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Abstract

We study how parliaments and committees select one out of several
alternatives when options cannot be ordered along a “left-right” axis.
Which voting agendas are used in practice, and how should they be
designed? We assume preferences are single-peaked on a tree and
study convex agendas where, at each stage in the voting process, the
tree of remaining alternatives is divided into two subtrees that are
subjected to a Yes-No vote. We show that strategic voting coincides
with sincere, unsophisticated voting. Based on inference results and
revealed preference arguments, we illustrate the empirical implications
for two case studies.

1 Introduction

We study how parliaments and other committees vote to select one out of
several alternatives in complex situations where not all available options can
be ordered along a “left-right” axis.

For example, in a well-known abortion legislation case from the German
Bundestag that we describe below, the main axis of conflict pitted the rights
of women versus the rights of unborn life. The eight proposed bills contained
provisions about deadlines that need to be respected for legal abortions, pos-
sible punishments for both women and doctors that perform illegal abortions,
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the need for counseling, psycho-social indications, etc... Thus, certain pairs
of alternatives were not comparable along the main axis. The German Bun-
destag used a particular, apparently well-designed agenda, and we offer here
a theory and suitable inference tools that allow us to understand the ratio-
nale behind the voting procedure and the ensuing consequences for voting
behavior and the induced outcome.

In another recent and dramatic case from the UK Parliament, the main
conflict axis involved a “hard” vs. “soft” (or no-) Brexit. However, due
to the complexity of the question and the many potential post-Brexit ar-
rangements, some of the proposed bills were not easily comparable along this
main conflict line. The employed voting agenda was rather unusual: Premier
May’s strategic calculations did not materialize, and she was subsequently
forced to resign.

As in the two cases mentioned above, practically all democratic parlia-
ments routinely use sequential binary voting procedures to select one of several
alternatives (see the survey of Rasch [2000]). At each stage in a sequence
of votes, and starting with the full set of alternatives, the set of remaining
alternatives is divided into two strict subsets. Then, a binary Yes-No vote
is taken on the two subsets. The subset that gains a majority of the votes
advances to the next stage, while the other subset is discarded. This process
is repeated until a single alternative remains and is formally elected. There is
considerable variation concerning the precise divisions into two subsets that
are put to vote at each stage. Well-known, stylized representatives include:

1) The amendment procedure (AP) is common in the Anglo-Saxon world.
It works with a basic bill (proposed by the Government, say), amendments to
that bills, amendments to amendments, etc. At each stage, two alternatives
(the original bill and an amended version, say) are pitted against each other,
and the winner advances to the next stage that has a similar structure.

2) The Successive Procedure (SP) is common in continental Europe and
usually works with independent, fully-formed bills. At each stage, a single
bill is voted upon (so to say, against the rest of the alternatives), and voting
stops as soon as one alternative obtains a majority.

The agenda – defining which subsets of alternatives are considered at each
voting stage – plays a crucial role in determining individual voting behavior
and the identity of the elected alternative. How should agendas be designed?
In previous work, we identified a special class of carefully constructed agendas
ensuring that sincere voting at each stage constitutes a robust, dynamic
equilibrium in any sequential binary voting procedure, as long as privately
informed voters have single-peaked preferences on alternatives ordered on
a line, e.g. when the underlying issue is one dimensional (see Kleiner and
Moldovanu, [2017]). We also illustrated the use of such agendas in some (but
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not all) parliaments, and gave examples of documented strategic behavior (so
called “manipulations”) in cases where the agenda was formed by different
criteria.

We first extend our previous analysis to the much larger class of prefer-
ences that are single-peaked on an arbitrary tree. Trees represent ideological
relations that go well beyond the one-dimensional “left-right” framework un-
derlying single-peakedness on a line, but still avoid impossibility results that
would result in fully-fledged multidimensional problems.1 This class of pref-
erences was introduced in an elegant paper by Demange [1982]. Demange
showed that, although the induced majority dominance relation on alterna-
tives is not necessarily transitive, every profile of single-peaked preferences
on a tree admits a Condorcet winner.2 This generalizes the classical insight,
due to Black [1948], who showed that the peak of the median voter is a
Condorcet winner for single-peaked preferences on a line.3

In this paper we introduce convex agendas on trees: at each stage in the
sequential, binary voting process, the tree of remaining alternatives that has
not yet been discarded is divided into two subtrees that are subjected to a
binary Yes-No vote. Since subtrees are connected sets of alternatives, this
roughly says that each of the two subsets of alternatives in each Yes-No vote
is ideologically coherent (according to the logic induced by the original, un-
derlying tree). Thus, it cannot be the case that “extreme left” and “extreme
right” alternatives are grouped together in one subset, and a “moderate”
compromise among those extremes only appears in the other subset.

Assume that preferences of incompletely informed agents are single-peaked
with respect to an arbitrary tree, and that an arbitrary sequential, binary
voting procedure with an arbitrary convex agenda is used. Our main the-
oretical result shows then that sincere, myopic voting is an ex-post perfect
equilibrium (and hence that it does not depend on the agents’ beliefs about
each other), and that the Condorcet winner is elected in this equilibrium.
This holds no matter what the voters’ beliefs about other voters are, and
what the information revealed during the voting process is. The ex-post na-
ture of our dynamic equilibrium concept also embodies a notion of no-regret:
even if agents were told ex-post what the actual preferences of others were,
they would not want to revise their past voting behavior.4 In this sense, our

1We note that complex multidimensional voting problems are often divided into several
simpler ones. See Poole [2005].

2In other words, cycles may occur, but they never occur at the top of the majority
dominance relation.

3In that case the majority relation is acyclical.
4This should not be confused with the stronger notion of an equilibrium in dominant

strategies. Such equilibria need not exist in our framework.
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paper can also be seen as contributing to the robust design of dynamic voting
procedures.

In order to conduct our empirical analysis, we first present inference re-
sults based the raw data that is available to the analyst (voting procedure,
agenda, voting profiles). We formally derive those trees that would make
the observed agenda convex and that maximize the number of observed Yes-
No voting profiles that become single-peaked according to the derived tree.
Convexity significantly restricts both the number of possible trees and the
number of observed profiles that could be observed if our theory was cor-
rect. This specially tailored form of equilibrium revealed-preference analysis
allows us, in principle, to pin down the underlying preference tree and to
infer voters’ preferences.

We conclude the paper by illustrating our theory’s empirical implications
for the above mentioned case studies from Germany and the UK. Both in-
stances involved binary, sequential voting by more than 600 heterogeneous
voters who dynamically selected one out of a relatively large number of alter-
natives. Party discipline (or the “whip”) – whereby members of parliament
have to vote according to a uniform party line – was either institutionally
not imposed (Germany), or was not respected by many decisive voters (UK).
As a consequence, in both cases the final outcome was highly uncertain.
Therefore, both voting instances involved highly complex strategic situa-
tions, whose precise analysis seems, at least a priori, beyond the reach of
standard theory. We also explain why in the Brexit case alternative explana-
tions that drop convexity but take into account additional, external factors
(i.e., the actual content of the alternatives and their political meaning) seem
fruitful.

Finally, it is interesting to note that the analysis performed here resembles
the one that would be necessary to infer valuations for auctioned objects
(here preferences) from bids (here individual voting profiles) submitted at
various prices in a dynamic auction procedure (here voting procedure and
its agenda). If the dynamic auction procedure is suitably constructed (here
our convexity assumption) and if the allowed class of valuations is suitably
restricted (here our single-peakedness assumption), then the auction has a
robust, ex-post perfect equilibrium5. Then, and only then, the beliefs of
bidders about the valuations of others and the information released during
the auction do not play a role. Otherwise, the observed bids mix valuations
with beliefs and their dynamic updates in a much more complex way.

The paper is organized as follows: In the next subsection we review the

5See, for example, Ausubel’s [2004] generalization of the English auction for multiple
goods.
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related literature. In Section 2, we recall some definitions and results about
graphs that are trees. In Section 3, we introduce the social choice model,
the sequential binary voting procedures and their agendas. In Section 4, we
prove our main theoretical result that connects sincere and strategic voting
for convex agendas. Section 5 contains the necessary inference results for the
revealed preference analysis. In Section 6 we present two case studies, one
each from the German and UK parliaments. Section 7 concludes.

Related literature

The study of strategic, sequential binary voting was pioneered by Farquhar-
son [1969]. The literature has often assumed that agents are completely
informed about the preferences of others (see, for example, the classic pa-
pers by Miller [1977], McKelvey and Niemi [1978] and Moulin [1979]). Under
complete information, sophisticated voters can use backward induction: at
each stage they foresee which alternative will be finally elected, essentially
reducing each decision to a vote among two alternatives. Under simple ma-
jority, a Condorcet winner is selected by sophisticated voters whenever it
exists, independently of the particular structure of the binary voting tree,
and independently of its agenda. If a Condorcet winner does not exist, then
a member of the top Condorcet cycle is elected, and the agenda influences
which particular element of the cycle prevails. The influence of agenda ma-
nipulations has been studied by Ordeshook and Schwartz [1987] and, more
recently, by Barbera and Gerber [2017]. An observational equivalence be-
tween strategic voting and sincere voting was established by Austen-Smith
[1987] for completely informed voters who use the amendment procedure with
an endogenous agenda.

Chambers and Echenique’s [2016] monograph contains a brief discussion
of revealed preference analysis in social choice situations, while Poole and
Rosenthal’s [2000] seminal work offers a detailed analysis of roll-call voting in
the US Congress. Heckman and Snyder [1997] revisit Poole and Rosenthal’s
estimation framework while emphasizing the fundamental lack of identifica-
tion of preferences in multidimensional choice setting where both the voters’
preferences and the policy alternatives’ attributes are not observed. This
is related to the difficulties we face here, even after imposing considerable
more structure (see, for example, the Brexit case below). Kalandrakis [2015]
assumes that policy alternatives are known vectors in Euclidean space, and
that the analyst observes a series of binary choices made by a single individ-
ual. He characterizes acceptance/rejection records that are rationalizable via
a concave utility function. Note that on a line, concave utility functions lead
to single-peaked preferences. Closer to our own setting, Trick [1989] shows
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that if there exists a tree that renders a profile of preferences single-peaked,
then, under a very mild richness condition, such a tree is unique. Ballester
and Haeringer [2011] provide necessary and sufficient conditions for a profile
of preferences to be consistent with single-peakedness for some linear order on
the alternatives. Both papers’ conditions apply to preference profiles (unob-
servable) rather than to the observed, binary choices generated by a specific
voting procedure with a specific agenda.

Several researchers have conducted empirical studies of voting behavior in
the German parliament. Leininger [1993] and Pappi [1992] analyze the 1991
decision about the post-reunification location of the German capital. They
assume sincere voting and attempt to reconstruct the legislators’ preferences
from the observed votes. They also conduct simulations with other, hypo-
thetical voting procedures and compare the results. Pappenberger and Wahl
[1995] look at the regulation of abortion in 1992, which we also analyze here,
while Von Oertzen [2003] discusses several other cases from the Bundestag.

Ladha [1994] analyzes a large number of cases from the US Congress
and focuses on instances where the agenda followed a natural left-right order
on a line: he observes patterns of behavior with a monotonicity property
naturally associated with sincere voting patterns.6. In contrast, Riker [1958]
and numerous followers have documented cases where strategic manipulation
have probably occurred. In many of these cases, such as Riker’s, it can be
shown that the manipulation is induced by a non-convexity in the agenda.

Roughly speaking, the above mentioned empirical papers – and many
other similar ones – try to infer preferences from observed behavior. An
important difference from our paper is that they are all based on the premise
that voting is sincere: there is no presumption of optimal individual behavior
and no equilibrium analysis. Attempts to investigate when and why sincere
voting might occur are often based on external explanation such as home-
style a la Fenno [1978].

An early analysis of strategic, sequential, binary voting under incomplete
information is offered by Ordeshook and Palfrey [1988]. These authors con-
structed relatively complex Bayes-Nash equilibria for amendment voting in
a situation with three alternatives and with preference profiles that poten-
tially lead to a Condorcet paradox. A Bayesian analysis crucially depends on
the assumed agents’ beliefs about others. In particular, a similar theoretical
analysis of our real-life case studies (up to 8 distinct alternatives and more
than 600 voters with heterogeneous preferences) does not seem to be feasible.
Even if it were feasible, the analyst needs then to infer from the observed

6The implications of Ladha’s findings for strategic vs. sincere voting are also discussed
by Groseclose and Miljo [2010].
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voting data both the voters’ beliefs and their preferences, and identification
is much more complex.

Kleiner and Moldovanu [2017] showed that, under single-peaked, private-
value preferences on a line, sincere voting constitutes an ex post perfect
equilibrium in any sequential, binary voting procedure if the agenda is convex.
Earlier special cases of this result who considered agendas that split the set
of alternatives at each voting node into two disjoint sets can be found in
Gershkov, Moldovanu and Shi [2017] and Jung [1989]7 (e.g., the amendment
procedure is not covered by the earlier analysis). The Gershkov et al. analysis
is devoted to the design of welfare maximizing procedures.8 This requires
the introduction of cardinal utilities: the selected social alternative (that
maximizes average welfare under incentive constraints) coincides with the
Condorcet winner (median welfare) only under rather special assumptions
on the distribution and on the number of agents (this is also the theme of
Pivato [2015]).

Kleiner and Moldovanu [2020] apply the above theory to explain both
the emergence and rarity of killer amendments and illustrate it with a case
study involving the Nazi party. Gershkov et al. [2019] consider single-peaked
preferences on a line but assume that preferences are interdependent. In
their model, not all alternatives are fixed ex-ante and the authors study the
emergence and location of compromise alternatives (e.g., the location of a
compromise deal in the Brexit case and the emergence of the composite flag
of the Weimar Republic).

2 Graphs and Trees

We first briefly recall here several basic graph-theoretic definitions and a
result that will be useful for our analysis below. While the concepts appear
to be abstract, their utility will become apparent below.

Definition 1

1. A graph G on a set of nodes A with typical elements A, B, C, ... is a
set of unordered pairs of distinct elements of A, called edges.

2. A path P of G is a sequence of distinct nodes A1, ..., Am such that
(Ai, Ai+1) is an edge for i = 1, 2, ...,m− 1.

7We wish to thank an anonymous referee and Tom Palfrey for pointing us Jung’s paper.
8An extension to much more general environments is in Rachidi (2020).
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3. A graph is connected if, for any pair of nodes Ai, Aj, there is a path
with initial node Ai and terminal node Aj.

4. A cycle (or circuit) is a path in which the initial node coincides with
the terminal node.

5. The degree of a node Ai, denoted by d(Ai), is the number of edges
having Ai as element.

Definition 2 A tree Ψ is a connected graph that contains no cycles. A node
A is a leaf of tree Ψ if it has degree 1; that is, there is exactly one edge of Ψ
containing this node.

In our application, nodes correspond to the social alternatives among
which voters have to choose, and the edges in a graph correspond to ideolog-
ical proximity relations among alternatives.

Theorem 1 (Berge, 1962) Any one of the following equivalent properties
characterizes trees:

1. Ψ contains no cycles and has k − 1 edges (where k is the number of
nodes).

2. Ψ is connected and has k − 1 edges.

3. Ψ contains no cycles, and if a new edge is added, one, and only one,
cycle is formed.

4. Ψ is connected but ceases to be so if any edge is deleted.

5. Any two nodes A and B in Ψ are linked by a unique path, denoted below
by PAB.

In order to quantify the enumeration problem of finding a suitable ideo-
logical structure represented by a tree – but also to emphasize the richness
of tree structures – we recall Cayley’s famous formula (see Berge [1962]): the
number of distinct trees with k nodes is kk−2.
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3 The Social Choice Model

We now apply the graph-theoretical structures to a social choice model. Sup-
pose that there are 2n + 1 voters who need to select one alternative out of
a finite set A with k ≥ 2 elements. The set of alternatives corresponds to
the set of nodes of a graph, and this graph is assumed here to be a tree
Ψ. Intuitively, two alternatives are directly connected by an edge if they are
ideologically close, and are indirectly connected by a longer path if they are
ideological more distant.

Each voter i is characterized by a preference relation �i on A, and pref-
erences are private: an agent only knows her own preference, but not others’
preferences. Single-peakedness on trees requires that, on each isolated path
(which can be seen as a line), the agent has a preferred alternative (the peak),
and alternatives become worse from her point of view as one moves farther
away (in terms of number of edges) from that peak. Formally, we have the
following:

Definition 3

1. An individual preference relation �i is an irreflexive, asymmetric, com-
plete and transitive order on A.

2. The preference �i is single-peaked on the path PAC of Ψ if, for any
node B that lies on this path, it is not the case that both A �i B and
C �i B hold.

3. The preference �i is single-peaked on the tree Ψ if it is single-peaked
on every path P of Ψ.9

When a tree Ψ consists of a single path, we are in the classic case where al-
ternatives can be ordered on a line, from “left” to “right”. Single-peakedness
on a tree with many distinct paths is thus a significant generalization of
classic single-peakedness on a line, and many more preference profiles are
potentially compatible with it. Nevertheless, a tree structure still restricts
preferences in a way that allows for meaningful social choice, e.g., avoids
standard impossibility results.

Definition 4 Given a preference profile {�i}2n+1
i=1 , a Condorcet winner is an

alternative CW ∈ A such that |{i : CW �i A}| > |{i : A �i CW}| for any
A 6= CW.

9This is equivalent to the following: If A is the peak of �i and if B belongs to the path
between A and C (i.e., it is nearer to A than C), then B �i C.
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The existence of a Condorcet winner for any profile of single-peaked pref-
erences on a given tree was established by Demange [1982], a significant
generalization of the classic result for lines due to Black [1948]. The exis-
tence of a Condorcet winner is naturally preserved for subsets of alternatives
that preserve the tree structure:

Lemma 1 Consider a tree Ψ and a subtree Ψ′ ⊂ Ψ. If a preference rela-
tion �i is singled-peaked with respect to Ψ, then its natural restriction is
single-peaked on Ψ′. In particular, there is a Condorcet winner among the
alternatives in Ψ′.

Proof. Take any two nodes (alternatives) in Ψ′, A and C. Since Ψ′ is a
tree and hence connected, there exists a path P in Ψ′ that goes from A to
C. Since P is also a path in Ψ, the result follows by single-peakedness with
respect to Ψ. The last part follows from Demange’s result.

Finally, note that to define a game with incomplete information and to
conduct a strategic analysis, it is usually necessary to also specify beliefs
that agents hold about the other agents’ preferences. Since our analysis will
be robust – namely, independent of those beliefs and independent of other
information that becomes available during the voting sequence – we need not
specify beliefs here.

3.1 Voting Procedures and Their Agendas

At each stage of a sequential binary voting procedure the set of remaining
alternatives (starting with the full set) is divided into two strict subsets who
need not be disjoint. Each voter approves one of the two subsets. The
subset that gains majority approval advances to the next stage, while the
other subset is discarded. The process is repeated until a single alternative
remains and is elected. More formally:

Definition 5 1. A binary tree is a tree such that each node v has either 0
or 2 children, and exactly one node has no parent. Nodes without chil-
dren are called terminal.

2. An agenda assigns to each node of a binary tree a subset of A such
that (i) a single alternative is assigned to every terminal node, (ii)
every alternative in A is assigned to some terminal node, (iii) the set of
alternatives assigned to a parent is the union of the sets of alternatives
assigned to its children, and (iv) the set of alternatives assigned to each
node is a proper subset of the alternatives assigned to its parent.
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3. A binary sequential voting procedure is a finite binary tree together
with an agenda.

While binary sequential procedures can also be graphically described by
means of binary trees – with the two branches protruding from each non-final
node representing the Yes-No decision to be be made at that node (see, for
example, Figures 2 and 5 in the Brexit case studied below) – such voting
trees vary with the chosen procedure and should not be confounded with
the distinct and fixed tree Ψ that governs the ideological proximity relations
among alternatives.

The following important property connects the agenda of binary sequen-
tial voting procedures to the underlying structure of preferences:

Definition 6 An agenda is convex with respect to a tree Ψ if, for each par-
ent node in the binary voting tree, it divides the set of alternatives assigned
to that node into two subtrees of Ψ that are assigned to the two children,
respectively.

The main ingredient in the above definition is the requirement that the
division of alternatives at each voting stage is among two distinct, not nec-
essarily disjoint, subsets that are ideologically connected. By the previous
lemma, the restricted preferences continue to be single-peaked on each sub-
tree, and thus, each binary division in a convex agenda is ideologically coher-
ent: Consider two alternatives A and B that belong to one of the subtrees.
Since the path PAB connecting these alternatives is unique, all alternatives on
the path PAB must also belong to the same subtree. In other words, it cannot
be the case that voters have to decide between, say, a subset of “centrist”
alternatives on the one hand, and a subset containing only “extreme right”
and “extreme left” alternatives on the other. In such a case, the unique path
connecting the extreme nodes may need to go via one of the centrist nodes,
violating the requirement that each subset is a connected subtree.

Convex agendas are necessarily content based rather than procedural (see
Kleiner and Moldovanu [2017]). In other words, to construct such an agenda
for a given tree, one needs to take into account the actual content of the
proposed alternatives and also the logical/ideological connections between
them. In contrast, purely procedural agendas follow predetermined rules
that are independent of the content of alternatives. For example, the agenda
may be defined in terms of some order in which alternatives were submitted
to the relevant parliamentary committee or in terms of a formal denomination
as main bill, amendment, amendment to amendment, etc.10

10As Ladha [1994] documents for the US, in certain cases, procedural agendas may
nevertheless be convex.
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Example 1 1. Consider the successive voting procedure on a set of alter-
natives A. An agenda for this procedure is convex with respect to a tree
Ψ if, at each stage, the alternative that is put to vote is a leaf of the
subtree of remaining alternatives. If alternative C is considered at a
particular stage, the binary division into two subtrees is [C, A \ {C}].

2. Consider the amendment procedure on A. An agenda for this procedure
is convex with respect to a tree Ψ if, at each stage, both alternatives that
are pitted against each other are leaves of the subtree of the remaining
alternatives. If alternatives B and C are considered at a particular
stage, the binary division in two subtrees is [A \ {C}, A \ {B}].

Intuitively, both of the above agendas prescribe that more “extreme”
alternatives should be put to a vote before more “moderate” ones. These
agendas are indeed well-defined and convex based on the following lemma:

Lemma 2 1. Any tree Ψ has at least two leaves.

2. Let A be a leaf and denote by e the unique edge of Ψ that contains A.
Then Ψ \ {e} is a tree on A \ {A}.

Proof. 1. Let P = {A1, ..., Am} be the longest path in Ψ. Then A1 and
Am must be leaves. Alternatively, note that the sum of degrees in any graph
equals twice the number of edges. By Theorem 1 we obtain:∑

d(Ai) = 2(k − 1) = 2k − 2

If there are fewer than two leaves we obtain:∑
d(Ai) ≥ 2(k − 1) + 1 = 2k − 1 > 2k − 2

which is a contradiction.
2. Consider any two nodes B,C ∈ A \ {A}. Then the unique path PBC

that connects them in Ψ is also the unique path that connects them in Ψ\{e}.

4 Sincere and Strategic Voting on Trees

We now study strategic voting in binary sequential voting procedures. For
each node v of the voting tree, let Hv

i denote the part of the history of
play that is observable to player i at node v.11 One common specification

11And let Hv ⊂ ×iH
v
i be the set of consistent profiles of histories.
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is that Hv
i consists of the aggregate number of Yes and No votes at each

previous node, and i’s own voting behavior at all previous nodes. Another
possible specification is that Hv

i includes the individual voting behavior of
every player at all previous nodes. None of our results below depend on the
exact specification of Hv

i .
A strategy of player i associates to each non-terminal node of the binary

voting tree, to each history leading to that node, and to each preference
realization an action in the set {Yes, No}.12

Definition 7 A strategy profile constitutes an ex-post perfect equilibrium if
for every non-terminal node, and following any history, the agents play best
responses for every realization of preferences.13

Hence, a profile of voting strategies constitutes an ex-post perfect equilib-
rium if voters play best responses for each realization of preferences. Thus, no
voter regrets her equilibrium strategy even after learning the preference re-
alizations of all other voters. This is a particularly useful equilibrium notion
for our empirical analysis because it does not depend on the (unobserved)
beliefs voters entertain. We relate below strategic voting to the following
concept of “unsophisticated” voting:

Definition 8 A voting strategy for a binary sequential voting procedure is
sincere if, at each stage in the voting sequence, it prescribes voting for the
subset of alternatives that contains the most preferred alternative among all
remaining ones. If that alternative is contained in both subsets that are put to
vote at a certain stage, then a sincere voting strategy proceeds lexicographically
(vote yes for the subset that contains the second-best alternative, and so on).

Our notion of sincere voting takes an optimistic perspective and evaluates
sets of alternatives based on a best-case analysis. It goes back to Farquharson
[1969] and Miller [1977], and has been employed extensively in the literature
(see Miller [2010] for a recent discussion). Our main theoretical result is as
follows:

12Formally, let PΨ denote the set of preferences that are single-peaked on the tree Ψ.
A pure strategy for voter i is a mapping σi :

⋃
v∈V ′ Hv

i × PΨ → {Yes, No}.
13To formally define the equilibrium, let Av,hv (σ,�) be the alternative that is selected

if voters with preference profile � use the strategy profile σ in the subgame starting at
node v after observed history hv ∈ Hv. The strategy profile σ is an ex-post perfect
equilibrium if, for all i, non-terminal nodes v, histories hv ∈ Hv, and for all �∈ PΨ,
Av,hv (σ,�) �i Av,hv (σ′i, σ−i,�) holds for all strategies σ′i.
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Theorem 2 Assume that preferences are single-peaked with respect to a tree
Ψ and that a sequential binary procedure with a convex agenda is used. Then
sincere voting is an ex-post perfect equilibrium, and the Condorcet winner is
elected in this equilibrium.

Proof. Assume first that all voters vote sincerely, and let CW be the Con-
dorcet winner given the agents’ preferences. We first show that CW must
be elected under such a strategy profile.

Assume, by contradiction, that CW is not elected under sincere voting.
Consider then the first stage in the voting process where the majority ap-
proved subtree is Ψ′ such that CW /∈ Ψ′. Then, there exist m ≥ n+ 1 agents
whose preferred alternative among the remaining ones is in Ψ′. Denote those
most preferred alternatives by A1, A2, ..., Am, respectively (these need not be
distinct). If A1 = A2 = ... = Am then there are m ≥ n+ 1 agents that prefer
A1 to CW, which is impossible by the definition of CW. Assume then without
loss of generality that A1 6= A2. Because Ψ′ is a tree, there exists a unique
path, PA1A2 , which is entirely contained in Ψ′ and which connects these two
nodes. In particular, CW cannot be on this path since CW /∈ Ψ′. Consider
next the uniquely defined paths PCWA1 and PCWA2 in Ψ. Then there must ex-
ist an alternative, denoted by B, such that B belongs to PCWA1 , PCWA2 and
PA1A2 . Otherwise, the concatenation of PCWA1 , PA1A2 and PCWA2 contains a
cycle, contradicting the assumption that Ψ is a tree.

By single-peakedness, we conclude that all agents whose most preferred
alternative is either A1 or A2 prefer alternative B to CW. Arguing in the
same manner for A3, ..., Am shows that there must be an alternative in Ψ′

that is preferred by m ≥ n + 1 agents to CW, which is impossible. Thus,
CW can never be eliminated, and will thus be elected under sincere voting.

We now argue that sincere voting is an ex-post perfect equilibrium. Fix
an arbitrary preference profile and an arbitrary voter i. We show that given
sincere behavior by all other voters, i has no profitable deviation from sincere
voting. Consequently, sincere voting is an ex-post perfect equilibrium.

Observe first that sincere voting is a best response if only two alterna-
tives remain. Consider a voting stage where the decision is between the two
subtrees Ψ′ and Ψ′′ and assume that sincere voting is a best response in the
subgame after this stage. Hence, if Ψ′ gains a majority at this stage, it fol-
lows from the first part that the final outcome will be the Condorcet winner
among the alternatives in Ψ′, which we denote by C ′. Similarly, if Ψ′′ gains a
majority, the final outcome will be the Condorcet winner among alternatives
in Ψ′′, denoted by C ′′.

To obtain a contradiction, suppose without loss of generality that i’s peak
is A ∈ Ψ′ but that he is strictly better off voting for Ψ′′. Then, there must be
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at least n other voters with peak in Ψ′′ and it must hold that C ′′ �i C
′.

Because Ψ′ ∪ Ψ′′ is also a tree (that has been approved at the previous
stage) there exists an alternative B that satisfies B ∈ PAC′ , B ∈ PAC′′

and B ∈ PC′C′′ . Since A,C ′ ∈ Ψ′ and Ψ′ is a tree, it must also hold that
B ∈ Ψ′. Also, because alternative A is i’s peak and because B ∈ PAC′′ ,
single-peakedness implies B �i C

′′ �i C
′. Hence, B 6= C ′.

We now consider two cases:
(1) Suppose that B 6∈ Ψ′′. Since Ψ′′ is a tree and B ∈ PC′C′′ , C ′ 6∈ Ψ′′.

Also, for all D ∈ Ψ′′, it must be the case that B ∈ PC′D (if not, then
the concatenation of PC′C′′ , PC′′D and PDC′ contains a cycle). By single-
peakedness, every voter with a peak in Ψ′′ prefers alternative B to C ′. Since
at least n other voters have a peak in Ψ′′ and B �j C

′ for all such voters,
we obtain a contradiction to the assumption that C ′ is the Condorcet winner
among alternatives in Ψ′.

(2) Suppose that B ∈ Ψ′′.14 Since C ′′ is the Condorcet winner among
the alternatives in Ψ′′, if C ′′ 6= B then at least n + 1 voters prefer C ′′ to B,
and hence, by single-peakedness, they prefer B to C ′, contradicting the fact
that C ′ is the Condorcet winner among alternatives in Ψ′. Hence, C ′′ = B
and C ′′ ∈ Ψ′. Since C ′ is the Condorcet winner in Ψ′, at least n + 1 other
voters prefer C ′ to C ′′; since C ′′ is the Condorcet winner among alternatives
in Ψ′′, C ′ 6∈ Ψ′′. Since at least n other voters have a peak in Ψ′′, there is a
voter with peak in Ψ′′ who prefers C ′ to C ′′. Denote his peak by D. Then,
there is an alternative E 6= C ′, C ′′ such that E ∈ PDC′ , E ∈ PDC′′ and
E ∈ PC′C′′ (otherwise the concatenation of PDC′ , PDC′′ and PC′C′′ contains a
cycle). Since Ψ′′ is a tree, E ∈ Ψ′′. Since Ψ′ is a tree and C ′, C ′′ ∈ Ψ′, we
conclude E ∈ Ψ′. Therefore, n + 1 voters prefer C ′ to E and hence E to
C ′′, contradicting the assumption that C ′′ is the Condorcet winner among
alternatives in Ψ′′.

As is common in voting games, there are additional, trivial equilibria
where, for example, voters coordinate to always vote Yes, no matter what
their preferences are. In this case, no voter is pivotal and such strategies do
form an ex-post perfect equilibrium. Call a strategy for voter i responsive
if, for every non-terminal node v and for every history leading to this node,
there is a preference realization such that i votes Yes at v, and another
preference realization such that i votes No at v. We show in the Appendix
that, for any convex binary sequential voting procedure, sincere voting is the
unique ex-post perfect equilibrium in responsive strategies as long as each
vote is between disjoint sets of alternatives (as, for example, in the successive

14This case cannot occur in procedures where the binary decision is among disjoint
subsets of alternatives as, e.g., in the successive procedure.
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procedure). If the vote is among sets of alternatives that are not disjoint,
the same alternative may be obtained following either branch of a given
node. While in this case sincere voting need not be the unique equilibrium
in responsive strategies, all ex-post perfect equilibria in responsive strategies
will lead to the same outcome if the agenda is convex.

5 Inferring Trees from Voting Data

Recall that if the set of alternatives A has cardinality k, then there are kk−2

distinct trees on A. Since in complex, real-life cases the tree structure is
almost never explicit, an important criterion for assessing the power of the
subsequent empirical analysis is: How arbitrary is the analyst’s choice of a
tree with respect to which preferences are potentially single-peaked? A first
step towards answering this question was provided by Trick [1989]:

Proposition 1 (Trick [1989]) Fix a profile of individual preferences such
that each alternative in A is the peak of some voter. Then there exists at
most one tree Ψ such that this profile of preferences is single peaked on Ψ.

Proof. For the sake of completeness, we reproduce here the simple proof.
Assume that the preferences are single-peaked on two distinct trees, Ψ and
Ψ′. Then Ψ has an edge e = (A,B) that is not contained in Ψ′. Consider then
any node C on the path between A and B in Ψ′ and its respective placement
in Ψ. There must be such a node because, by assumption, e = (A,B) /∈ Ψ′.
There are two cases: either the path from A to C in Ψ contains B, or the
path from B to C in Ψ contains A. In the first case, consider a voter i that
has a peak on A. Then, we must have A �i B �i C, which implies that i’s
preferences cannot be single-peaked on Ψ′. The other case is similar, and this
yields a contradiction.

Trick’s result uses as input the actual preferences of the voters. In partic-
ular, it is independent of the employed voting procedure and its agenda. But,
in empirical applications we only observe sequences of ”Yes” and ”No” votes
that are generated by a specific, known binary sequential procedure with a
specific, known agenda. In general, such information alone is not sufficient
to reconstruct the underlying preferences,15 and therefore we cannot directly
use Trick’s result.

15For example, if preferences are single-peaked on a line, an observed voting pattern may
not be sufficient to completely rank alternatives below the peak. For this reason, most of
the empirical literature focused on the identification of “ideal points” while making strong
assumptions about the remaining profile, e.g. Euclidean preferences.
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Even if we are given a specific voting procedure and observed voting
profiles, it is not always possible to find a tree such that all voting profiles
are consistent with sincere voting according to single-peaked preferences. To
illustrate this in a simple example, consider an amendment procedure with
three alternatives {A,B,C} where the first vote is between A and B and
the second between the winner of the first stage and C. Suppose that: A
wins the first vote; some voters vote for A and then for C; others vote for B
and then for A; still others vote against A in both stages. Assuming sincere
voting, the first voting pattern implies C � A � B, the second B � A � C,
and the last B � A and C � A. Therefore, each alternative is the worst one
for some voters and therefore, under singled-peaked preferences, must be a
leaf of the underlying preference tree. This yields a contradiction since any
such tree has only two leafs.

In contrast, we show below that assuming that the agenda was convex
with respect to an underlying tree, allows us in some cases to pin down the
tree from the observed voting data.

5.1 Inference under convexity: the successive proce-
dure

In order to be able to derive a preference tree that encompasses all alter-
natives we need to assume that each proposal is put up for vote, i.e., the
successive procedure does not stop early, and that each alternative receives
at least one vote.16 As we shall see, both assumptions were satisfied in the
relevant German case discussed below.

Proposition 2 Consider a successive voting procedure that does not stop
until all alternatives are put to vote, and any set S of individual sequences of
binary votes such that each alternative obtains at least one vote in its favor.17

Then there exists at most one tree Ψ such that the successive procedure is
convex with respect to Ψ, and such that all individual sequences in S are
consistent with sincere voting - and hence equilbrium behavior - according to
single-peaked preferences on Ψ.

Proof. Suppose by contradiction that Ψ and Ψ′ are two distinct trees with
the desired properties. Then Ψ has an edge e = (A,B) that is not contained
in Ψ′. The unique path between A and B in Ψ′ must contain an alternative
C 6= A,B. Then, in tree Ψ either: (1) B lies on the path from A to C, or (2)
A lies on the path from B to C.

16If these assumptions are not satisfied, only partial inference is possible.
17This implies |S| ≥ k.
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Consider first case (1). Since the agenda is convex with respect to both
trees Ψ and Ψ′, alternative A must be put to a vote before B and C. By
assumption, there is at least one voter i who votes for A: since voting is
assumed to be sincere, A must be then i’s peak among the remaining alter-
natives at that stage. If preferences are single-peaked with respect to Ψ, B
must be i’s peak after the elimination of A. Analogously, if preferences are
single-peaked with respect to Ψ′, voter i prefers C to B.

Assume first that, after A has been eliminated, B is put to vote before C.
In order to be consistent with sincere voting according to preferences that are
single-peaked on Ψ (Ψ′), i must vote for B (against B). Hence, i′s observed
voting profile cannot be consistent with both.

Assume next that C is put to vote before B. Then i must vote against C
to be consistent with sincere voting according to preferences that are single-
peaked on Ψ. But, because the agenda is convex, C must be a leaf when
it is put to vote, and hence i will prefer C to any remaining alternative if
preferences are single-peaked with respect to Ψ′. Therefore, i must vote for
C in this case, and we again obtained a contradiction. The argument for
case (2) is analogous.

Our identification result implies that if preferences are single-peaked on
some tree, if all voters play their equilibrium strategies, and if each alter-
native obtains at least one vote, then there is exactly one preference tree
that explains all votes. Of course, in empirical applications with hundreds of
legislators we do not expect every single individual sequence of votes to be
explained by our model, and hence there might be no preference tree that ex-
plains all votes. In this case, we focus on the preference tree that maximizes
the number of individual voting sequences that are consistent with sincere
voting according to single-peaked preferences on this tree.

5.2 Inference under convexity: the amendment proce-
dure

Unless the specific pairs of alternatives that are put to a vote against each
other in an amendment procedure can be dynamically adjusted as a function
of past results, convexity of static, fixed agendas is rather restrictive. Our
next result — used below to analyze the Brexit case — shows that an a
priori fixed agenda for an amendment procedure is convex if and only if the
underlying tree governing single-peaked preferences is a star (i.e., a tree in
which all alternatives except one are leafs): the alternative put to vote last
(e.g., the status quo) must sit at the center of the star, and be directly
connected by edges to all other alternatives. We note that fixed agendas are
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common in parliaments that use procedural agenda formation rules.

Proposition 3 Consider an amendment procedure with alternatives A1, A2, ..Ak

such that it is a-priori fixed that A1 is put to vote against A2, the winner
against A3, and so on, until the last alternative Ak. Such an agenda is con-
vex with respect to a tree Ψ if and only if Ψ is a star with alternative Ak at
its center.

Proof. If Ψ is a star, then the given agenda is convex since each two alter-
natives that are put to vote against each other are leaves (note that Ak itself
is a leaf of the remaining tree at the very last stage, when only one other
alternative has survived until that point).

Conversely, assume that the agenda is convex with respect to a tree Ψ.
Then alternatives Ak and Ak−1 must be directly connected by an edge in
Ψ. To see that, assume by contradiction that the unique path between Ak

and Ak−1 in Ψ contains another alternative Aj, j 6= k, k − 1. Then, at the
stage where Aj is put to vote, it cannot be a leaf of the tree of remaining
alternatives since this tree still contains Ak and Ak−1, and since Aj lies on
the path between Ak−1 and Ak.

Consider next alternative Ak−2 : we claim that it also must be directly
connected by an edge to Ak. Again, assume by contradiction that this is
not the case. Then the unique path between Ak and Ak−2 contains another
alternative Ai, i 6= k, k− 2. Let î be minimal with this property. If î < k− 2,
the argument follows exactly as above. The only other possibility is that
î = k − 1. Consider then the potential case where Ak−2 wins against its
opponent (i.e., one of the alternatives in the set A1, A2, ..Ak−3 that survived
until that point). Then the remaining tree contains only Ak−2, Ak−1, Ak and,
by assumption, Ak−1 is between Ak−2 and Ak. Thus the agenda pitting Ak−2
against Ak−1 cannot be convex. The argument for all other alternatives is
analogous.

5.3 Inference under convexity: mixed procedures

It should be clear from the above results and their proofs that inference using
convexity is highly dependent on the employed voting procedure. We next
provide an illustration showing that, even under a convexity assumption,
the preference tree is not always uniquely identified in mixed agendas that
combine successive and amendment elements - this type of agendas was used
in the Brexit applications discussed below.

Example 2 Suppose that there are 4 alternatives A,B,C,D: the first vote is
whether to implement A, and if A is eliminated, an amendment procedure will
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be used, with the first vote between B and C and the winner advancing against
D. By our results above, this agenda is convex if the underlying preference
tree contains the simple ”star” subtree B −D − C and if A is connected as
a leaf to one of the other alternatives. This yields 3 possible trees. Suppose,
for example, that we observe profiles where all voters who voted in favor of
A also vote in favor of B : then A must be connected by an edge to either B
or D. But, if C advances to the last stage, then the last vote cannot reveal
any information pinning down where A was connected: all voters with initial
peaks on A,B,D vote in favor of D independently of where A was connected
(and all voters with peak on C vote in favor of C). Therefore, even if each
alternative obtains at least one vote and each alternative is put to vote, there
may be multiple trees such that the agenda is convex and such that voting is
consistent with sincere voting according to single-peaked preferences.

6 Case Studies

We now apply our insights to two real cases from the German Bundestag and
from the UK Parliament, respectively. The basic structure of the revealed
preference analysis is as follows:

1. We review the general context of the vote and the specific content of
the proposed alternatives.

2. We describe the employed binary, sequential voting procedure and its
precise agenda.

3. We next present in concise form the real-life, observed voting profiles
- these are sets of Yes-No sequences, one for each legislator - and the
induced voting outcome. Voting profiles are available to us at the level
of each individual legislator, and hence we can indeed draw conclusions
at this level of behavior.

4. We formally infer a preference tree that makes the observed agenda
convex, and that maximizes the number of observed voting profiles
that are consistent with sincere voting (given single-peaked preferences
on the presumed tree).

5. We discuss the results and the underlying assumptions. In particular,
we sometimes offer alternative explanations of the observed data - these
explanations are necessarily based on additional, external factors. In
particular, a proposal’s political content is taken then into account.
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6.1 Abortion Law after the German Reunification

Prior to the 1992 reunification, abortions were strictly regulated in the Fed-
eral Republic of Germany, while the former Democratic Republic of Germany
had a more liberal law. The reunification treaty required new, uniform legal
foundations. After a long debate, 7 proposals were put up for vote in the
Bundestag, covering a wide range of opinions and details. In ethical deci-
sions it is customary to free members of the Bundestag from party discipline,
and our assumption of incomplete information becomes then salient: support
for various alternatives crosses party lines, and members of the same party
vote in favor of different alternatives, introducing real uncertainty about the
outcome.18

6.1.1 The proposed bills and the voting procedure

Following the Standing Orders of the Bundestag, voting proceeded according
to the successive procedure. The agenda formation rule in those Standing
Orders implicitly assume that the issue is one-dimensional and calls for voting
on extreme alternatives first. The Elders’ Council, headed by the Bundestag’s
president, suggested a very specific agenda.

We briefly describe here the proposed laws according to the order in which
they were actually put up for vote, from A to G. The status quo is denoted
by H.

A The Greens’ proposal was very liberal and basically allowed any abor-
tion.

B Similarly, the proposal by the Left party would allow any abortion, and
there were only minor differences compared to proposal A.

C This proposal, coming from a subgroup of very conservative parliamen-
tarians was extremely restrictive: it allowed an abortion only if the life
of the mother was otherwise at stake.

D The Liberals proposed that abortions should be legal in the first 12
weeks of pregnancy, but only if the mother takes part in pregnancy
counseling. Moreover, the proposal demanded punishment for women
aborting after the first 12 weeks.

18For example, in a recent case from 2018, Chancellor Merkel and a majority of legisla-
tors belonging to her governing party lost a landmark case that legalized gay marriage.
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Yes No Abstain Total
A 17 632 6 655
B 17 633 3 653
C 104 492 57 653
D 74 575 4 653
E 236 402 16 654
F 272 369 16 657
G 355 283 16 654

Table 1: Aggregate vote outcomes

E The Social Democrats suggested instead that any abortion within the
first 12 weeks should be legal, but without enforcing punishments for
later abortions.

F The main proposal brought forward by conservatives and supported
by the leaders of the ruling CDU/CSU, allowed abortions only under
restrictive regulations: even early abortions would remain legal only
under medical and/or psycho-social indications.19 Both woman and
treating doctor would be punished for an abortion after the first 12
weeks.

G This proposal was suggested by a group of legislators that crossed party
lines: it was meant as a compromise between proposals E and F. An
abortion within the first 12 weeks would not be punished. The woman
needs to take part in a pregnancy counseling and the abortion must
be performed by a doctor, but the ultimate decision stays with the
woman.

H The status quo in the former Democratic Republic allowed an abortion
in the first 12 weeks. In contrast, in the Federal Republic, an abortion
required the presence of several “indications” that were not easy to
fulfill.

Alternative G, the compromise among the main alternatives supported
by the big parties, was elected at the final vote. Table 1 summarizes the
voting results in the sequence of binary votes (see the Archives of Deutscher
Bundestag [1992]):

19This effectively handed the final decision to the doctor, who also had to explain the
decision in writing.
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6.1.2 Analysis

We assume throughout that the agenda was convex with respect to an un-
derlying preference tree. This seems justified given the Bundestag’s agenda
formation rule to put more extreme alternatives up for vote first. If our the-
ory is correct, we should be able to identify a preference tree such that most
voting profiles are consistent with sincere voting according to single-peaked
preferences on this tree.

For any given preference tree, only few voting profiles are consistent with
sincere voting. Abstract for the moment from abstentions, and assume that
voters can only vote Yes or No at each stage. This yields 27 = 128 pos-
sible individual voting profiles. In the successive procedure with a convex
agenda, each alternative is a leaf of the tree remaining at the time it is voted
upon. Therefore sincere voting prescribes to vote Yes if the current proposal
is the most preferred among the remaining alternatives, and No otherwise.
Together, these features imply that the location of the peak completely de-
termines the corresponding sincere voting strategy, i.e., this strategy is in-
dependent of how exactly alternatives are ranked below the peak. These
considerations imply that, for each preference tree, out of the 128 possible
voting profiles, only 8 are consistent with sincere voting according to strict
and single-peaked preferences on this tree. This significant reduction in com-
plexity well illustrates the empirical content of our proposed theory.

In reality, members of parliament choose not to cast a vote on a specific
proposal, or to formally abstain. 658 voters participated in at least one vote,
while 638 voters participated in all votes in the sequence, and we focus our
analysis on the latter. More than 100 of these voters abstained at least
once, which is why we include these voters in our analysis while treating an
abstention as an expression of indifference. Table 2 summarizes all common
voting profiles.

We first have to find the underlying preference tree. Since there are
8 alternatives, Cayley’s formula implies that there are 86 = 262.140 trees
on which preferences could have been, at least theoretically, single-peaked.
The observed agenda is convex ”only” for 7! = 5040 of these trees20. Since
each alternative was actually voted upon and obtained at least one vote,

20More generally, given a successive procedure with k alternatives, there are (k − 1)!
trees such that the agenda is convex with respect to this tree. Indeed, note that this claim
trivially holds for k = 2 and suppose it holds if there are k − 1 alternatives. Consider a
successive procedure with k alternatives and a preference tree for the k − 1 alternatives
proposed last that makes the procedure from the second stage on convex. The complete
procedure is then convex if and only if the first alternative is added as a leaf to any of the
k− 1 alternatives that are considered later. It follows that there are (k− 1)[(k− 2)!] trees
that make the successive procedure convex.
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Profile Observations
NNNNYNY 203
NNNNNYN 122
NNYNNYN 85
NNNYNNY 71
NNANNYN 48
NNNNNNY 30
NNNNANY 13
NNYNNNN 9
NNYNNAN 8
YYNNYNY 5
YYNNYNA 5

Table 2: Vote profiles that are cast by at least 5 legislators.

Proposition 2 implies that all observed voting profiles could be consistent
with sincere voting according to single-peaked preferences on at most one
of these trees. While there is no tree that makes all voting profiles consistent,
a vast majority of these are consistent with sincere voting and single-peaked
preferences on either one the two trees shown in Figure 1 (601 and 610 out
of 638 voting profiles, respectively). We show in the Appendix why no other
preference tree explains more voting profiles.

B

A

E G H F C

D

A E G HB F C

D

Figure 1: The two preference trees that maximize the number of voting
profiles consistent with sincere voting and single-peaked preferences.

We now look for some external validity for the choice of preference tree
by analyzing the content of the alternatives, and by using a preference sur-
vey. First, given the actual content of the proposed laws (e.g., their relative
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Peak A B C D E F G H
Number (min) 17 0 102 72 204 130 30 1
Number (max) 23 4 158 77 224 188 55 7

Table 3: Number of legislators which prefer each alternative the most.

position on the main axis of conflict in this abortion case), both trees are
reasonable. In particular, since there are only minor differences between pro-
posals A and B and since the two trees differ only in the placement of A
and B, content alone cannot be used to decide among the two trees.

Second, Pappenberger and Wahl conducted a post-voting preference sur-
vey. A majority of the reported preferences of more than 70 legislators were
indeed single-peaked with respect to the first tree shown in Figure 1, More-
over, for no other tree (even non-convex ones) more profiles of reported pref-
erences would be single-peaked.21 Therefore, we will use this tree for our
further analysis.

6.1.3 Inferred preferences

Since the chosen agenda was convex, our theoretical results predict that
sincere voting constitutes a robust equilibrium. We can therefore infer the
most preferred alternative of each legislator: for example, a legislator voting
Yes at the first vote has a peak on A, a legislator who votes Yes for the first
time at the second vote has a peak on B, and so on. Based on the record
of voting profiles, the following table shows, for each alternative, how many
legislators had a peak on that alternative.22

Although only a small minority of voters had a peak on the elected alter-
native G, it turns out that, under the above inferred possible distributions of
peaks, this alternative was indeed the Condorcet winner. While some legisla-
tors criticized the voting procedure, our analysis implies that the Bundestag’s
president and the Elders’ Council intuitively choose an agenda that made
strategic voting unnecessary, and that ensured the election of the Condorcet
winner - a compromise alternative that did not have much direct support.
In other words, the employed agenda consistently extended the traditional
“extremes first” doctrine from a line to a more complex tree that remained
implicit in the process - no mean feat in this complex situation.

21For example, note that only 7 preferences are single-peaked according to the linear
order on alternatives that was suggested by Pappenberger and Wahl.

22Due to abstentions, we cannot precisely identify the peak of some legislators. We
therefore display for each alternative a lower and an upper bound on the number of
legislators that have a peak on this alternative.

25



6.2 The Brexit Voting Marathon

A voting marathon consisting of a sequence of eight binary votes was con-
ducted by the British Parliament between March 12 and March 14, 2019. At
stake was the shape and even the future of Brexit - UK’s separation from the
European Union - that was supposed to formally take place just two weeks
later, on March 29, 2019.

The UK parliament has 649 members. Since Sinn Fein’s 7 MPs do not
take their seats, a majority of 322 was needed to pass legislation. The Tory
(Conservative) government, supported by the North-Irish DUP had a very
thin, theoretical majority of 324, but was facing many rebel members in favor
of a hard Brexit. Thus, the outcome was highly uncertain.

The Parliament used relatively complicated sequential, binary agendas
that mixed elements of the Amendment Procedure (AP) and the Successive
Procedure (SP). This was necessary because some of the bills (such as May’s
negotiated deal) were complete pieces of legislation, while others were only
partial amendments.

6.2.1 The First Voting Sequence

The first sequence of votes involved decisions about alternative courses of
actions up to the official Brexit date on March 29, 2019. It consisted of 4
binary votes involving 5 alternatives:23

0 We denote by 0 a no-deal Brexit on March 29. Implicitly, this was the
legal status quo unless further action was taken, and this was mentioned
as such in May’s motion 1.

1 May’s deal with the EU.

2 May’s no Brexit without a deal on March 29.

3 Malthouse: An alternative to May’s deal (1) that would execute Brexit
on March 29.24

4 Spelman: No Brexit without deal, ever (amendment to 2).

The agenda is illustrated in Figure 2. The first vote was on May’s motion
1, according to SP: voting would have stopped in case of acceptance. But

23Many other proposals were ultimately not put to a vote - agenda setting power lied
with the former, powerful Speaker John Bercow.

24This was procedurally presented as an amendment to 2, but logically represented an
altogether independent course of action.
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Figure 2: Voting procedure

motion 1 was defeated by 391 to 242 votes,25 and a more traditional sequence
according to AP followed. First, the Spelman amendment 4 narrowly passed.
In other words, the original motion 2 was defeated against the amended
version by 312 to 308 votes. Hence, motion 2 amended by 4, denoted here
by 24, became the standing motion. Then, the Malthouse proposal 3 was
defeated by 374 to 164 votes. Finally, the still standing motion 24 passed
against the status quo 0 by 312 to 278 votes. To conclude, the agenda mixed
a successive element (the vote on alternative 1) with an amendment element
(the remaining stages). The observed voting profiles are summarized in the
following table:

Inferring the tree based on convexity Assume first that preferences
were single peaked on a tree, and that the employed agenda was convex
with respect to that tree. Since the present agenda is analogous to the one
of Example 2, the underlying tree cannot be pinned down even under a
convexity assumption. Indeed, there are 4 trees for which the used agenda
becomes convex: because of the amendment element (see Proposition 3)
they must all contain a sub-tree that is a star with alternative 0 at the
center, connected by edges to alternatives 2, 24 and 3. In each of those

25Note that this was tighter than the original defeat by 230 votes. An even tighter
outcome was obtained at a later, third vote on the same issue. Thus, May’s strategy,
described below might have worked to some extent.
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Profile Observations
NYNY 310
YNYN 94
YNAN 68
NNYN 65
YNNN 32
YANN 16
NNAN 11
AAAA 11
YAAN 7
YYNY 5
NNNN 5
Others 25

Table 4: Individual vote profiles for the first sequence of Brexit votes.

trees, alternative 1 - the only one that was voted according to SP - must be
connected as a leaf to one of the remaining alternatives (see Proposition 2).

For the trees containing the edges 1 − 3 or 1 − 24, respectively, we find
a relatively large number of observed profiles that is not consistent with
single-peaked preferences on the respective tree:

1. In the tree with edge 1 − 3, the profile Y NNN appearing 32 times is
not consistent.

2. In the tree with edge 1− 24, the profile Y NY N appearing 94 times is
not consistent.

In contrast, both for the star with center at 0 and for the tree containing
the edge 1− 2, almost all observed profiles are consistent with sincere voting
and single-peaked preferences on the respective tree.26 The only inconsistent
profile (among those explicitly listed in Table 1) is Y Y NY , which was cast
only 5 times: it implies 1 being the peak and 24 being preferred to 0, which
is not possible under single-peaked preferences. Thus, at least in principle,
these two trees satisfy all our formal criteria of maximizing the number of
consistent profiles.

An alternative explanation Recall that convex agendas are necessarily
content-based: the meaning of the alternatives determines what is perceived
as more extreme or more moderate, and hence what is put to vote first. But,

26Here we interpret profiles that involve abstentions with a bias towards consistency.
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Figure 3: Preference trees that yield a convex agenda

the UK Parliament traditionally uses procedural agenda formation rules (e.g.,
status quo last, amendment to an amendment before the amendment itself,
and so on). Thus, while sometimes agendas turn out to be convex, this is
usually not by design.

Our inference exercise in the previous section did not take content into
account, and this leads here to some unlikely inferred preference profiles.
For example, for both trees identified above under the convexity assumption,
any voter with peak on 24 (no Brexit without a deal, ever) should prefer
alternative 0 (no deal Brexit) to alternative 2 (no Brexit without a deal on
March 29). Similarly, if the underlying tree is the star, any voter with peak
on May’s deal 1 should prefer a no Brexit deal 0 to any other alternative.
Or, if the tree is such that 1 is connected to 2, any agent with peak on 0 (no
deal) should prefer alternative 2 (no Brexit without a deal on March 29) to
May’s deal 1.

Another main reason to question the convexity of the employed agenda is
that at least one explicit deviation from convexity was actually part of prime
minister May’s strategy in order to get her deal through.27 On January 15,
2019, prior to the voting marathon, May’s negotiated Brexit deal with the
EU has been rejected by a very large margin of 230 votes.28 Nevertheless,

27Note that, contrasting the German Bundestag, the UK Parliament has no rules for
agenda formation that would generally lead to convexity.

28This was the largest defeat for a sitting government in history!
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Figure 4: Preference tree underlying the first votes on Brexit

it was put to vote again, before the more “extreme” alternatives such as a
no-deal Brexit or a new referendum (or, say, an arrangement whereby the
UK remains in the EU common market and customs union) were formally
discarded.29 Here is what the Economist wrote about this strategy:30

[...] Mrs May’s plan is to hold yet another vote on her deal
and to cudgel Brexiteers into supporting it by threatening them
with a long extension that she says risks the cancellation of Brexit
altogether. At the same time she will twist the arms of moderates
by pointing out that a no-deal Brexit could still happen, because
avoiding it depends on the agreement of the EU, which is losing
patience. It is a desperate tactic from a prime minister who has
lost her authority. It forces MPs to choose between options they
find wretched when they are convinced that better alternatives
are available. [...]

As the Economist explains, May’s hope was that both Leavers and Re-
mainers would finally unite behind her deal because each group perceived
one of the remaining, extreme alternatives still on the table (and thus also
a “lottery” among them) as catastrophic from their point of view.31 Such
an agenda, where a compromise is voted upon before the extremes, clearly
violates convexity.

Given the above caveats, and using the alternatives’ content, we therefore
suggest that the five motions in this part of the voting marathon can be
arranged on a tree as shown in Figure 4. To derive this tree we order the
alternatives on a one-dimensional scale from soft (or no) Brexit to a hard
Brexit, and we deviate from a simple linear order only when alternatives are
not easily comparable along this axis.

29The same strategy has been pursued by May’ successor, Boris Johnson. It was repeat-
edly countered by a majority in Parliament who refused to vote for a deal while a no-deal
Brexit was still an option (the Benn and Letwin amendments).

30“Whatever next?” Lead Article, The Economist March 16th 2019, page 11.
31Zeckhauser [1969] shows that introducing lotteries may destroy single-peakedness. Lot-

teries become relevant when the agenda is not convex because the anticipated outcome
depends then on beliefs about others’ preferences.
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We assume below that preferences were single-peaked on this tree, and
check whether the observed voting profiles are consistent with sincere voting.
We also discuss the sincerity assumption in this non-convex case.

The following table summarizes the most frequently observed profiles and
the single-peaked preference order on the tree that would generate each of
the observed profiles given sincere voting, and given the agenda used.32 We
denote indifference between alternatives 1 and 2 by 1 ∼ 2, and the notation
1 � (2, 3) summarizes that the preference could be either 1 � 2 � 3 or
1 � 3 � 2.

Profile Observations Implied single-peaked ranking
NYNY 310 24 � 2 � 1 � (3, 0)
YNYN 94 1 � (3, 0, 2) � 24

YNAN 68 1 � (2, 0) � 3 ∼ 24

NNYN 65 2 � 1 � (3, 0) � 24, 3 � 1 � (2, 0) � 24,
0 � 1 � (3, 2) � 24

YNNN 32 1 � (0, 2) � 24 � 3
YANN 16 1 � 0 � 2 ∼ 24 � 3
NNAN 11 0 � 1 � 2 � 24 ∼ 3, 2 � 1 � 0 � 24 ∼ 3
AAAA 11 1 ∼ 2 ∼ 24 ∼ 3 ∼ 0
YAAN 7 1 � 0 � 2 ∼ 24 ∼ 3
YYNY 5 None
NNNN 5 0 � 1 � 2 � 24 � 3, 2 � 1 � 0 � 24 � 3
Others 25 Diverse (including peaks on 2)

Table 5: Individual vote profiles for the first sequence of Brexit votes.

It follows from the above table that, with the exception of one profile that
was observed just five times (Y Y NY ) - the same inconsistent profile identified
above - , all common profiles are indeed consistent with our assumption that
voting was sincere according to single-peaked preferences on the constructed
tree.33 The selected alternative 24 was the Condorcet winner because it won
the direct vote against alternative 2, the only other close contender.

32We show all vote profiles that were cast by at least 5 voters.
33After alternative 1 was defeated by a large majority, the problematic profile YYNY is

consistent with single-peaked preferences with a peak on 24. Out of the rare profiles that
were used by 25 voters and that we didn’t list, 14 voters cast profiles that are inconsistent
with our assumption.
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Figure 5: Voting procedure used for the second voting sequence

6.2.2 The Second Voting Sequence

The second sequence of votes can be seen as determining how to precisely
continue the process, and how to implement the previous decision of not
leaving the EU without a deal by March 29, 2019. The motions were:

5 Corbyn: extend Article 5034 + new Brexit approach (amendment to
8).

6 Wollaston: Hold a new referendum (amendment to 8).

7 Benn: Hold indicative votes (amendment to 8).35

8 May: Motion to delay the Brexit date.

9 We denote by 9 the status quo, a no-deal Brexit on March 29. Although
Parliament has just excluded a no-deal Brexit “forever”, without fur-
ther legislative steps, including the approval of the EU, a Brexit on
March 29 was still the legal default.36

The voting agenda is depicted in Figure 5. The agenda for this sequence
was again a combination of SP and AP.

34This was the legal step announcing the intention to leave the EU, including the dead-
line of March 29.

35The purpose was to find a deal that can be approved by a majority. For simplicity we
ignore here the Powell amendment to this amendment, which would hold indicative votes
while specifying a precise Brexit date of June 30.

36This has also been emphasized by the EU’s leadership in the summit that followed
the defeat of May’s deal. The legal conundrum stemming from this status quo continued
also after Brexit’s delay and Johnson’s premiership.
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Figure 6: Preference tree underlying the second Brexit vote

May’s basic motion 8 asked for a delay in the Brexit process, one that
would give the parliament more time to approve a deal. The first vote was on
amendment Wollaston 6 (new referendum). If accepted, the only other vote
would be on May’s motion 8 amended by 6, denoted by 86, pitted against
the status quo. Wollaston was defeated by 85 to 334 votes. The second vote
was on Benn’s amendment 7. If accepted, the only other vote would be on
motion 87 pitted against the status quo. Benn’s amendment was narrowly
defeated by 312 to 314 votes. The third vote was on Corbyn’s amendment 5.
If accepted, the only other vote would be motion 85 pitted against the status
quo. Corbyn’s amendment lost by 302 to 318 votes. Finally, as none of the
amendments was successful, the un-amended motion 8 was pitted against the
status quo, and passed by 413 to 202 votes.

Inferring the tree based on convexity As above, we first assume that
the agenda was convex with respect to an underlying tree. Analogously
to a pure amendment procedure, the fact that the status-quo 9 could be
potentially pitted against any other alternative forces the tree to be a star
with alternative 9 at its center (see Proposition 3).

Then, a large number of observed profiles is inconsistent with single-
peakedness on this star. For example, a voter with profile Y Y Y Y (83
times) cannot have a peak on alternative 8 since she prefers all amendments
to it. But any such agent would prefer alternative 9 at the last vote, which
is incompatible with the Yes vote at the last step.

An alternative explanation Taking now into account the alternatives’
content, we assume that preferences for the second sequence were single-
peaked on the tree shown in Figure 6. Then, only ten voting profiles are
inconsistent with sincere voting according to single-peaked preferences on
this tree given the employed agenda.

Table 6 summarizes all common profiles and the single-peaked preference
orders that would generate each of these observed profiles given sincere voting
and given the agenda. All common profiles are indeed consistent with our
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Profile Observed Number Implied single-peaked preference relation
AYYY 202 86 ∼ 87 � 85 � 8 � 9
NNNN 200 9 � 8 � 87 � (85, 86)
NNNY 103 Any with peak on 8
YYYY 83 86 � 87 � 85 � 8 � 9
AAAA 14 86 ∼ 87 ∼ 85 ∼ 8 ∼ 9
NYYY 10 87 � (86, 85) � 8 � 9, 87 � 85 � 8 � (86, 9)
NNNA 8 9 ∼ 8 � 87 � (85, 86)
NYNY 6 87 � 8 � (85, 86, 9), 87 � 86 � 8 � (85, 9)
Others 23 Diverse

Table 6: Individual vote profiles for the second sequence of Brexit votes.

assumptions,37 but the identification of the Condorcet winner is here more
complex: either alternative 87 (Benn) or alternative 8 (May) could have
been it. Alternative 8 very narrowly won against 87 by 314 to 312 votes,
suggesting at first sight that 8 was the Condorcet winner. But, note that
at that point in the voting sequence, alternative 85 (Corbyn) was still in
play. For a voter with a peak on 85, sincere voting prescribes a vote against
87 even though he/she prefers 87 to 8. Since we do not have direct information
on how many voters had a peak on 85, it is not completely clear which
alternative was the Condorcet winner. On the other hand, the second vote
in the sequence clearly pitted 87 vs. 8, so a home-style argument a la Fenno
(see discussion below) might actually speak here against sincere voting and
thus reinforce the view that alternative 8 (May) was the Condorcet winner.
The identification difficulty described above is typical of non-convex agendas.

6.2.3 Why sincere voting?

We have argued that the employed agendas in the Brexit case were not
convex, partly by tradition and partly by design. Thus, sincere voting need
not constitute a strategic equilibrium. Nevertheless, we have shown that
sincere voting based on single-peaked preferences on a tree yields precise
predictions that agree well with the data. Why would legislators vote here
sincerely?

An important force behind sincere, straightforward voting is the need
to explain behavior and to make it transparent to constituents (see Fenno
[1978]).38 We observe a high correlation between MP’s hawkish voting be-

37Among the rare profiles cast by 23 voters, only 5 voters behaved inconsistently with
our assumption.

38But recall that in non-convex procedures sincere voting might not always be the sim-
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havior on Brexit and the percentage in favor of Leave in their constituency
at the 2016 Referendum. Thus, an MP from a strong Leave constituency
may find it difficult, if not impossible, to opportunistically vote Yes on a
soft-Brexit alternative even if it yields some strategic gain.

This disciplining effect seems to be particularly relevant in the UK, where
each member of parliament is individually elected (first past the post) in rel-
atively small constituencies of about 70-80000 people each.39 This should be
contrasted with Germany, where a majority of legislators are elected on state-
wide party lists (proportional representation), and are therefore not directly
accountable to a local community. Moreover, even the directly elected legisla-
tors represent much larger, and possibly more diverse, constituencies of about
250000 people each. Thus, if sincere, transparent voting is a desideratum, a
carefully designed agenda that induces it seems relatively more important in
Germany than in the UK.

7 Conclusion

Even if sincere voting is being enforced via motives and institutions that
lie outside the immediate scope of this paper, we strongly believe that hav-
ing content-based agenda formation rules inducing convexity ensure a much
smoother process both at the agenda setting stage and at the voting stage,
and we recommend their use. A steady use of well-designed, convex agendas
- that do not serve special interests and that tend to elect the Condorcet
winner - establishes sincere voting as the modus operandi for members of
parliaments, and frees them from the need to strategically asses each in-
stance anew. As we saw above, Premier May’s strategy of using a non-convex
agenda, specially designed to create uncertainty, has badly backfired, and she
lost her job. In fact, many examples of ”deviations from sincere voting - so
called ”strategic manipulations” - can be traced back to a lack of convexity
in the employed agenda. An early, very interesting paper analyzing such a
case is Riker [1958].

We conclude by noting that our general method of inquiry can be ex-
tended to obtain a more robust inference of preferences even for non-convex
agendas. Rather than assuming sincere voting one could compute equilib-
rium strategies and use these to infer preferences. However, as explained
above, equilibrium computation is very complex, and inferences are then
particularly sensitive to the exact (non-observable) beliefs held by voters.

plest behavior to explain one’s constituents!
39For example, Prime Minister Boris Johnson was elected to the relevant Parliament by

gathering just 29000 votes in his constituency!
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For future work, we propose instead to determine the strategies that survive
the iterated elimination of weakly dominated strategies and to base inference
on these strategies. Such an inference can yield bounds on the number of
voters with each possible preference profile.
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Appendix

Uniqueness of Equilibrium in Sincere Strategies

Proposition 4 For any convex binary sequential voting procedure, sincere
voting is the unique ex-post perfect equilibrium in responsive strategies if each
vote is between disjoint sets of alternatives.

Proof. We show that, in every ex-post perfect equilibrium in responsive
strategies, voting at a node v must be sincere if it is sincere at all following
nodes. The result will follow by induction since sincere voting is the unique
equilibrium in responsive strategies if only two alternatives remain,

Fix an ex-post perfect equilibrium in responsive strategies σ and a non-
terminal node v where the vote is among two disjoint subtrees Ψ′ and Ψ′′.
Any voter who prefers any alternative in Ψ′ over any alternative in Ψ′′ will
vote for Ψ′ in any ex-post perfect equilibrium in responsive strategies and,
conversely, any voter who prefers any alternative in Ψ′′ to any alternative in
Ψ′ will vote for Ψ′′. In tree Ψ, there is exactly one edge that connects an
alternative in Ψ′ to an alternative in Ψ′′. We denote these alternatives by A
and B, respectively. Note also that any path connecting an alternative in Ψ′

to an alternative Ψ′′ must contain both A and B. Fix now a preference profile
for all voters except i such that n voters have a peak at A and prefer any
alternative in Ψ′ to any alternative in Ψ′′, and n voters have a peak at B and
prefer any alternative in Ψ′′ to any alternative in Ψ′. It follows that these
voters vote for Ψ′ and for Ψ′′, respectively, and hence that voter i is pivotal
at v. Voting for Ψ′ will lead under the sincere continuation to the adoption
of A, while voting for Ψ′′ will lead to the adoption of B. If i’s peak (among
remaining alternatives) is in Ψ′, she will prefer A to B (this is because the
path from the peak to B must contain A) and it is a unique best response to
vote for Ψ′. Analogous arguments apply if i’s peak is in Ψ′′ and we conclude
that σ must prescribe a sincere vote for i at v.
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Identification of Preference Tree for the Vote on Abor-
tion Law

The two trees shown in Figure 1 yield that, out of the 638 voters, 601 and 610
voters, respectively, casted ballots that are consistent with sincere voting. We
now argue that there can be no other tree that both yields a convex agenda
and explains a higher number of votes:

1. Because the last vote is between G and H, there must be an edge G-H
for the agenda to be convex.

2. Since F is proposed at the second-to-last vote, it must be a leaf in the
corresponding subtree containing alternatives F,G and H. This yields
two possibilities: F-G-H or G-H-F. The vote profile NNNNNYN
was cast by 122 voters, which under sincere voting implies that these
voter prefer F to H to G. Therefore, no tree that contains the subtree
F-G-H can explain more votes.

3. Now we add alternative E as a leaf to the tree G-H-F. There are 203
voters casting vote profile NNNNYNY , which implies that they have
a peak at E and prefer G to H and G to F. For this profile to be
consistent, there must be an edge E-G. We conclude that any tree
maximizing the number of consistent votes must contain the subtree
E-G-H-F.

4. Now we add alternative D as a leaf to the tree E-G-H-F. There are
71 voters who voted NNNYNNY , which implies that D is their most
preferred alternative, and G is their second-most preferred alternative.
If a tree does not contain the edge D-G, these preferences will not be
single-peaked, and this tree will, therefore, not maximize the number
of consistent votes.

5. Now we add alternative C as a leaf to the tree consisting of the line
E-G-H-F plus the edge G-D. There were 85 voters casting vote profile
NNYNNY N , implying that C is their most-preferred alternative and
F their second-most preferred alternative. Therefore, any tree maxi-
mizing the number of explained votes must contain the edge F-C.

6. It remains to place A and B. All voters that voted for A (or formally
abstained in the first vote) have as their second-most preferred alter-
native B or E. Moreover, some voters are indifferent between A and
B (or A and E, or A and B and E). This implies that the two trees
shown in Figure 1 maximize the number of votes that are consistent.
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