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Stable Bargained Equilibria for Assignment Games 
Without Side Payments I 

By B. Moldovanu 2 

Abstract: We consider NTU assignment games, which are generalizations of two-sided markets. 
Matched pairs bargain over feasible allocations; the disagreement outcome is endogenuously 
determined, taking in account outside options which are based on the current payoff of other 
players. An allocation is in equilibrium if and only if each pair is in equilibrium (no player wishes 
to rebargain). The set of equilibria is not empty and it naturally generalizes the intersection of the 
core and prekernel of TU assignment games. A set with similar properties does not exist for general 
NTU games. The main source of technical difficulties is the relatively complicated structure of the 
core in NTU games. We make a strong use of reduced games and consistency requirements. We 
generalize also the results obtained by Rochford (1984) for TU assignment games. 

0 Introduct ion 

Most of the solution concepts for games in characteristic function form were devis- 
ed primarily for TU (transferable utility) games. There is by now a long tradition 
of attempts to generalize these concepts to the NTU (non-transferable utility) case, 
but usually something is lost on the way. For example, the Shapley value is not point- 
valued, or the Bargaining set may be empty. 

It is not at all clear how one should generalize concepts like the kernel and 
nucleolus because their definition involves the notion of "excess", which ist based 
on the TU assumption. Kalai (1975) defined a kernel and nucleolus for NTU games 
using "excess functions", but his concepts are not independent of equivalent utility 
representations. 

The Kernel of a TU game (Davis, Maschler (1965)) is a solution based on pair- 
wise considerations. Its intuition is conveyed by the following argument due to 
Harsanyi: A particular payoff vector "will represent the equilibrium outcome of a 

This is a part of my M.Sc. Thesis written at the Hebrew University, Jerusalem and at the 
University of Heidelberg. I am deeply indebted to my advisor, Prof. Bezalel Peleg. I wish also 
to thank Professors Michael Maschler, Avraham Neyman and Terje Lensberg for some helpful 
discussions, and to Prof. Werner BOge for his hospitality in Heidelberg. Finally, the comments 
of two anonymous referees greatly improved a preliminary version of this paper. 

Benny Moldovanu, Wirtschaftstheoretische Abteilung I, Universitat Bonn, Adenauerallee 
24-42, 5300 Bonn 1, ER. of Germany. 

0020-7276/90/2/171-190 $2.50 �9 1990 Physica-Verlag, Heidelberg 



172 B. Moldovanu 

bargaining among the n-players only if no pair of players i and j has any incentive 
to redistribute their payoffs between them, as long as the other players' payoffs are 
kept constant" (Harsanyi (1977), p. 196). 

The intersection of the core and the kernel (or prekernel) has very interesting 
geometric properties (Maschler, Peleg, Shapley (1979)). Combining their results 
with the axiomatization of this intersection (Peleg (1985b)) one can indeed show that 
a payoff vector is in the intersection of the core and the prekernel if and only if each 
pair gets the "standard solution" in its reduced game. The standard solution is the 
only efficient, symmetric, covariant solution of a two person TU game, and most 
solutions for TU games or bargaining problems coincide with it on the class of 
super-additive, two-person, TU games. 

Reduced games and related consistency (or "stability") properties are impor- 
tant tools in the analysis, comparision, and axiomatization of solution concepts. 
The main idea is one of stability of solutions under partial implementations by 
subgroups of players which consider their outside opportunities (or expectations). 
Various versions have been used in Sobolev (1975), Aumann, Dreze (1974), Aumann, 
Maschler (1985), Maschler, Owen (1989), Hart, Mas-Collel (1989), Peleg (1985, 
1986, 1989), Thomson, Lensberg (1989). The reader is referred to the papers of Peleg 
and the book of Thomson and Lensberg for discussions. 

By using these ideas one can avoid the notion of "excess", but an analogue of 
the intersection of the core and prekernel, having the same geometric and axiomatic 
properties, does not seem to exist for general NTU games. The equations determin- 
ing such a solution may be inconsistent. 

A natural candidate for applications of kernel-like solutions is the class of two 
sided markets (called also marriage, matching or assignment games). This is a class 
of games where the essential coalitions are those consisting of exactly one player 
from each side of the market, so it makes sense to look for solutions which em- 
phasize equilibria of pairs. 

Following Gale, Shapley (1962), there is a renewed interest in this kind of models 
which cover, of course, an important aspect of the economic activity. Without being 
complete we quote some of the papers: Shapley, Shubik (1971), Shapley, Scarf 
(1974), Crawford, Knoer (1981), Kaneko (1982), Kelso, Crawford (1982), Quinzii 
(1984), Roth (1984), Rochford (1984), Demange, Gale (1985), Crawford, Rochford 
(1986), and finally the excellent book of Roth and Sotomayor (1990). 

Shapley and Shubik study an assignment market, viewed as a TU game, and its 
core. Kaneko generalizes their model without the TU assumption and establishes by 
means of balancedness the non-emptiness of the core. Indeed, most of the papers 
in the area (originating with the one by Gale and Shapley) consider core-like ideas 
of stability. The core, as Shapley and Shubik have remarked, does not always express 
the relative bargaining power of the players in an assignment game. An innovative 
paper ist the one by Rochford, which models bargaining between matched pairs in 
the TU game of Shapley and Shubik. A player bargains there with his/her partner 
using a threat point which is based on the outside opportunities given the current 
payoff to other pairs. Rochford defines a set of equilibria which is stable under 
rebargaining and shows that this set coincides with the intersection of the core and 
kernel of the respective TU game. We will use here a slight modification of Kaneko's 
NTU model, and the conceptual approach to bargaining devised by Rochford for 
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TU assignment games. The present paper has three main goals: First, for the class 
of  NTU assignment games, we generalize the intersection of  the core and prekernel, 
while preserving all the main properties of  the old solution. Second, we generalize 
Rochford's results, without the TU assumption. Finally, the study of  reduced games 
and consistency requirements relate the model and solution concept to other works 
and solution concepts in the area. 

This paper is organized as follows: In Section 1 we present some notations and 
preliminary definitions. In Section 2 we present the model of NTU assignment 
games (NTU-AG) and study briefly their core. In Section 3 we study reduced games 
of  NTU assignment games and establish some properties of  their core which are 
basic for the following analysis. In Section 4 we define a set of  stable bargained 
equilibria for NTU-AG, and prove its non-emptiness by showing convergence of a 
bargaining process to the set of  equilibria. In Section 5 we characterize the set of  
equilibria by means of  axioms and compare this to axiomatic and geometric 
characterizations of  the intersection of  the core and prekernel. 

1 Notations and Preliminaries 

Let Ube a finite set of  players. A coalition S is a non-empty set of  U. A payoff vector 
for N i s  a function x: N=IR,  thus lRNis the set of  all payoff vectors, x S denotes 
the restriction of  x to members of  the coalition S. x(S)  denotes the sum E x i. 
X Aq denotes the cartesian product of  sets Aq. iES 
q 

O S denotes the vector in IR S with all coordinates equal to zero. IS[ denotes the 
cardinality of coalition S. Let x ,y  E IRN. We write: x >_ y i f x  i > y i  for all i E N; 
x > y i f x  >_ y a n d x  :g y ; x  > > y i f x  i > y i  for all i E N. 

Let A _c IR k. A is comprehensive i f x  E A and x > y implyy E A. The boun- 
dary of  A is denoted by 0,4 and the interior o fA  byA ~ IRk is the restriction of  IRk 
to vectors with non-negative coordinates. 

Definition L1." 

a) A TU game is a pair (N,v) where Nis  a coalition and v is a function which assigns 
to each coalition S ~_ N a  real number v(S). We assume v(0)  = 0. 
We denote 

X(N,v) = { x l x E IRN and x ( N )  < v ( N ) ]  (1.1) 

b) Let (N,v) be a TU game. The core of  (N,v), C(N,v), is defined by: 

C(N,v) = { x [ x ( N ) = v ( N )  and x(S)  >_ v(S) for all S c N ]  (1.2) 
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c) Let (N,v) be a TU game. We denote for i , j  E N, i ~ j  and x E1RN: 

sij(x,N,v ) = sij(x ) = max { v(S) - x(S) I i E S a n d j  ~ S } (1.3) 
S~N 

The prekernel of  (N,v), PreK(N,v), is defined by: 

PreK(N,v) = {xl x(N)=v(N) and s i j (x)=sj i (x)  for all i,j E N, i r  ] 
(1.4) 

d) Let S ~ N, a coalition, and let x E X(N,v). The reduced game with respect to 
S and x is the  game (S,v x) where: 

0, if T is empty (1.5) 

vx(T) = v(N)  - x ( N \  T), if T = S (1.6) 

max { v (T  U Q) - x(Q) ] Q c__ N \  S ], otherwise (1.7) 

e) A TU game (N,v) is super-additive if, for all coalitions S,T c_ Nwi th  S ('1 T = 
0, we have: 

v(S U T) >_ v(S) + v(T)  

Definition L2: 

(1.8) 

a) A NTU game is a pair (N,V) where N i s  a coalition and V i s a  function which 
assigns to each coalition S _c N a subset V(S) of  IR s, such that 

V(S) is non-empty and comprehensive 

V(S) f7 (x S + IRS+) is bounded for every x S E IR S 

V(S) is closed 

if xS,  y s E OV(S) a n d x  s _> yS  then xS = yS  

(1.9) 

(1.10) 

(1.11) 

(1.12) 

Let (N,V) be an NTU game and let x E V(N).  

b) A coalition S can improve upon x if there exists y S E V(S) such that y S >> x S. 
The core of  (N,V), C(N,V), is defined by: 

C(N,V) = [ x l x E V(N) and no coalition can improve upon x }. (1.13) 
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c) Let S _c N, a coalition, and let x E V(N). The reduced game with respect to S 
and x is the game (S, Vx), where 

Vx(S ) = { y S  [ (yS,  x N \ S )  E V(N) ], (1.14) 

Vx(T) = U {yT  ] (yT, xQ ) E V(T U Q) }, if T C S, T g: 0 (1.15) 

QC_N\S 

d) An NTU game (N,V) is super-additive if, for all coalitions S,T c Nwi th  S O T 
= 0, we have: 

V(S U T) ~_ V(S) X V(T) (1.16) 

e) Let (N,V) be an NTU game. For i E N we denote: 

V i = s u p { x � 9  IX  i E V(i)} (1.17) 

In the same fashion, for a reduced game (T, Vx), we denote for i ~ T: 

v i x ,T = sup { xi l xi  E Vx(i) } (1.18) 

Let (N,V) be an NTU game and let x E V(N). x is Pareto-optimal (PO) if there 
is no y E V(N) with y > x. x is individually rational (IR) if for all i E N we have 
x i >_ v i. 

f) We denote by ~4 the north-east boundary of  a compact, convex, comprehensive 
(relative to 11t 2 )  and full dimensional set A in R 2 , i.e., 

/3A = {x  [ x E A a n d y  > x i m p l y y ~ A }  (1.19) 
[] 

Definition 1.3: Let F be a class of  NTU games. 

a) A solution on I' is a function a which assigns to each game (N,V) E F a subset 
a(N,V) of  V(N). 

b) A solution a on I' has the reduced game property (RGP) if it satisfies the follow- 
ing: If  (N,V) ~ F, S c N, S .k 0, and x E a(N,V), then (S, Vx) E P and x s E 

Vx). 

c) A solution on I" has the converse reduced game property (CRGP) if it satisfies 
the following: If  (N,V) E r ,  x E V(N), and for every pair S = [i,j} with i , j  E 
N, i 4: j it is true that (S, Vx) E F and x s E a(S, Vx), then x E a(N,V). 

[] 
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The definition of RGP and CRGP are similar for TU games. We refer the reader 
to Peleg (1985a, 1986) for these and other properties of solutions, and discussions. 

2 NTU Assignment Games 

We consider a society formed by two distinct groups, "men"  and "women". To each 
player we associate a set which elements represent the possible incomes as a single. 
To each pair we will associate a set of feasible allocations for this pair, in case it's 
members decide to"mar ry" .  The basic idea is that a marriage may bring utility gains 
to both parts involved, relative to the utility as singles. For various economic inter- 
pretations see Kaneko (1982), Rochford (1984) or Demange, Gale (1985). 

Definition 2.1: Let F be the set of  female players, M the set of  male players, both 
finite, non-empty sets, with M n F = 0. We assume IM[ = IFI, otherwise a set 
D of  dummies is added to the smaller set. Let N = F U M(including dummies). Let 
I NI = 2n (after the dummies were added). Male players will be denoted by m i , m k,  
etc. or simply by m, and similarly for females (with f ins tead  of m!). 

To each coalition S c_ Nwith ] S t _< 2 we associate a set V' (S) C IR S such that: 

V' (S) is non-empty, compact, convex, 
comprehensive relative to IR+ S 

V' (S )  = 0 S, i f S c _ D  

V ' (S )  D_ X V ' ( T )  if IS] = 2 
Tc_S 

ITI=I 

V ' ( S )  = X 
Tc_S 
Irl=l 

(2.1.) 

(2.2) 

(2.3) 

V ' ( T ) , i f S  A D  ~ 0 o r i f S  A M =  0 o r i f S  N F =  0 
(2.4) 

If I S I = 2 and V' (S) :~ X V' (T) then the following hold: 
T g S  
ITI---1 

There exists x S E V" (S) with (xi,xJ ) >> (vi,vJ ) where i , j  E S 
and v i, vJ are defined in 1.17 with respect to the sets V ' ( i )  and V ' ( j  ). 
I f  xS ,  y S E {3V' (S) and x S >__ y S  then x S  = y S  (2.6) 

Condition 2.1 is clear. We assume that zero ist the worst possible outcome for a player 
and dummies get indeed zero (2.2). Condition 2.3 says that the players can achieve, 
in any pair, what they could get as singles (super-additivity). 
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Condition 2.4 says that being married with a dummy or with a member of  one's 
own sex can not be more "productive" than staying single. Condition 2.5 says that 
marriage can not be productive to one side only. It is also complementary to condi- 
tion 2.6 which says that the north-east boundary does not contain segments parallel 
to an axis (non-levelness). 

We define now formally an NTU game on the society N. We look at all possible 
partitions of  a coalition in sets consisting of singles or mixed pairs. 

Thus, we keep in mind the idea of  the original TU assignment game of  Shapley 
and Shubik, but we do not allow free transfer of  utility in coalitions of  size bigger 
than two. This model is only slightly different from the "central assignment game" 
of  Kaneko (1982). 

Definition 2.2: Let S be a coalition in N. We denote: 

t(S) = { Tc_ S[ IT[ = l o r ( / T [  = 2 a n d  T A M : g  0 a n d  T ( T F 4 :  0)] 
(2.7) 

p (S) = (T 1'T2'. .... T k) will be called a t-partition of S if it is a partition of  S and 
T i E  t(S) for 1 __.i_< k .  
P(S) will denote the set of  all t-partitions of  S. 

An NTU assignment game (NTU-AG) is a pair (N,V) where Nis  a set of players 
like in Definition 2.1 and V assigns to each coalition S in N the set 

V(S) = L) { x V ' (T)  I p(S)  E P(S)  } 
TEp(S) 

(2.8) 

Remark 2.3: In the future we will assume that V' (S) = O S for S with [ S I = 1 and 
thus we have also V' (S) = 0 S for S like in 2.4. Given an NTU-AG we can always 
normalize it in this way, and we will require the solution concepts to be independent 
of  this normalization. The more general definition is needed for a correct use of  con- 
sistency properties in the future. 

Because N has an even number of players (after we added the dummies) and 
because of the normalization and condition 2.3, we can omit from the union which 
forms V(N) those t-partitions of Nwhich  contain singles. Their contribution will 
be covered by partitions consisting only of  coalitions of  size two. We will, in the 
future, consider only such partitions of  N, denoted simply by "p"  instead o f p  (N).  

An NTU-AG is, strictly speaking, neither an NTU game in the sense of Defini- 
tion 1.2 - a, nor "central assignment game" in the sense of  Kaneko. However, the 
technical differences have, in our context, no effect, and we will use some of  the 
results in Kaneko (1982) and Peleg (1985). �9 

Theorem 2.4: (Kaneko) Let (N,V) be an NTU assignment game. The core, C(N,V),  
of  this game is not empty. 
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Due the special structure of an NTU-AG, only coalitions of size two are signifi- 
cant when considering the core concept: 

Lemma 2.5: Let (N,V) be an NTU-AG, let x E V(N). Then x ~ C(V,N) if and only 
if there exists a coalition S c__ N with j S I = 2, S M M :~ 0, S M F :~ 0, S M D = 
0 a n d y  S E V ' ( S ) w i t h y  S >> x S. 

Proof." It is clear that if such an S exists, the we have V(S) = V' (S) and x ~ C(N,V). 
For the converse, assume x ~ C(N,V). Then there exists a coalition Q c N a n d  yQ 
E V(Q) with y Q >> x Q. x E V(N) ~ IR N , so y Q >> oQ and this implies that 
Q is the required coalition if ] Q I -< 2. (Remark that we used the zero normaliza- 
tion). If ]Qt > 2, then yQ E X V ' (T)  for a p(Q) E P(Q). Because 

TEp(Q) 
yQ >> oQ, there exists a T E p(Q) with V'(T)  --/: OTand Tmust  have the required 
form. yT E V' (T) and yT  >> x T. �9 

In the TU assignment game of Shapley-Shubik the core is a convex (thus con- 
nected) set and there is, generically, only one matching compatible with allocations 
in the core (see Rochford (1984)). In any case, each vector in the core is compatible 
with any matching for which allocations in the core can be found. The structure of 
the core of  an NTU-AG may be very different, and we need the following: 

Definition 2.6: Let (N,V) be an NTU-AG and let x E V(N). Then 

a) P ( x )  = {p I P E P ( N )  a n d x C  X V ' (T)}  (2.9) 
T6p 

b) For p E P ( N ) ,  
Cp(N,V) = C(N,V) n X V'(T) (2.10) 

TEp �9 

Thus, P(x) is the set of t-partitions of  N for which x E V(N) is feasible, and 
Cp (N,V) is the set of vectors in the core which are feasible for a t-partition of  N. 

The core of  an NTU-AG may consist generically of several non-empty, non-con- 
vex and even non-connected sets of  the form Cp (N,V). This is the main source of  
technical difficulties. (For details in a related model see Roth, Sotomayor (1990)). 

Remark 2. 7." The conditions in Definition 2.1 (and the zero normalization) have the 
effect that, for a two person coalition Twith V' (T) ~ 0 T, the north-east boundary 
13 V ' (T)  can be represented by the graph of a continuous, concave, decreasing func- 
tion. The proof  of these well known facts is straightforward and will be omitted. 
Now let x E C(N,V),  let p E P(x) ,  so that x E Cp (N,V), and let Tbe a two person 

coalition with V' (T) ~ O T. If T E p, then x T E V' (T) and, because x can not be 
improved upon, we get x T E ~ V' (T). If T ~ p then, from the same reason we must 
have x T E ~ V' (T) or x T r V' (T). I 
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3 Reduced Games of NTU Assignment Games 
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We have two main reasons for studying reduced games: 
First, we can avoid the notion of "excess" and the usual definition of the kernel (or 
prekernel), and we wil! be able to generalize naturally the intersection of the core 
and kernel (or prekernel) for NTU assignment games, using axiomatic and 
geometric characterizations of the TU case. 

Second, reduced games and related consistency properties capture here impor- 
tant features of bargaining like the role of outside options or stability under 
rebargaining. 

Lemma3.1." Let (N,V)  be an NTU-AG, letx E V(N) and let S c N, S = {m,f}. 
Then, in the game, (S, Vx), the following hold: 

a) Vx(m) = U {ym I (ym, Xfk) E V ' ( m , f k ) ]  U {O m} (3.1) 
f 

b) Vx( f )  = ~.) { Y f  l ( x m k , Y  f )  E V ' ( m k , f )  U [of} (3.2) 
rnk ~ m 

Proof" Remark that the unions can be taken only over non-dummy players. To prove 
a), we first note that, by the definition of reduced games, the union is contained in 
Vx(m ). For the converse inclusion, let ym E Vx(m ). 

If  y m = 0 m the statement is clear. Otherwise we have (ym,xQ)  ~ X V' (T)  
TEp* 

where Q is a coalition in N \  S and p* is a t-partition of Q U {m}. If m would be 
a single or matched with a dummy inp* we would have ym = 0 m, so the partner 
of m inp* is anj~ with j~ E F \ {f ], 3~ r D and (ym, x f i )  E V ' (m , f i ) .  
The proof of b) is similar. �9 

Lemma 3.2." 
Let S E p, S = { m, f} .  Then, in the game (S, Vx), the following hold: 

a) x s E C(S, Vx), in particular C(S, Vx) r 0 .  

b) x m > v m and x f  > v f  
- -  x , S  - -  , S  " 

c) Vx(S) = v ' ( s )  

Let (N,V)  be an NTU-AG, let x E C(N ,V)  and let p E P(x ) .  

(3.3) 

Proof" a) This is just an instance of the reduced game property (RGP) of the core 
of NTU games (see Peleg (1985) - Lemma 4.5). 

b) Follows immediately from a) by remarking that a vector in the core is in particular 
individually rational (IR). 
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c)Supposef i rs t tha ty  S C V'(S).Wehavex E X V'(T)becausep E P(x) .From 
T~p 

S E p a n d y  S E V'(S)wederivethat(yS,  x N \ S )  E X V ' (T) , andbyDef in i t i on  
Tep 

2.2 of an NTU-AG we get ( y S , x N \ S )  E V(N). Finally, we conclude that yS E 
Vx(S ) by using the definition of reduced games. Remark that we used only 
x E V(N). 

For the converse inclusion, let yS E Vx(S), which means that (yS, x N \  S) E 
V ( N ) . T h u s , ( y S , x N \  S) E X V ' (T) foracer ta inp '  E P ( N ) . I f S  E p '  the 

TEp' 
result is clear. Otherwise, let fk  be the partner of m in p ' .  Then (ym, xfg) E 
V'(m,fk) and by Lemma 3.1 we get ym _< v mx,S" Combined with b) we obtain 

ym < x m, and using a similar argument f o r f w e  havey s _< x S. x S E V' (S) and 
by comprehensiveness we conclude that y S E V' (S). �9 

For x and S like in the previous Lemma we obtained a full picture of  the reduced 
game (S,V x) : It is easily seen that Vx(m) and Vx(f )  are closed, bounded intervals 
containing the origin. Their upper limits, v m S and vJX,S respectively, represent the 

best opportunities of m and f outside their present "marriage", given the current 
payoff x N \ S  to the other players. Vx(S) is compact, convex, comprehensive 
relative to IRS+, and with non-leveled north-east boundary. By Lemma 3.2-b and 

m Vfx,S) E Vx(S). We will use these facts comprehensiveness we have also (v x,S' 
when we look at (S,Vx) as a well defined bargaining problem. 

When defining solution concepts for assignment games we would like to have 
the following property : A payoff vector x is an "equilibrium" for a matching p if 
each pair i np  is in "equilibrium". We show next how this is translated, in our con- 
text, for the core. The reader might compare this with the "converse reduced game 
property" (CRGP) of the core of general NTU games (Peleg 1985a). 

Lemma 3.3: Let (N,V) be an NTU-AG, let x E V(N) and p E P(x). If  for each 
T E p it is true that x T E C(T, Vx), then x E C(N,V). 

Proof" I f x  ~ C(N,V), then we have by Lemma 2.5 a coalition S = [ m , f  } in Nwi th  
S (7 D = 0 and y s E V' (S) with y S >> x s. If S E p, then we have V' (S) c_ Vx(S ) 
(see the first part of  the proof of Lemma 3.2-c). Then y S E V x (S) and we get a con- 

tradiction to x s E C(S,Vx). If  S ~ p, let T = {m,f k }, T E p. By comprehensiveness 

(ym,x f )  E V'(S) and this implies t h a t y  m _< vxm,T(remark t h a t f  k C f ) .  xTis IR 

in (T, Vx), so x m > v m and we get a contradiction to yS >> x s. �9 
- -  x , T  ' 

Let (N,V) be an NTU-AG, le tx  E C(N,V), le tp  E P(x) and T E p. Suppose 
that we keep x N \  T fixed. The following question arises: What is the "bargaining 
range" of  the pair T, if we look at the core as a "window" in the set V(N)? In other 
words : which are those y T such that (y T x N \ T) E C (N,V)? An answer to this for 
general TU games is found in Maschler, Peleg, Shapley (1979) of in Aumann, Dreze 
(1974), where reduced games are more explicitely used. We show in Moldovanu 
(1989) that the result of Aumann and Dreze (Theorem 5, there) does not hold for 
general NTU games. However, for NTU assignment games we have the following 
important result: 
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Lemma 3.4: Let (N,V) be an NTU-AG, let x E C(N,V), p E P(x)  and T E p with 
T = {m, f  }. Then (yT, x N \  T) E C(N,V) if and only i f y  T E C(T, Vx). 

Proof" Remark first that yT E C(T, Vx) implies y T E V x (T) which implies by the 

definition of  reduced games that (yT, xN \  T) E V(N). 
Let n o w y  T E C(T, Vx) and suppose that w = ( y T x N \  T) ~ C(N,V). Then, 

by Lemma 2.5 we have an S ___ N w i t h  I s I  = 2, S n M  0 and z S E V'(S) with 
with z S >> w S. I f  S _c N \  Twe get a contradiction to x E C(N,V), and if S = T 
we get a contradiction toy  T E C(T, Vx), because V'(T) = Vx(T ) by Lemma 3.2. 

Assume then that S contains a member  of  Tand  a member  of  N \  T. We assume 
w.l.o.g that S = { m,fk}, w i t h f  k :~ f By comprehensiveness (z m, xJk) E V' (S) and 
this implies z m <_ v m T " y T is IR in (T, Vx) so ym > v m and by the last two ine- 
qualities we get a coiqtradiction to z m > ym. - x,T 

The converse part  follows immediately from the reduced game property of  the 
core, by noting that the values of  (T, Vx) depend only on x N \  T. [] 

The last Lemma shows also that, given x E C(N,V), the "bargaining range" of a 
pair matched inp  E P(x)  is a connected, closed set, homeomorphic  to an interval. 
This is so because this "range" coincides, as shown, with the coe of a two-person 
(reduced) game. Finally, the reader may ask why we do not consider "bargaining 
ranges" for members not matched inp.  The next Lemma shows that a "bargaining 
range" for such players does not provide any flexibility. 

Lemma 3.5." Let (N,V) be an NTU-AG, let x E C(N,V), p E P(x)  and let T = 
[ m , f  }, T C p. Then Vx(T) = Vx(m) X Vx(f)  , and C(T, Vx) = {xT}. 

Proof" By RGP we know that x T E C(T, Vx). xTis IR in (T, Vx) so we obtain (x m, x f ) 
_ m > (v x, T '  v f ,  T )" Let fk  be the partner of  m in p and let S = {m,fk }" xS E V" (S) 

and this implies x m < vm T' so we obtain x m = vm A similar argument for f 
- -  x ,  x , T "  

and comprehensiveness establish Vx(T) D_ Vx(m) X Vx(f) .  

For the converse inclusion, let yT E Vx(T ) and assume (ym,yf)  > 
(vm, T , Vfx,T), SO yT > X T. Assume also w.l.o.g that ym > v m, T" By the definition 

of  reduced games we have z = (yT, x N \  T) E V(N), and l e t p '  E P(z). I f  T r  p '  

then, for a certainj~ 4: f ,  we have (ym,xfJ) E V'(m,f j) .  This implies t h a t y  m _< 

vm T and we get a contradiction. I f  T E p '  then yT E V'(T). By comprehen- X, 

siveness x T C V' (T) and, because T r p, we get a contradiction to x E C(N,V) by 
Remark 2.7 and non-levelness. It is now clear that xTis the only point in C(T, Vx). 

[ ]  

The same result applies also for a coalition T of two men or two women. The 
proof  is easy and is left to the reader. 
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4 Bargaining in NTU Assignment Games 

After some preparations, we are now ready to describe the bilateral bargaining pro- 
cess and the solution concept. We translate for the NTU case ideas of Rochford, by 
making a strong use of reduced games and consistency requirements. 

Let (N,V) be an NTU-AG, let x E V(N), p E P(x), T E p, T = [m, f  }. The 
members of T observe their reduced game (T, Vx). As remarked before, the upper 
limits of the intervals Vx(m) and Vx(f  ) are, respectively, the best opportunities of 
m andfoutside T. These values are, in a sense, a kind of threats : if m does not get 
at least v m he has an incentive to break the matching, and similarly forf. Loosely x,T 
speaking, we can say that m a n d f  face a bargaining problem represented by (T, Vx). 
Thus, assuming that x N \ T is fixed, the members of T bargain over Vx(T ) taking 
in account their outside options. 

If x E C(N,V), then Lemma 3.4 shows that any choice in C(T, Vx) preserves 
the stability implied by the core. 

We assume that matched pairs solve their bargaining problem using solutions 
which obey some "standard" axioms : symmetry (SYM), independence of 
equivalent utility representations (IEUR), Pareto-optimality (PO), individual ra- 
tionality (IR). For the relevant definitions see Roth (1979). 

Remark that we do not assume that all pairs choose an agreement point using 
the same solution concept! We assume only that, once a pair has agreed on a solu- 
tion concept, it sticks to this concept. 

Definition 4.1: A solution to a bargaining problem will be called standard if it obeys 
the mentioned axioms: SYM, IEUR, PO, IR. The standard solution adopted by a 
pair T will be called the T-standard solution. �9 

The Nash, Raiffa-Kalai-Smorodinski and Maschler-Perles solution concepts 
are, among others, instances of standard solutions in our context. In relation to TU 
games the term was proposed by Aumann, Maschler (1985) and the connection will 
be made clear in Section 5. 

We define now the solution concept for NTU assignment games: 

Definition 4.2: A stable bargained solution to the NTU assignment game (N,V) is 
a set SBp(N,V), where p E P(N)  and 

SBp(N,V) = {x I x @  X V'(T) and, for each T E p, xTisthe 
rEp 

T-standard solution to (T,V x) ] (4.1) 

We define also : SB(N,V) = ~.J SBp(N,V) (4.2) 
pEP(N) �9 

Explanation to the Definition: Remark first that, by the properties IR and PO of a 
standard solution, x T should be in C(T,V x) for each T E p. Then, by Lemma 3.3, 
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we have SBp(N,V) c_ Cp(N,V) and hence SB(N,V) c_ C(N,V). Imagine now that 

an allocation x E X V' (T) is proposed: 
TCp 

As explained before, each pair in Tinp  bargains over the problem (T, Vx). The 
result (if existing!) is an allocation y, but the outside opportunities for the members 
of  a pair Tchanged,  because x N \  T changed to yN\T.  As a consequence of  this a 
member of  Tmay wish to rebargain and this process may never end. If  the proposed 
x belongs to SBp(N,V), the choice of each T E p is exactly x T so after bargaining 
we fall back on x and the process stops. 

The consistency properties of  this solution are obvious. �9 

We set now to the task of  proving the non-emptiness of a set SBp(N,V). This 
result will be proved by showing convergence of  a bargaining process to the set of  
equilibria. We generalize also a result of  Rochford which showed convergence when 
starting from two special points ("best"  for women, respectively men). 

First, we make the additional assumption that the T-standard solutions are con- 
tinuous with respect to the threat point (TPC). Remark that all above mentioned 
instances of  standard solutions have indeed this property. 

We need also the following: 

Definition 4.3: Let (N,V) be an NTU-AG, let p = { T1,T 2 .... ,T n } E P(N)  with 
Cp(N,V) --/: 0 and let x E Cp(N,V). 

a) We define the following chain of  maps: 
X = (xT1, xT2 ... . .  xTn)  - -  ( yV l ,  x T 2 , . . . , x T n )  - -  (yT1, ..vT2, xT3 .... , x T n )  - - . . . - -  

(yTb yT2 ..... yTn) = y, whereyT1 is the Tl-standard solution with TPC to (T1,Vx) 
and similarly, for 1 < i <_ n, yTi is the Ti-standard solution with TPC to the game 
( T  i , V(yTl ..... yTi-l, xTi ..... xTn)). 

b) We define an operator B on Cp(N,V), B(x) = y, wherey is defined by the prece- 
dent chain. (We prove below that B is well defined!) 

c) Let z,w E Cp(N,V) and let T i E p. Then zTi, wTi E 13V' (Ti ) and we denote by 
< zTi, wTi> the closed path in ~V'(Ti) between these points. 

We define an equivalence relation " - "  on Cp(N,V) as follows : z - w if and 

only if for each T i E p and for each uTi E < zTi, wTi> there exists uN\  Ti such 
that u = (uTi, uN\  Ti) C Cp(N,V). The reader may check that this is indeed an 
equivalence relation. The equivalence class of  x will be denoted by [x]. �9 

Thus, the coordinates of  B(x) are determined, two at a time, by bargaining 
which takes in consideration the outside opportunities available at that time. The 
reader may compare this formulation with the function a(x) in Rochford (1984). It 
is not a-priori clear that the operator B is well defined, nor what its range is because 
the yTi are chosen from cores (of reduced games) which may be empty. 
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Lemma 4.4: The operator B of Definition 4.3 is well defined and B(x )  = y E 
Cp(N,V). Moreover, B is continuous and B ( x )  - x. 

Proof" Let x = (xT1,x  N \  T1 ) ~. Cp(N,V) and observe the first step in the chain 
defining B. By Lemma 3 . 2 - a  we know that C ( T  1,Vx) is not empty and by the pro- 
perties IR and PO of the Tl-standard solution we know that yT1 E C ( T  1,Vx). By 
Lemma 3.4 we obtain that ( yT1 ,xN\  T1 ), which is the result after the first step in 
the chain, belongs to C(N,V) ,  and obviously also to C,(N,V) .  Further, we know 
that xTl, yTl E C(T1,Vx) and, by Lemma 3.4, we have~(uTl,xN\ T1 ) E Cp(N,V) 
for each uT1 E C(T1,Vx). C ( T  1 ,Vx) is a connected closed path in ~(V ' /TI )  and we 
obtain that x = (xT1,x N \  T1) ~ (yT1,xN\T1).  This first step in the chain is also 

continuous because, for T 1 = { m , f } ,  the values v m and v f depend con- x , T  ,T  
tinuously o n x N \ T 1  (see Lemma 3.1 and Remark 2.7), and because the Tl-standard 
solution has the TPC property. 

With a similar argument for each step in the chain we obtain the desired result. 
[] 

The bargaining process which we use is formed by repetitions of  the procedure 
which defines the operator B in Definition 4.3. 

The more complicated structure of  the core of  an NTU-AG enables convergence 
when starting from several initial allocations. We observe first a "latt ice" property 
of  the core of  an NTU-AG (compare with Shapley, Shubik (1971)-Theorem 3.) 

Lemma 4.5: Let (N,V)  be an NTU-AG, le tp  E P ( N )  with Cp(N,V) ~a 0 and let x , y  
E Cp(N,V).  We define two vectors z,u in IR N by: 

zmi = rain (xmi,ymi) ; zfJ = max (xfJ,yfJ) for 1 _< i,j <_ n. (4.3) 

umi = max (xmi, ymi) ; ufJ = rain (xfJ, y ~ )  for 1 _< i,j <__ n. (4.4) 

Then the vectors z,u belong to Cp(N,V).  

Proof" Let S = {mk,fh)} E p. I f  xmk =ymk then x S = yS  because x S , y  S E 
t3V'(S) and this set is non-leveled. In this case we have z S = x S = yS  and z S E 
V' (S). Assume w.l.o.g that xmk < ymk. This implies xfh > yfh  and by definition 
we have z S = x S and z S E V' (S). The same kind of  argument for each pair shows 

that 
z E X V ' (T )  and hence that z E V(N) .  

T6p 
I f  Z r Cp(N,V) then, by Lemma 2.5, we have a coalition Q in N with [QI = 

2, Q o M g: 0, Q (3 F g: 0 and wQ E V' (Q) with wQ >> zQ. Let Q = { m , f  } and 
assume that z m = x m. Then we have w m > x m, and w f  > xfbecause  z f  >_ xf.  This 
is a contradiction to x E C(N,V) .  I f  z m = ym we get a contradiction to y E 
C(N,V) .  

The same kind of argument proves also that u E Cp(N,V). [] 
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Lemma 4.6." Let (N,V) be an NTU-AG, letp E P(N)  with Cp(N,V) ~ 0 and let Ix] 
be an equivalence class in Cp(N,V) (see Definition 4.3.-c).  There exist payoff vec- 

tors WM, Ix], WF, Ix1 E [x] such that, for all y E Ix], we have 

wM, txj <py <p WF, txl (4.5) 

where " < p "  is an order relation defined on Cp(N,V) by : x <py ifx, y E Cp(N,V) 
and xfJ _< yfJ for 1 _< j _< n. 

Proof" I fx ,  y E Cp(N,V) and i f y  E [x], then it is easy to see that z,u E Ix] where 
z,u were defined in the previous Lemma. Thus [x] is a complete lattice with respect 
to the defined order relation, [x] is compact and therefore we have maximal and 
minimal elements. (Remark also that, if y E [x], also the path-connected compo- 
nent of y in Cp(N,V) is included in [x].) �9 

Remark how interests of all members of one side of the game are polarised in 
the minimal of  maximal element. We denote by Polp(N,V) the union of these points 
over all classes Ix] in Cp(N,V). 

For proving the convergence of the bargaining process we need the following 
observation: It is natural in our context to assume that an improvement / disim- 
provement in the outside opportunities of an agent should not disadvantage / ad- 
vantage this agent in his present bargaining. The outside opportunities are 
represented here by the "threat"  point in the bargaining problem obtained as a 
reduced game, so we are lead to consider the following property: 

Definition 4. 7." Let (K; e) and (K; d) be bargaining problems of players i , j  and let 
be a solution (see Roth (1979)). We say that ~I, has individual threat point 
monotonicity (ITPM) if it satisfies the following: If e i >_ d i and eJ < dJ then 
�9 i(K; e) >_ ~i(K; d) and qJ(K; e) <_ 9J(K; d). �9 

Indeed, all the mentioned instances of standard solutions have ITPM. The pro- 
ofs are not difficult. See also the related "power" axiom R1 in Livne (1986). 

We are now ready to prove the main result of this paper: 

Theorem 4.8." Let (N,V) be an NTU-AG and letp E P(N)  with Cp(N,V) 4: O. Let 
x E Polp(N,V) and assume that, for each T E p, the T-standard solution has TPC 
and ITPM. Let B be the operator of Definition 4.3 and let B k be its powers defined 
in the usual way for any natural number k. 

Then y = lim Bk(x) exists, and y belongs to the corresponding (to choices of 
k--oo 

T-standard solutions) set SBp(N,V). In particular, SBp(N,V) -~ O. 

Proof." (Remark that there may be indeed different sets SBp(N,V) because of the 
may possible choices of T-standard solutions.) 
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We write x k for Bk(x)  and x 0 for x E Polp(N,V). We assume w.l.o.g that x o = 
WM,[x ] and we know by Lemma 4.4. that x k - Xk+ 1. 

We prove now by induction that, for m i E M, f j  E F, 1 <_ i , j  < n, we have 
xr~i+l < x~i  and x~+ 1 _ xkfJ. The assertion is true for k = 0becausex  0 = WM,[x ]. 

Assume that the assertion is true for k = rand le t  T 1 E p, w.l.o.g T 1 = {ml,fl}. 
We easily obtain that vml < vml and vfl  >__ vfl  

xr+ I'T 1 Xr'Tl Xr+ I'T1 xr'T1 " 
In the same manner, for all T E p, the threat point in their bargaining problem 

moves from stage r to stage r+  1 in a fashion described in Definition 4.7. Because 
the T-standard solutions have ITPM we get the desired result for k = r+  1. 

Thus, for all m i E M, xn~i is a monotone non-increasing sequence and, 
because [x] is compact, the limit of this sequence exists. The same holds for the non- 
decreasing sequences x ~ .  

Finally, because x k E Ix] for all k and because Ix] is closed, we obtain that 
y = lim x k = lim Bk(x)  E [x]. By the continuity of B we have B(y )  = y, and 

k-oo k-oo 
obviously y E SBp(N,V).  �9 

Corollary 4.9: Let (N,V)  be an NTU-AG. Then SB(N ,V)  ~ O. 

Proof" Obvious from C(N,V)  -4:0 (Theorem 2.4) and the definition of SB (N ,V )  
together with the Theorem 4.8. �9 

Remark 4.i0: In the proof  of the main Theorem we used only the properties IR and 
PO of a standard solution. Thus, the existence of equilibria extends to a much wider 
class of bargaining procedures. One may even Consider a "non-cooperative" 
method satisfying IR and PO (and, of course, TPC and ITPM). 

The other properties of a standard solution (IEUR, SYM) are requested just for 
the connection to the TU case and the generalization of the intersection of the core 
and kernel which we have in mind. �9 

The dynamical proof  which we used for showing the existence of equilibria is 
not entirely constructive because it uses the non-emptiness of  the core, which is pro- 
ved in Kaneko (1982) by applying Scarf's Theorem on balanced games. 

This is different from the TU case, where the non-emptiness of the core is 
established by solving a linear program (Shapley, Shubik (1971)). 

5 Axiomatics and TU Games 

In this section we characterize axiomatically the set of stable bargained equilibria 
SB(N,V)  for NTU assignment games, and we compare this with the intersection of 
the core and the kernel of TU assignment games. We will conclude that we generaliz- 
ed in a natural way this intersection and Rochford's work. 
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Peleg (1989) considers the following axioms: NE - non-emptiness; ETP - 
equal treatment property; COV - covariance; IR - individual rationality; WRGP 
- weak reduced game property; CRGP - converse reduced game property. 

COV is the suitable form of IEUR for the TU case; ETP coincides with SYM 
for solutions consisting of an unique point; WRGP is just RGP applied to reduced 
games with maximum two players. 

Peleg shows that, on the class of market games, the intersection of the core and 
pre-kernel is the unique solution satisfying NE, COV, ETP, IR, WRGP, CRGP. 

It is well known (see for example Aumann, Maschler (1985)) that for two person 
TU games there is a unique point-valued solution satisfying NE, COV, SYM, PO. 
For a TU game ({1,2}, v) this solution, which is called "standard", is given by 

xi  = v(12)-v(1)-v(2)  + v ( i ) ,  i =  1,2 (5.1) 

This makes sense also for a game which is not super-additive, and the solution 
is not IR there. 

Remark that, for a super-additive game, this solution is exactly the middle point 
of  the segment with endpoints (v(1),v(12)-v(1)) and (v(12)-v(2),v(2)). This seg- 
ment is exactly the core of  the game. For such a game, the prekernel and all standard 
solutions in the sense of Definition 4.1 pick the vector given by 5.1. 

Let TRGP be the reduced game property applied only to reduced games of two 
players. The reader will not find it difficult to prove that, alternatively, one can 
characterize the intersection of the core and prekernel, on the same class, by: NE, 
CRGP, TRGP, and for two person games: SYM, COV, PO. (IR is also implied!) 

Maschler, Peleg, Shapley (1979) give a geometric characterization of the in- 
tersection of the core and kernel, which always coincides with the intersection of the 
core and prekernel. They show that an outcome in this intersection is always the mid- 
point of  a certain bargaining range for each pair of players. By applying results of 
Aumann, Dreze (1974), where sections of the core are studied (see also our Lemma 
3.4), one can easily show that the "bargaining range" in the geometric characteriza- 
tion is no other than the core of  the reduced game for each pair, and thus the mid- 
point of this range is exactly the standard solution to this (reduced) game. In this 
way we obtain an alternative definition of the intersection of the core and prekernel 
(or kernel) for a general TU game with non-empty core: 

PreK(N,v) fq C(N,v) = {x I x E C(N,v),  and, foreachpair[i,j}wherei,  j E N 
and i ~ j, (xi, xJ ) is the standard solution to the game ({i,j}, Vx) } (5.2) 

(Remark that we could require only that x(N)  -- v(N), and that the standard 
solution is explicitely IR, like in our Definition 4.1. x E C(N,v)  follows from 
CRGP.) 

Remark 5.k Let (N,V) be a general NTU game with non-empty core. We would like 
to define the intersection of the core and a "kernel" and we have seen how the notion 
of "excess" can be avoided by using reduced games. This also threw more light on 
the nature of such a solution. We define in a similar way: 
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SB(N,V) = {x I x E C(N,V) and, for each pair {i,j} where i , j  E Nand i r j, 
(xi,xJ) is the Nash solution to the game ({i,j}, Vx) ] (5.3) 

The Nash solution is just a possible choice and may be replaced, of course, by 
other solution concept. 

Unfortunately, such a set may be empty, even for very simple games. We borrow 
the following example from Maschler, Owen (1989): N = {1,2,3} and 

V(1,2) = {(xl ,x2) 12xl+3x2 ~ 180}; V(N) = {x1,x2,x3) l x l+x2+x3 .z 120}; 
V(T) = 0 T -  lilT+ for all T c N, T r N, [1,2}. 

The reader may check that the equations leading to x E SB(N,V) do not have 
a solution. Maschler and Owen point this out looking for a consistent value, but this 
is the same thing as the definition of SB(N,V) for this game. 

For NTU assignment games we showed in Section 4 that we can ensure the ex- 
istence of outcomes where each pair in a matching compatible with allocations in 
the core is in "equilibrium" (gets, say, the Nash solution to its reduced game). Ac- 
tually, in such an outcome, all pairs are in equilibrium! Indeed, let (N,V) be an 
NTU-AG, let p E P ( N )  with Cp(N,V) ~ O, and let x E SBp(N,V) c_ Cp(N,V). 
By IR and PO, a standard solution (Definition 4.1) must lie in the core of a two-per- 
son game. For a pair T~ p we know, by Lemma 3.5 and the observation after it, that 
the core of the reduced game (T,V x ) consists of the unique point x T, thus such a pair 
gets also the Nash solution to its reduced game. 

We are thus confronted with the same phenomena as with the bargaining set: 
a "straightforward" generalization exists for NTU games of pairs, but fails for 
general NTU games (see Peleg (1963)). �9 

We have also the following axiomatic characterization (if the Nash solution is 
universally accepted): 

Theorem 5.2." Let 21 be the class of NTU assignment games. The set of stable bargain- 
ed equilibria SB(N,V) is the unique solution on 21 which satisfies: NE, TRGP, 
CRGP and for two-person games: IIA, PO, IR, SYM, IEUR. 

Proof" The proofs showing that SB has these properties should be clear by our treate- 
merit in Sections 3,4. For the uniqueness, let ~ be a solution on 21 which satisfies the 
mentioned axioms. It is clear that a picks exactly the Nash solution for a two-person 
game in 21. (IR is only needed to ensure this fact for (reduced) games where the threat 
point is already Pareto-optimal. It may be replaced, for example, by TPC). Let 
(N,V) E 21, let x E a(N,V) and letp E P(x).  By TRGP, (T,V x) E 21 for T E p 
and therefore (T, Vx) is a super-additive two person game and its Nash solution is 
well defined. Again by TRGP, we have x T E a(T, Vx) and we obtain that xTis actual- 
ly the Nash solution to (T, Vx). This is true for any pair T in p, and we obtain 

that x E SBp(N,V) c SB(N,V). 
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For the converse inclusion, let x E SB(N,V) and let p E P(x). Then x E 
�9 �9 * T "  �9 1 SBp(N,V) and, by definmon, x is the Nash solution to (T, Vx) for ml T E p. We 

obtain that x T = o(T, Vx) for all T E p, and, by Remark 5.1, the same is true for 
any pair. Because a has CRGP we conclude x E a(N,V). �9 

The reader may compare this with the already mentioned axiomatization of  the 
intersection of  the core and prekernel of  TU games. The IIA can be, of  course, 
replaced by other axioms yielding standard solutions. 

The solution concept presented here for NTU assignment games does not coin- 
cide with Kalai's Kernel (neither it is included in it) which arises from using the ex- 
cess functions gs (see Kalai (1975), Example 1,2). In general, Kalai's Kernel and 
Nucleolus for a two person NTU, super-additive game consist of  the Pareto-optimal 
point (x1,x 2) with x 1 - v 1 = x 2 - v 2 (see Definition 1.2-e for vi). This solution 
is not standard because it does not satisfy IEUR. For example, take V(1) = V(2) -- 
0 and V(1, 2) = cony [ (0,0), (1,0), (0,2) }. Then Kalai's solution picks the point (2/3, 
2/3) while any standard solution in our sense picks (1/2, 1). Remark that this is, of  
course, a very simple NTU-AG. 

On the other hand, if there are pairs which choose this or other kind of  propor- 
tional solution, the set of  equilibria SB(N,V) can be still defined and it is non-empty 
(see Remark 4.7). Then, it may be interesting to compare this solution with the 
egalitarian solution for NTU games which is characterized by proportionality for 
two person games and consistency (with another definition of reduced games) in 
Hart,  Mas-Colell (1989). 

Finally, some words on the TU assignment games of Shapley, Shubik (1971): By 
technically "transforming" such games into NTU assignment games (similar to 
Kaneko (1982), p. 208), the TU assignment games form a sub-class where all our 
results can be applied. By the analysis in Sections 3,4 or by the discussion in this 
Section, it should be obvious that, on this sub-class, the solution concept presented 
here is no other than Rochford's set of  "symmetrically pairwise bargained alloca- 
tions" (Rochford (1984)). 
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