looked at general four-player tournaments

where the only requirement on the (exogenous and �xed) matrix of win-probabilities

is that the entries are naturally ordered by the strength of the teams20. These authors

showed that, for any such matrix, seeding A maximizes the strongest competitor�s

probability of winning, and it is the only �fair�one. Moreover, if p14
p13
� [�]p24

p23
(where

pij denotes the probability that i beats j) , the probability that the two strongest

players meet in the �nal is maximized by seeding B [A]. Thus, any theoretical model

that yields natural and minimal monotonicity requirements on the win-probabilities in

each match will display results that are very similar to ours, the only exception being

the possibility that seeding A also maximizes the probability of a �nal among the top

players for some values of the parameters.

6 Appendix

All results are based on the three basic lemmas that determine equilibrium behavior

for each seeding. Let qSij(k) denote the limit probability that i beats j if they meet in

20This means the following: 1) If competitor i is stronger than j, then i has at least a 50% chance

to beat j in a match. 2) If i is stronger than j, then any other competitor h has a higher probability

to win against j than against i.
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a semi�nal, and let qSij = limk!0 q
S
ij(k): TE

S
ij(k) denotes total equilibrium e¤ort in a

semi�nal among i and j; TEFs (k) denotes total equilibrium e¤ort in a �nal resulting

from seeding s; TEs(k) denotes total equilibrium e¤ort in all three matches of seeding

s; and de�ne TEs = limk!0 TEs(k);

Lemma 2. Consider seeding A :1-4,2-3 . In the limit, as k ! 0; player 1 reaches the

�nal with probability one, while players 2 and 3 reach the �nal with probability one-half

each. In addition the following hold:

lim
k!0

(TES14(k) + TE
S
23(k)) = 0 (13)

and

TEA = lim
k!0

TEA(k) = lim
k!0

TEFA (k) =
1

4

�
v2 +

v22
v1
+ v3 +

v23
v1

�
(14)

Proof: By Lemma 1, player 1�s valuation for the semi�nal is (1� qS32(k))(v1� v2+
k) + qS32(k)(v1 � v3 + k) and player 4�s valuation is k: By Lemma 1, we know that the
total expected e¤ort in this semi�nal is given by

TES14(k) =
1

2
k +

1

2

k2

(1� qS32(k))(v1 � v2 + k) + qS32(k)(v1 � v3 + k)
: (15)

Player�s 4 probability of winning is given by

qS41(k) =
1

2

k

(1� qS32(k))(v1 � v2 + k) + qS32(k)(v1 � v3 + k)
(16)

Players 2 and 3 play in the other semi�nal. Their valuations for the semi�nal are

qS41(k)(vj� v4+k)+ (1� qS41(k))k; j = 2; 3 , and expected total e¤orts in this semi�nal
is given by

TES23(k) =
1

2
[qS41(k)(v3 � v4 + k) + (1� qS41(k))k] +

1

2

(qS41(k)(v3 � v4 + k) + (1� qS41(k))k)2
qS41(k)(v2 � v4 + k) + (1� qS41(k))k

(17)

Player�s 3 probability of winning is given by

qS32(k) =
1

2

qS41(k)(v3 � v4 + k) + (1� qS41(k))k
qS41(k)(v2 � v4 + k) + (1� qS41(k))k

: (18)
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In the limit, as k ! 0; the unique �xed point is qS41 = 0 and q
S
32 = 1=2. We have then

TEFA =
1

4

�
v2 +

v22
v1
+ v3 +

v23
v1

�
Q.E.D.

Lemma 3. Consider seeding B:1-3,2-4. In the limit, as k ! 0; the �nal takes place

among players 1 and 2 with probability one. In addition, the following hold:

lim
k!0

(TES13(k) + TE
S
24(k)) = 0 (19)

and

TEB = lim
k!0

TEB(k) = lim
k!0

TEFB(k) =
1

2
(v2 +

v22
v1
) (20)

Proof: Player 1�s valuation for the semi�nal is (1�qS42(k))(v1�v2+k)+qS42(k)(v1�
v4 + k) and player 3�s valuation is (1� qS42(k))k + qS42(k)(v3 � v4 + k). Total expected
e¤ort in this semi�nal is given by

TES13(k) =
1

2
((1� qS42(k))k + qS42(k)(v3 � v4 + k)) +

1

2

((1� qS42(k))k + qS42(k)(v3 � v4 + k))2
(1� qS42(k))(v1 � v2 + k) + qS42(k)(v1 � v4 + k)

(21)

Player�s 3 probability of winning is given by

qS31(k) =
1

2

(1� qS42(k))k + qS42(k)(v3 � v4 + k)
(1� qS42(k))(v1 � v2 + k) + qS42(k)(v1 � v4 + k)

(22)

Players 2 and 4 play in the other semi�nal. Their valuations for the semi�nal are

qS31(k)(v2� v3+ k)+ (1� qS31(k))k for player 2 and k for player 4. Expected total e¤ort
in this semi�nal is given by

TES24(k) =
1

2
k +

1

2

k2

qS31(k)(v2 � v3 + k) + (1� qS31(k))k
: (23)

Player�s 4 probability of winning the semi�nal is given by

q42(k) =
1

2

k

q31(k)(v2 � v3 + k) + (1� q31(k))k
: (24)
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Solving for qS31 by combining equations (22) and (24) yields

qS31(k) =
�k[2(v1 � v2 + k) + (v3 � v4)]

4(v2 � v3)(v1 � v2 + k)
+

s�
k[2(v1 � v2 + k) + (v3 � v4)]
2(v2 � v3)(v1 � v2 + k)

�2
+ k(2k + (v2 � v4)): (25)

Taking the limit in equation (25), we obtain limk!0 q
S
31(k) = 0.

By equation (24) we also have

qS42(k) =
1

2

k

qS31(k)(v2 � v3) + k
: (26)

Note that q31(k) converges faster to zero than k, due to the square root. But then,

qS42 ! 0 as k ! 0. To see this, we apply l�Hospital�s rule. Denote:

g(k) =
�k[2(v1 � v2 + k) + (v3 � v4)]

4(v2 � v3)(v1 � v2 + k)
;

z(k) =

�
k[2(v1 � v2 + k) + (v3 � v4)]
2(v2 � v3)(v1 � v2 + k)

�2
and

f(k) = k(2k + (v2 � v4)):

Taking the derivatives of the numerator and denominator in the expression for qS31(k)

yields the expression

2
p
z(k) + f(k)

2
p
z(k) + f(k) + g0(k)(v2 � v3)2

p
z(k) + f(k) + z0(k) + f 0(k)

: (27)

Note that z(0) = f(0) = z0(0) = 0, but that f 0(0) > 0. Hence limk!0 q
S
42(k) = 0.

Q.E.D

Lemma 4. Consider seeding C:1-2,3-4. In the limit, as k ! 0; players 3 and 4

reach the �nal with probability one-half each. Player 2 reaches the �nal with probability
1
2
2v2�v3�v4
2v1�v3�v4 : In addition the following hold:

lim
k!0

TES34(k) = 0 (28)
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lim
k!0

TES12(k) =
1

4
[(2v2 � v3 � v4) +

(2v2 � v3 � v4)2

2v1 � v3 � v4
] (29)

TEC = lim
k!0

TEC(k) =
1

2
v2 +

1

4

�
v24 + v

2
3

v1

�
+

1

4

(2v2 � v3 � v4)
(2v1 � v3 � v4)

�
2v2 � v3 � v4 +

v24 + v
2
3

v2
� v

2
4 + v

2
3

v1

�
(30)

Proof: Player 1�s valuation for the semi�nal is qS43(k)(v1�v4+k)+(1�qS43(k))(v1�
v3 + k) and player 2�s valuation is qS43(k)(v2 � v4 + k) + (1� qS43(k))(v2 � v3 + k). The
probability of winning for player 2 is

qS21(k) =
1

2

qS43(k)(v2 � v4 + k) + (1� qS43(k))(v2 � v3 + k)
qS43(k)(v1 � v4 + k) + (1� qS43(k))(v1 � v3 + k)

(31)

By Lemma 1 we know that total expected e¤ort in this semi�nal is

TES12(k) =
1

2
(qS43(k)(v2 � v4 + k) + (1� qS43(k))(v2 � v3 + k)) +

+
1

2

(qS43(k)(v2 � v4 + k) + (1� qS43(k))(v2 � v3 + k))2
qS43(k)(v1 � v4 + k) + (1� qS43(k))(v1 � v3 + k)

: (32)

Players 3 and 4 play in the other semi�nal. Their valuations for the semi�nal are k

and expected total e¤ort is also TES34(k) = k. The respective probabilities of winning

are qS43 = 1� qS43 = 1
2

The expected e¤ort in the �nal is given by

TEFC (k) =
1

2
[qS43q

S
21

�
v4 +

v24
v2

�
+ (1� qS43)qS21

�
v3 +

v23
v2

�
+ (33)

+ qS43(1� qS21)
�
v4 +

v24
v1

�
+ (1� qS43)(1� qS21)

�
v3 +

v23
v1

�
] (34)

Total expected e¤ort is given by

TEC(k) = TE
S
12(k) + TE

S
34(k) + TE

F
C (k): (35)

Note that

lim
k!0

TES12(k) =
1

4
[(2v2 � v3 � v4)) +

(2v2 � v3 � v4)2

2v1 � v3 � v4
]
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Since qS43 = 1=2 we also obtain

lim
k!0

q21(k) =
1

2

2v2 � v3 � v4
2v1 � v3 � v4

: (36)

Combining all pieces gives the desired formula for TEC : Q.E.D.

6.1 Proof of Proposition 1

We compare the total e¤orts in each seeding. Since v3 � v2 we immediately obtain

that

TEA = 1
4

�
v2 +

v22
v1
+ v3 +

v23
v1

�
� TEB = 1

2
(v2 +

v22
v1
) , with strict inequality for

v3 < v2:

Hence, in order to �nd the optimal seeding, it remains to compare

TEB =
1

2
v2 +

v22
2v1

(37)

with

TEC =
1

2
v2 +

1

4

�
v24 + v

2
3

v1

�
+ (38)

1

2

(2v2 � v3 � v4)
(2v1 � v3 � v4)

�
v2 �

v3
2
� v4
2
+
1

2

v24 + v
2
3

v2
� 1
2

v24 + v
2
3

v1

�
The idea is to look for values v�i ; i = 3; 4 which maximize TEC(v1; v2; v3; v4) under

the restriction 0 � v4 � v3 � v2 � v1; while treating v1 and v2 as exogenous parameters.

We write TEC(v3; v4) for �xed v2 and v1. Note that TEC(v3; v4) is symmetric in

its variables. It can be shown that its maximizers must be symmetric, that is, v�3 = v
�
4.

Hence we set v4 = v3 and look at total e¤ort as a function of v3 only:

TEC(v3) =
1

2

�
v2 +

(v2 � v3)2
(v1 � v3)

+
1

2

(v2 � v3)
(v1 � v3)

v23
v2
+
1

2

(v1 � v2)
(v1 � v3)

v23
v1

�
: (39)

In the remaining part of the proof we show that the function TEC is strictly convex

for all v3 2 [v2; v4] , and that it achieves maxima at v�3 = v2 and at v�3 = v4 only if

v4 = 0:

The following facts are used:
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(i)

TE 0C(v3)v3=v2 =
v2
v1
> 0 (40)

(ii)

TE 0C(v3)v3=0 =
v2(2v2 � 4v1)
(�v1)2

< 0: (41)

(iii) The numerator of TEC(v3) is a polynomial of third degree in v3 . Hence it can

have at most two roots between 0 and v1; where its �rst derivative is equal to

zero.

(iv) TEC(0) = TEC(v2) =
1
2
v2 +

1
2

v22
v1
.

Combining facts(i); (ii) and (iv), it must be that TE 0C has exactly one root in

[0; v2] and it must be a minimum. Therefore TEC is strictly convex on the interval

[v2; v4] and it satis�es

TEC(v3) � TEC(0) = TEC(v2) =
1

2
v2 +

1

2

v22
v1
= TEB

Q.E.D.

6.2 Proof of Proposition 3

Let qFijdenote the limit probability (as k goes to zero) that player i beats player j

if these players meet in the �nal. Recall that qSij denote the limit probability that

i beats j if they meet in a semi�nal. Moreover, let p1(s); s 2 fA;B;Cg denote the
limit probability that the strongest player, player 1, wins the tournament with a given

seeding. We have

p1(A) = qS14(q
F
12q

F
23 + q

F
13q

F
32) (42)

p1(B) = qS13(q
F
12q

F
24 + q

F
14q

F
42) (43)

p1(C) = qS12(q
F
13q

F
34 + q

F
14q

F
43) (44)
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By Lemmas 1, 2, 3 and 4 we obtain that:

p1(A) =
1

2
(1� 1

2

v2
v1
+ 1� 1

2

v3
v1
) (45)

p1(B) = 1� 1
2

v2
v1

(46)

p1(C) =
1

2

�
1� 1

2

v2 � 1
2
(v3 + v4)

v1 � 1
2
(v3 + v4)

��
1� 1

2

v3
v1
+ 1� 1

2

v4
v1

�
(47)

We clearly have p1(A) > p1(B). For the other inequality, note that p1(C) can be

written as an expression of the sum t � v3 + v4:

p1(C) = p1(C; t) =
1

2

�
1� 1

2

v2 � t
2

v1 � t
2

��
2� 1

2

t

v1

�
: (48)

We �rst show that, on the interval of de�nition [0; 2v2] , p1(C; t) attains a maximum

at t = 2v2. Note that for all t 2 [0; 2v2]

@2p1(C; t)

@t2
= � v1 � v2

(t� 2v1)3
> 0 (49)

Hence, p1(C; t) is strictly convex in t and its maximum can not be interior. We also

get

p1(C; 2v2) = p1(C; 0) = 1�
1

2

v2
v1

(50)

Thus, for any v3 and v4, we obtain that

p1(C) � 1�
1

2

v2
v1
: (51)

On the other hand, since p1(A) is strictly decreasing in v3 , we obtain for all v3 � v2
that

p1(A) � 1�
1

2

v2
v1
: (52)

For all v3 and v4 such that v4 < v3 < v2 we obtain p1(A) > p1(C). Q.E.D.

6.3 Proof of Proposition 4

The results for seedings A:1-4,2-3 and B:1-3,2-4 follow by Lemmas 2 , 3 in the Appen-

dix. We now display an example where p3(C) > p4(C) > p2(C).
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By Lemma 4, we have:

p2(C) =
1

2

�
1

2

v2 � 1
2
(v3 + v4)

v1 � 1
2
(v3 + v4)

��
1� 1

2

v3
v2
+ 1� 1

2

v4
v2

�
: (53)

and for j = 3; 4;

pj(C) =
1

2

��
1� 1

2

v2 � 1
2
(v3 + v4)

v1 � 1
2
(v3 + v4)

��
1

2

vj
v1

�
+

�
1

2

v2 � 1
2
(v3 + v4)

v1 � 1
2
(v3 + v4)

��
1

2

vj
v2

��
(54)

For v1 = 15; v2 = 13; v3 = 11; v4 = 10, we obtain p2(C) = 0:166 < 0:174 = p4(C) <

0:324 = p3(C). Q.E.D.
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