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Abstract

We study a multi-dimensional collective decision under incomplete informa-

tion. Agents have Euclidean preferences and vote by simple majority on each

issue (dimension), yielding the coordinate-wise median. Judicious rotations of

the orthogonal axes —the issues that are voted upon —lead to welfare improve-

ments. If the agents’ types are drawn from a distribution with independent

marginals then, under weak conditions, voting on the original issues is not op-

timal. If the marginals are identical (but not necessarily independent), then

voting first on the total sum and next on the differences is often welfare supe-

rior to voting on the original issues. We also provide various lower bounds on

incentive effi ciency: in particular, if agents’types are drawn from a log-concave

density with I.I.D. marginals, a second-best voting mechanism attains at least

88% of the first-best effi ciency. Finally, we generalize our method and some

of our insights to preferences derived from distance functions based on inner

products.

∗A earlier version of the paper was circulated under the title “The Dimensions of Consensus.”

We wish to thank Yeon-Koo Che, Rahul Deb, Hans-Peter Grüner, Philippe Jehiel, Andreas Kleiner,

Robert J. McCann, Konrad Mierendorff, Marcin Peski, Rob Ready, Colin Stewart, Thomas Tröger,

Jürgen von Hagen, Cedric Wasser, the co-editor and referees for helpful comments, and to various

seminar and conference participants for helpful discussions. Shuangjian Zhang provided excellent

research assistance. Gershkov’s research is supported by a grant from Israel Science Foundation.

Shi is grateful to Social Sciences and Humanities Research Council of Canada for financial sup-

port. Gershkov: Department of Economics, Hebrew University of Jerusalem, Israel and School of

Economics, University of Surrey, UK, alexg@huji.ac.il; Moldovanu: Department of Economics, Uni-

versity of Bonn, Germany, mold@uni-bonn.de; Shi: Department of Economics, University of Toronto,

Canada, xianwen.shi@utoronto.ca.

1



1 Introduction

In 1974 the U.S. Congress changed its budgeting process: instead of considering

appropriations requests that were voted upon one at a time (bottom-up) which resulted

in a gradually determined total level of spending, the Congressional Budget and

Impoundment Control Act required voting first on an overall level of spending, before

the determination of budgets for individual programs in subsequent votes (top-down).

A large literature in the area of public finance (see for example the review articles in

Poterba and von Hagen [1999]) has debated the costs and benefits of such procedural
changes, with particular attention to the size of the expected budget deficit.1

We analyze the problem of redefining (or bundling) the issues brought to vote in a

multi-dimensional collective decision problem. Such methods can increase the welfare

of the involved decision makers by allowing them to reach a consensus that was not

possible on the original issues.

We study a multi-dimensional collective decision taken by simple majority voting:

an example is a legislature that needs to decide on individual budgets for public goods

such as, say, education and defense. Other examples are decisions on the geographical

location of a desirable facility, or decisions on hiring and project adoption that are

based on multi-dimensional attributes.

We adopt the standard spatial model of voting widely used in the political science

literature (see for example, Chapter 5 in Austen-Smith and Banks [2005]), where

voters have preferences characterized by ideal points in each dimension, and by a

quadratic loss caused by deviations from the ideal point.2

Voters’ideal points are private information, and we study voting by simple ma-

jority on each dimension separately. As we shall see below, this focus yields, in

combination with a decision over the dimensions that are the subject of voting, an

analysis of more generality than immediately apparent.

Voting by simple majority on each dimension yields the coordinate-wise median

of the voters’ ideal points. This easily follows from Black’s [1948] famous theorem

because the induced preferences are single-peaked on each one-dimensional issue.

In general, this outcome does not coincide with the first-best, the alternative that

minimizes the sum of squared distances from the individual ideal points. The first-

best is the coordinate-wise average (or mean) of the realized ideal points, and thus

first-best welfare is the corresponding variance (with a minus sign).

1There was a widespread belief that the new rules would lead to smaller deficits, and the act was

passed almost unanimously in both House and Senate.
2The main text deals with the two-dimensional case, while the generalization to more than two

dimensions is in an Appendix.
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The first-best is not implementable: each agent has an incentive to try to move the

average closer to his/her ideal point by exaggerating his/her position on one or more

issues.3 Given the tension between first-best on the one hand and implementable

outcomes on the other, how well does voting by simple majority perform in terms of

welfare? A classical inequality due to Hotelling and Solomons [1932] implies that, for

any distribution of preferences, voting by simple majority on any given issues achieves

at least 50% of the first-best welfare.

The main insight of the present paper is that a judicious choice of the issues

that are actually put to vote (while maintaining voting by simple majority, with

its desirable incentive properties) can significantly improve welfare.4 For example,

instead of voting on two separate issues, the legislature could vote on a total budget,

and then on a division of that budget between the two issues —just as Congress started

to do in 1974. More generally, we model the repackaging and bundling of issues by

rotations of the orthogonal axes that define what is put to vote. For example, suppose

voters care about two separate main issues, but they actually vote on the budget of

two agencies that overlap in their responsibility over these two issues. Rotations

correspond then to the shifting of jurisdictions among the two agencies: they change

the mix of issues under the control of each agency.

In influential work, Shepsle [1979] argued that the division of a complex decision

into several different jurisdictions (germaneness), creates stable equilibria that would

not be possible in a general, unconstrained collective decision model. His main ex-

amples are legislative committees in the U.S. congress. Viewed in light of Shepsle’s

theory, our goal is to endogenize the choice of jurisdictions in order to improve welfare,

an issue that has not received much attention in formal studies.

A basic technical observation is that the mean is rotation equivariant (i.e., the

mean after rotation is obtained by rotating the original mean) but the coordinate-

wise median is not.5 As a consequence, a rotation of the axes may decrease the dis-

tance between the coordinate-wise mean (first-best) and the coordinate-wise median

(outcome of majority voting), thus increasing welfare. The basic cause behind this

phenomenon is the non-linearity of the median function, a feature that yields a rather

complex analysis.6 In order to use calculus and probabilistic/statistical techniques,

3This observation was first made by Galton [1907], who was also the first to recommend the

use of the median as a robust and non-manipulable aggregator of opinions. His insights have been

sharpened and much generalized in the literature on robust estimation.
4The idea of comparing voting rules in terms of their expected welfare goes back to Rae [1969].
5See Haldane [1948], or the literature on spatial voting, e.g., Feld and Grofman [1988].
6This is true even for common distributions of types, such as the Gamma, Poisson, lognormal,

etc. Some of our results are based on insights that go back to conjectures by Ramanujan (see Szegö
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we focus here on the limit case where the number of voters is infinite.

Our main results are:

1) If the agents’ideal points in one dimension are independently distributed from

the ideal points in the other dimension then, under weak conditions on the distribu-

tion of preferences, voting on the original issues is sub-optimal; that is, a re-packaging

of the issues brought to vote via rotation (which necessarily creates some correlation

among the ideal points) increases welfare. This parallels the non-optimality of sepa-

rate sales in the multi-product monopoly problem: some form of mixed bundling is

always superior to separate sales (see McAfee, McMillan and Whinston [1989]).

2) If the marginals of the distribution of agents’ideal points are identically dis-

tributed (not necessarily independently), we provide suffi cient conditions under which

the 45-degree rotation welfare is superior to no rotation. The conditions are satisfied

by common distribution with I.I.D. marginals. We show that, with I.I.D. marginals,

the 45-degree rotation is always a critical point, and also provide suffi cient conditions

for the 45-degree rotation to be welfare maximizing. A key observation for these

results is that, under the symmetry of the marginals, the 45-degree rotation entirely

eliminates the conflict arising between effi ciency and majority voting in one dimension

—all remaining conflict is concentrated in the other, orthogonal dimension.

3)We provide various lower bounds on incentive effi ciency for large, non-parametric

families of distributions of ideal points (such as unimodal distributions, distributions

with an increasing hazard rate, etc.). For example, if agents’ideal points are drawn

from a log-concave density with I.I.D. marginals, a voting mechanism that involves

a 45-degree rotation of the original dimensions attains at least 88% of the first-best

effi ciency.

4) We extend our method to the more general class of preferences induced by

distance functions generated by inner-product norms. In particular, for weighted

Euclidean norms, we show that voting on independent issues remains sub-optimal

under the same suffi cient conditions as for the Euclidean preferences.

It is possible to perform a similar analysis for goals other than effi ciency, e.g.,

define jurisdictions that serve other purposes, such as the self-interest of an agenda

setter, or of a coalition of voters. Ferejohn and Krehbiel [1987] focused on controlling

budgetary growth rather than effi ciency, and they observed that the 1974 budget

reform can be represented by a 45-degree rotation of the coordinates on which voting

takes place. For that goal, we offer here precise conditions comparing the top-down

and bottom-up procedures in terms of the total budget they produce, and we show

that the budgeting reform can unambiguously improve welfare while having amixed

[1928]) and Hadamard.
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impact on the budget size.

To see how our results may fit practical voting environments, consider a legislative

committee that decides on spending on several items. Each committee member has a

preferred expenditure for each item. If the items are independent (i.e, the preferred

expenditure level on one item is uncorrelated with the preferred one on another item)

then it is not optimal to directly vote on the proposed expenditures. Instead, it

may be better to vote on the budgets of two agencies that have some overlapping

jurisdictions representing a particular mix of the two issues (this is a non-zero rotation

in our framework). In another example, if a committee finances regional hospitals,

say, that have similar sizes and serve similar purposes, our analysis suggests that it

is better to first decide the total budget for these hospitals and then divide it among

hospitals. Finally, if a government, say, has to fund an activity for multiple years, it

may be better first vote on a multi-year budget and then decide how to allocate the

total budget among different years.

1.1 Related Literature

The existence of a Condorcet winner is rare in multi-dimensional models of voting

(Kramer [1973]). Kramer [1972] observed, however, that voting in a variety of in-

stitutions is often sequential, issue by issue, and he established the existence of a

sophisticated voting equilibrium if voters’ preferences are continuous, convex and

separable. The coordinate-wise median —obtained by simple-majority voting in each

dimension — constitutes a basic instance of a structure induced equilibrium in the

spirit of Shepsle [1979].7

Technically, our contribution builds upon and relates to several important and ele-

gant contributions due to Moulin [1980], Border and Jordan [1983], Kim and Rousch

[1984], and Peters, van der Stel and Storcken [1992]. In a one-dimensional setting

with single-peaked preferences, Moulin considered mechanisms that depend on re-

ported peaks, and characterized the set of dominant strategy incentive compatible

(DIC), anonymous and Pareto effi cient mechanisms: each mechanism in this class is

obtained by choosing the median among the n reported peaks of the real voters and

the peaks of a set of n− 1 “phantom”voters (these are fixed by the mechanism, and

do not vary with the reports).8 Border and Jordan [1983] removed Moulin’s assump-

tion whereby mechanisms depend only on peaks, and generalized Moulin’s finding

7In a multi-dimensional voting model with common interest, aggregate uncertainty, and two truth-

motivated candidates, McMurray [2018] shows that, in equilibrium, multiple issues are consistently

bundled along the 45-degree line (the major diagonal in his model).
8Relaxing Pareto effi ciency yields the same characterization, but requires n+ 1 phantoms.
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to a multi-dimensional setting with separable and quadratic preferences: each DIC

mechanism is decomposable into a collection of one-dimensional DIC mechanisms,

each described by the location of the phantom voters in the respective dimension (see

also Barbera, Gul and Stacchetti [1993]).9

Gershkov, Moldovanu and Shi [2017] analyzed welfare maximization in a one-

dimensional setting with cardinal utilities, and derived the ex-ante welfare maximizing

placement of phantoms. They also showed how to avoid the phantom interpretation

by implementing Moulin’s mechanisms via a sequential, binary voting procedure to-

gether with a flexible qualified majority schedule.10 Combining their result with the

Border-Jordan decomposition yields the welfare maximizing mechanism for multi-

dimensional settings with separable and quadratic preferences. But, the ensuing

solution, described by an optimal placement of phantoms in each dimension, is not

satisfactory from a practical point of view: it implies that each issue (dimension) in

each multi-dimensional problem must be voted upon according to a particular insti-

tution that is sensitive to both utilities and distribution of types. Such flexibility may

be diffi cult, if not impossible, to achieve in practice.

Instead, we fix here an ubiquitous institution —voting by simple majority on each

issue —but we allow flexibility in the design of the issues that are actually put to

vote. Such a limited form of agenda design is common in practice, and, as we shall

see, has important welfare consequences.

The simplest multi-dimensional setting is the one with Euclidean preferences:

intuitively, the presence of spherically symmetric preferences does not a-priori deter-

mine the dimensions of the Border and Jordan decomposition into one-dimensional

mechanisms. Indeed, Kim and Rousch [1984] showed that the set of continuous,

anonymous and DIC mechanisms can be described by performing the Border-Jordan

analysis subsequent to any translation of the origin and any rotation of the orthogo-

nal axes.11 Peters, van der Stel and Storcken [1992] showed that, for two dimensions

with odd number of voters, voting by simple majority in each dimension (after any

translation/rotation of the plane) is also Pareto effi cient.12

9Most papers in the literature indeed assume separable preferences. Ahn and Oliveros [2012] is a

notable exception: they prove equilibrium existence in combinatorial voting with non-separable pref-

erences, and provide conditions under which the Condorcet winner is implemented in the equilibrium

of large elections.
10See also Kleiner and Moldovanu [2017] for general suffi cient conditions under which sequential,

binary voting procedures possess desirable properties.
11Since both median and mean are translation equivariant, translations of the origin cannot im-

prove welfare. It is therefore without loss of generality to restrict attention here to rotations.
12They show that a mechanism is Pareto effi cient if and only if, for any realization of agents’ideal

points, its allocation lies in the convex hull of the ideal points. With two or more dimensions, a
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Finally, it is also instructive to compare our results to those in the classical papers

by Caplin and Nalebuff ([1988], [1991]).13 These authors did not consider incomplete

information and incentive constraints. Instead, motivated by the instability of multi-

dimensional voting, they considered the effect of super-majority requirements on the

stability of the spatial mean. For a large number of voters and for a log-concave

density governing the distribution of types (and also for other, more general forms

of concavity), Caplin and Nalebuff showed that, once established as status-quo, the

mean cannot be displaced by another alternative if the selection of that alternative

requires a super-majority of at least 64% (or 1 − 1
e
). In other words, any coalition

that prefers an alternative over the mean contains less than 64% of the voters, and is

thus not effective.

As mentioned above, for the log-concave case with I.I.D. marginals, our results

display a mechanism that is incentive compatible for any (odd) number of voters and

that achieves at least 88% of the first-best utility when this number goes to infinity.

Thus, issue by issue simple majority voting on appropriately defined dimensions con-

stitutes an intuitive and incentive compatible institutional arrangement that is almost

effi cient in this case. Moreover, the relative effi ciency of this mechanism increases,

and tends to 100%, when we increase the number of dimensions of the underlying

problem.

Although our setting bears some similarity to multi-dimensional cheap talk, the

logic of welfare gains is very different here. In those models, the multiplicity of issues

helps because it improves information transmission between the sender(s) and the

receiver. In a model with two senders Battaglini [2002] shows that, as long as the two

senders’ideal points are linearly independent, full information revelation is possible

by carefully choosing dimensions to exploit the conflict between senders. In a one-

sender model, Chakraborty and Harbaugh [2007] show that the sender can credibly

convey his ranking of different issues to the receiver. In our model rotations address

a very different conflict, one between simple majority voting and effi ciency.

2 The Model

We consider n (odd) agents who collectively decide about two issues, X and Y , on a

convex region D ⊆ R2. Each agent’s ideal position on these two issues is given by a
peak ti = (xi, yi), i = 1, 2, ..., n. The peak ti is agent i’s private information. Each

generalized median with phantoms may lie ouside of the convex hull.
13These papers were also the first to use modern concentration inequalities in the Economics

literature.
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agent i has a utility function of the form

− ||ti − v||2

where the point v ∈ D denotes the chosen alternative and where ||·|| is the standard
Euclidean (l2) norm. The peaks ti = (xi, yi) are independently, identically distributed

(I.I.D.) across agents, according to a joint distribution F (xi, yi), with density f . De-

note by µX (µY ) the expected value of xi (yi). Throughout the paper, we assume

that E ||ti||2 <∞ for all ti.

A utilitarian planner would choose v ∈ D to maximize the average of the agents’

ex ante utilities, or equivalently, minimize the expected average squared distance from

the voters’peaks:

min
v∈D

E

[
1

n

n∑
i=1

||ti − v||2
]
,

subject to agents’incentive constraints. Ignoring the agents’incentives, the planner

would choose a point u that minimizes the average of ex post distances:

u ∈ arg min
v∈D

1

n

n∑
i=1

||ti − v||2 ,

which we will refer to as the first-best solution. For each fixed realization (t1, t2, ..., tn),

it is well known that the first-best solution is simply the mean of the ideal points

u = t ≡ 1

n

n∑
i=1

ti.

Hence, the first-best (per capita) expected utility is the variance (with negative sign)

− 1

n

n∑
i=1

∣∣∣∣ti − t∣∣∣∣2 .
In Section 5, we shall extend our analysis to preferences generated by other norms

induced by inner products.

2.1 Re-packaging Issues via Rotations

We consider voting by simple majority on each separate dimension. Our focus on

simple majority voting stems from its wide applicability and its actual use in practice.

We do not a priori restrict the issues on the ballot to be X and Y . Instead, new issues

can be created through “re-packaging and bundling”the basic issues X and Y .

We model packaging and bundling of issues through rotations in the plane. Recall

that, for fixed Cartesian coordinates, rotating a point (x, y) ∈ R2 counter-clockwise
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by an angle of θ can be represented by the multiplication of the vector (x, y) with a

rotation matrix R (θ). The resulting, rotated vector (z−, z+) is given then by(
z−

z+

)
=

(
cos θ − sin θ

sin θ cos θ

)
︸ ︷︷ ︸

R(θ)

(
x

y

)
=

(
x cos θ − y sin θ

x sin θ + y cos θ

)
.

Equivalently, one can obtain (z−, z+) by rotating the original Cartesian coordinates

clockwise around the fixed origin by an angle of θ to obtain new orthogonal coordi-

nates, and then projecting (x, y) to the new coordinates.

Let (Z−, Z+) denote the new random vector obtained from rotating the random

vector (X, Y ) by an angle of θ:

Z− (θ) = X cos θ − Y sin θ, (1)

Z+ (θ) = X sin θ + Y cos θ. (2)

Voters then vote on the new issues Z− and Z+, instead of the original issuesX and Y .14

By the simple majority rule, the voting outcome will be (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn))

where

m− (θ, t1, ..., tn) = median (x1 cos θ − y1 sin θ, ..., xn cos θ − yn sin θ), (3)

m+ (θ, t1, ..., tn) = median (x1 sin θ + y1 cos θ, ..., xn sin θ + yn cos θ), (4)

are the marginal medians after the rotation.15

It is easy to verify that the mean t of t1, ..., tn is rotation equivariant, i.e. the

mean of rotated peaks is simply the rotated mean of the original peaks. In marked

contrast, the marginal medians (m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn)) are not rotation
equivariant, i.e., rotating and taking medians is not the same as taking medians

and rotating. Therefore, rotations are instruments by which the planner may use to

influence welfare. To illustrate, consider Figure 1 below with three voters. A, B, and C

are voters’ideal points. Original coordinates are drawn in green, rotated coordinates

are drawn in red. The green star is the outcome of voting along the original axes

(x, y). The red one is the outcome of voting along the rotated axes (x′, y′). It is clear

that the mean of ideal points is rotation equivariant, the median is not.

14We abuse here notation by denoting by the same capital letters both the underlying dimen-

sions (or issues) and the random variables governing the distribution of peaks on those respective

dimensions.
15Other than marginal median, there are several other multivariate generalizations of univariate

median. See Small [1990] for a review of different definitions of multi-dimensional medians and their

(lack of) equivariance properties.
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Figure 1: Median is not rotation equivariant.

The reason for this complex behavior is the non-linearity of the median of random

variables under convolutions, as illustrated by the following example.

Example 1 Let (X, Y ) denote a random vector on the plane. Suppose that X and Y

are I.I.D. exponentially distributed with fX (x) = e−x for all x ≥ 0 and fY (y) = e−y

for all y ≥ 0. The means are µX = µY = 1 and the medians are mX = mY =

ln 2. Rotating the coordinates clockwise by π
4
and then projecting (X, Y ) to the new

coordinates, yield a new random vector (Z−, Z+) = (
√
2
2
X −

√
2
2
Y,
√
2
2
X +

√
2
2
Y ). Z− is

symmetric, so its median and mean are both equal to zero, and the mean of Z+ equals√
2
2

(µX + µY ) =
√

2. In contrast, the median of Z+ is not equal to
√
2
2

(mX +mY ), or

equivalently, mX+Y 6= mX +mY . To see this, note that the density of X + Y is given

by

fX+Y (z) =

∫ ∞
−∞

fX (z − t) fY (t) dt =

∫ z

0

e−(z−t)e−tdt = ze−z, for all z ≥ 0.

Since

FX+Y (mX +mY ) =

∫ 2 ln 2

0

ze−zdz =
3

4
− 1

2
ln 2 ≈ 0.4 < FX+Y (mX+Y ) = 1/2,

it follows that mX+Y > mX +mY .

More generally, we could also consider an additional translation of the origin, say

by a vector w, to obtain new orthogonal coordinates (and thus create new issues).
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The joint operation of rotation and translation can also be represented by a linear

matrix.16 But, medians (and means) are translation equivariant, and thus there is

no extra welfare advantage from such translations. Therefore, we focus below on the

family of rotations - the linear isometries with determinant +1 that fix the origin -

described by the angle of rotation θ relative to standard Cartesian coordinates.

2.2 The Set of Voting Mechanisms

For any rotation angle θ ∈ [0, 2π], we define the direct marginal median mechanism

ϕθ as

ϕθ (t1, t2, ..., tn) = (m− (θ, t1, .., tn) ,m+ (θ, t1, .., tn)) , (5)

where (m− (θ, t1, .., tn) ,m+ (θ, t1, .., tn)) is the marginal median with respect to ro-

tation θ and reported peaks ti as defined in (3) and (4). Since both rotations and

medians are continuous functions, ϕθ (t1, t2, ..., tn) is continuous in θ and in all its

other arguments.

A direct revelation mechanism ψ (ti, t−i) is dominant-strategy incentive compati-

ble (DIC) if, for any voter i, any realizations ti and t−i, and any reporting strategy

profile t̂−i(t−i) of other voters, voter i’s utility −
∥∥ti − ψ (ti, t̂−i(t−i))∥∥2 is maximized

by truthfully revealing his type ti. It is easily seen that the direct revelation mecha-

nism ϕθ defined in (5) is DIC. Surprisingly, as shown by Kim and Roush [1984] and

Peters et al. [1992], the set of marginal median mechanisms (for all possible rotations)

coincides with the entire class of anonymous, Pareto effi cient and DIC mechanisms.17

This provides a complementary justification for our focus on simple-majority voting

mechanisms.

The mechanism ϕθ can be decentralized (via an indirect mechanism) by first defin-

ing the issues (via rotations) and then voting sequentially by simple majority, one issue

at a time, using a binary, sequential voting procedure with a convex agenda (such as

16This set of general transformation matrices (rotation and translation) is called the special or-

thogonal group for the plane, and is denoted by SO(2). Each matrix in SO (2) is an orthogonal

matrix. It is special because the determinant of each matrix is +1, whereas the determinant could

be −1 for other orthogonal transformations such as reflections. Rotations form the subgroup that

fixes the origin.
17A mechanism ψ is anonymous if, for any profile of reports (ti, t−i), ψ (t1, ..., ti, ..., tn) =

ψ
(
tp(1), ..., tp(i), ..., tp(n)

)
, where p is any permutation of the set {1, ..., n}. A mechanism ψ is

Pareto effi cient (or Pareto optimal) if, for any profile of reports (ti, t−i), there is no alternative v

such that ||ti − v||2 ≤ ||ti − ψ (ti, t−i)||2 for all i, with strict inequality for at least one agent. Note
that their characterization fails in higher dimensions because anonymous, Pareto effi cient and DIC

mechanisms need not exist. Hence, our analysis can be extended to higher dimensional problems,

but the solution need not be ex-post Pareto effi cient.
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those used by all democratic legislatures).18 The overall outcome does not depend on

the order in which the issues are put up to vote, and is the vector of marginal medians

(m− (θ, t1, ..., tn) ,m+ (θ, t1, ..., tn)). This forms an incidence of the structure induced

equilibrium à la Shepsle [1979].

Two rotation angles, θ = 0 and θ = π/4, are of particular interest and have natural

interpretations. When θ = 0, voters are asked to vote on the original issues X and

Y . For θ = π/4 we have

m− (π/4, t1, ..., tn) =

√
2

2
median (x1 − y1, ..., xn − yn),

m+ (π/4, t1, ..., tn) =

√
2

2
median (x1 + y1, ..., xn + yn).

Therefore, under the π/4 rotation, the vote is on issues X + Y and X − Y , rather
than on X and Y . Once voters have decided on X + Y and X − Y , the planner can
then obviously recover X and Y . The two-step voting procedure associated with the

π/4-rotation resembles the “top-down”budgeting procedure widely used in practice:

first a total budget is determined, and then it is allocated among several items. On

the other hand, the voting procedure associated with the 0-rotation resembles the

“bottom-up” budgeting procedure: agents vote on separate budgets for individual

items, and the total budget is gradually obtained as the sum of the individual budgets.

Remark 1 We focus here on orthogonal coordinates. This is without loss of general-
ity: for any equilibrium outcome obtained by voting along coordinates generated by a

non-orthogonal base, there always exists an orthogonal base that yields the same vot-

ing outcome. The difference is that under a non-orthogonal base, the order in which

the issues are put up to vote does matter. To illustrate, consider the following stan-

dard implementation of the π/4 rotation in practice: after the total sum (X +Y ) was

determined, voters are asked to vote on X (or on Y ) rather than on the orthogonal

difference (X − Y ). We show that as long as (X + Y ) is voted upon first, any issue

voted upon at the second stage that is not colinear with X + Y will yield the same

equilibrium outcome as under voting according to (X − Y ). To see this, consider the

case where voters vote first on X + Y, and then on X, and the second-stage strategy

of voter i with ideal point (xi, yi) . The first stage decision imposes then a budget line

18At each stage of convex, sequential procedure on a fixed dimension, a binary decision is collec-

tively taken among two ideologically coherent sets of alternatives that create a clear left-right divide.

For details see Gershkov, Moldovanu and Shi [2017] and Kleiner and Moldovanu [2017].
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(the purple dash line in Figure 2) on which the final voting outcome must lie.

Figure 2. Alternative implementation of the top-down procedure.

Let A and B denote the points obtained by projecting (xi, yi) on the budget line, and

on the X axis, respectively, and let D denote the projection A to the X axis. Then, at

the second stage voting on X, voter i’s dominant strategy is to vote for point D rather

than point B : whenever i is pivotal, voting D yields point A on the budget line, which

is closest to his ideal point. On the other hand, A is exactly the point that i would

have voted for if the second stage vote were on the difference X − Y . Note that the
above argument is independent of the number of voters and can be easily generalized

to other non-orthogonal bases.

3 The Limit Case when the Number of Agents Is

Large

The full probabilistic optimization problem can be rewritten as

(P0) min
θ∈[0,2π]

∫
D

...

∫
D

(
1

n

n∑
i=1

||R (θ) ti − ϕθ (t1, t2, ..., tn)||2
)
f(t1)...f(tn)dt1...dtn.

We focus here on the solution to problem (P0) when the number of agents is large.
The resulting optimal mechanism will be incentive compatible, Pareto effi cient and

anonymous for any (odd) number of voters. For I.I.D. random variables {Xi}∞i=1 with
finite mean µX and variance σ

2
X , we know from the central limit theorem that

√
n

(
1

n

n∑
i=1

Xi − µX

)
→ N(0, σ2X).

13



Bahadur (1966) shows that the quantiles of large samples display a similar behavior.

In particular,
√
n(X(n+1)/2:n −mX)→ N

(
0,

1

4f 2(mX)

)
,

where X(n+1)/2:n is the median order statistic, and where mX is the median of the

distribution. Thus, as n goes to infinity, the sample median converges to the median

of the underlying distribution and, of course, the sample mean converges to the mean.

By applying the above limit results to our setting, we obtain that, as n→∞,(
m− (θ, t1, .., tn)

m+ (θ, t1, .., tn)

)
−→

(
m− (θ)

m+ (θ)

)
≡
(
median (X cos θ − Y sin θ)

median (X sin θ + Y cos θ)

)
.

Furthermore, since the norm ||·|| is continuous, we obtain that, as n→∞,

1

n

n∑
i=1

||R (θ) ti − ϕθ (t1, t2, ..., tn)||2

=
1

n

n∑
i=1

[
(xi cos θ − yi sin θ −m− (θ, t1, .., tn))2 + (xi sin θ + yi cos θ −m+ (θ, t1, .., tn))2

]
→ E ||X cos θ − Y sin θ −m−(θ), X sin θ + Y cos θ −m+(θ)||2

= σ2X + σ2Y +
(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2
,

where the two coordinates of the rotated mean are

µ− (θ) = µX cos θ − µY sin θ, and µ+ (θ) = µX sin θ + µY cos θ.

Therefore, in the limit where n is very large, the problem becomes

(P1) min
θ∈[0,2π]

(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2
+ σ2X + σ2Y .

In other words, we look for the rotation that creates the marginal median vector with

the minimum distance from the mean.

For most parts of the analysis below, it will be convenient to normalize the means

of X and Y to be zero —such a normalization is without loss of generality because of

the translational equivariance of both mean and median. Let us define the normalized

random variables X̃ and Ỹ as

X̃ = X − µX and Ỹ = Y − µY .

The corresponding normalized marginal medians (m̃− (θ) , m̃+ (θ)) are

m̃− (θ) = m− (θ)− µ− (θ) and m̃+ (θ) = m+ (θ)− µ+ (θ) .
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We further note that it is without loss of generality to restrict attention to rotations

in the interval [0, π/2]. That is because, for any θ ∈ [π/2, 2π] that minimizes the

planner’s objective, there exists θ′ ∈ [0, π/2] that attains the same minimum.19 Hence,

the planner’s problem can be rewritten as

(P2) min
θ∈[0,π/2]

m̃2
− (θ) + m̃2

+ (θ) + σ2X + σ2Y .

Since variances are fixed, the planner’s goal under this normalization is simply to find

the rotation resulting in a marginal median vector with minimum norm. To simplify

notation, we shall drop the tilde symbol for normalized random variables where no

confusion can arise.

Remark 2 We would like to comment here on the feasibility of the first-best solution.

1. With a continuum of voters, the planner could, in principle, dictate the mean as

the collective choice without seeking any input from the voters. But, this would

require detailed knowledge about the joint distribution of individuals’preferences.

In contrast, voting by simple majority in each dimension is practical and indeed

often observed in reality because it is always incentive compatible, and because

its execution does not require any prior knowledge about the distribution. None

of our theorems or propositions (e.g., Theorems 1-3, Propositions 1-3) requires

the planner to know the exact distribution: it is suffi cient to know that the joint

distribution belongs to a broad class.

2. If the number of voters is finite, the first-best solution, defined as the sample

mean of the voters’ ideal points, is not implementable because each agent can

advantageously move the mean towards her ideal point by reporting a false peak.

The individual influence on the mean is unbounded (unless the distribution of

peaks is on a bounded interval). Thus, even if the number of voters is large, the

possibility to tilt the mean in one’s favor may still be substantial.

3.1 Sub-Optimality of Voting on Independent Issues

In this subsection, we assume that the unrotated marginalsX and Y are independent.

We work on the normalized version of the planner’s problem (P2) and show that the
zero-rotation yields a local maximum of the norm of the normalized marginal median,

i.e., it leads to a local utility minimum.

19This claim is a direct consequence of simple trigonometric identities, and we omit the proof.
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Theorem 1 Assume that X and Y are independent. The rotation with angle θ = 0 is

a local utility minimum if

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0,m2

X +m2
Y 6= 0. (6)

Proof. See Appendix A.
If random variables X and Y are unimodal, then the rotation of θ = 0 is a

local utility minimum if the median lies between the mode and the mean.20 This

alternative suffi cient condition is simple and intuitive: there are elegant, general

characterizations of distributions where such orders of the mode, median and mean

hold (see for example, Dharmadhikari and Joag-Dev [1988], Basu and DasGupta

[1997]).

Corollary 1 Assume that X and Y are independent and m2
X + m2

Y 6= 0. Suppose

that X and Y are unimodal and satisfy

MX ≤ mX ≤ µX or µX ≤ mX ≤MX

MY ≤ mY ≤ µY or µY ≤ mY ≤MY

whereM,m, µ are mode, median and mean, respectively. Then the rotation with angle

θ = 0 is a local utility minimum.

Proof. If MX ≤ mX ≤ µX = 0 (where the last equality holds by normalization),

then mX ≤ 0 and f ′(mX) ≤ 0 because mX is to the right of the mode. Hence

mXf
′
X (mX) ≥ 0. If 0 = µX ≤ mX ≤MX , then mX ≥ 0 and f ′(mX) ≥ 0 because mX

is to the left of the mode. Hence mXf
′
X (mX) ≥ 0, and analogously for Y .

The proof of Theorem 1 proceeds as follows: the rotation θ = 0 yields a local

maximum of the norm of the normalized marginal median if it is a critical point

m−(0)m′−(0) +m+(0)m′+(0) = 0, (7)

and if it satisfies the following local second-order condition

m′′−(0)m−(0) + (m′−(0))2 +m′′+(0)m+(0) + (m′+(0))2 < 0. (8)

The proof verifies that m′−(0) = m′+(0) = 0 (so condition (7) is trivially satisfied),

and that condition (6) in Theorem 1 implies condition (8).

20A random variable Z is unimodal if its density f(z) has a single mode (or peak).
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The geometric intuition of the sub-optimality of voting on independent issues is

illustrated in Figure 3 below:

Figure 3. Small rotation improves welfare.

Assume that 0 = µX ≤ mX and 0 = µY ≤ mY . We want to show that a small rotation

improves welfare if f ′X (mX) ≥ 0 and f ′Y (mY ) ≥ 0. Assume that the unrotated median

is B. Therefore, by independence, there is a mass of 50% above the AC line and a

mass of 50% to the right of GH line. Consider a small rotation with angle θ > 0,

so that new axes are x′ and y′. We want to show that this shifts the new median

towards the mean (0, 0),i.e., that the median moves towards the south-west. Consider

the projection of B onto the new, rotated axes: the result obtains if the mass above

DE and the mass to the right of LM are both below 50%. If the area of ABE is larger

than the one of BCD, we obtain that the mass above ED is indeed smaller than 0.5

(the comparison for the other dimension is analogous).

For illustration purpose, let us assume that X and Y distribute on bounded inter-

vals [a1, a2] and [b1, b2], respectively. The line DE passing through point B is given

by y = mY + (mX − x) tan θ. Therefore, the difference between the areas ABE and

BCD is

ABE −BCD =

∫ a2

a1

[FY (mY + (mX − x) tan θ)− FY (mY )] fX (x) dx.

Since f ′Y (mY ) ≥ 0, FY is locally convex at mY . Therefore, for suffi ciently small

θ, the curve FY (mY + (mX − x) tan θ) with x ∈ [a1, a2] lies above the tangent line

FY (mY ) + fY (mY ) (mX − x) tan θ. That is,

FY (mY + (mX − x) tan θ) ≥ FY (mY ) + fY (mY ) (mX − x) tan θ.
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As a result, for suffi ciently small θ, we have

ABE −BCD ≥
∫ a2

a1

fY (mY ) (mX − x) tan θfX (x) dx = fY (mY )mX tan θ > 0,

as desired. The argument for the other dimension is analogous.

Intuitively, area ABE represents voters who have their preferred y coordinate

marginally above mY and who, after rotation, would switch their support from alter-

natives above the line y = mY to alternatives below the line y′ = mY . In contrast,

area BCD represents voters who have their y coordinate marginally below mY and

who would switch their support from alternatives below the line y = mY to alter-

natives above the line y′ = mY . Since F (y) is locally convex at y = mY , there are

more voters in area ABE than in BCD, and thus more than half of them will vote for

alternatives below the line y′ = mY . That is, the median after the rotation will be

closer to the origin (the first best).

3.2 The π/4-Rotation

In this subsection, we assume that X and Y are identically (but not necessarily

independently) distributed. By symmetry,

m− (π/4) = median(

√
2

2
(X − Y )) = 0 = µ− (π/4) ,

and

m+ (π/4) = median (

√
2

2
(X + Y )) =

√
2

2
median (X + Y ) .

Hence, the π/4-rotation is a natural candidate for improving welfare. It completely

eliminates the conflict arising between effi ciency and incentive compatibility along

one dimension — all remaining conflict is concentrated in the other dimension, as

illustrated in the following figure (assuming mX > µX = 0) where (mX ,mY ) is the
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unrotated median and the red star is the π/4-rotated median m+ (π/4):

Figure 4. The π/4-rotation with symmetric marginals.

Proposition 1 Suppose that X and Y are I.I.D., and the density fX satisfies the

following regularity condition:

lim
x→∞

fX

(√
2m+ (π/4)− x

)
fX (x)

(
2x−

√
2m+ (π/4)

)2
= 0,

lim
x→−∞

fX

(√
2m+ (π/4)− x

)
fX (x)

(
2x−

√
2m+ (π/4)

)2
= 0.

Then θ = π/4 is a critical point, i.e., it satisfies the first order condition.

Proof. See Appendix A.
The above regularity condition is satisfied if the distribution has a bounded sup-

port or a thin tail. If we could verify second-order conditions either locally or globally,

then Proposition 1 could tell us whether θ = π/4 is a local or global utility maximum.

Unfortunately, the second order conditions, evaluated at θ = π/4, turn out to be very

elusive.

Our next result offers suffi cient conditions for the optimality of the π/4-rotation.

It requires the following definition.

Definition 1 A vector (a, b) is said to majorize (a′, b′), written as (a, b) � (a′, b′), if

a+ b = a′+ b′ and if max(a, b) ≥ max {a′, b′}. A function h (a, b) is said to be Schur-

convex (concave) in (a, b) if h (a′′, b′′) ≥ (≤)h (a′, b′) whenever (a′′, b′′) � (a′, b′).

Proposition 2 Suppose that X and Y are identically distributed and mX 6= µX . The

π/4-rotation attains the welfare maximum if either
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1. m+(θ) < µ+(θ) for all θ ∈
[
0, π

4

]
, and the function

Pr (X sin θ + Y cos θ ≤ z)

is Schur-concave in (sin2 θ, cos2 θ) for all θ ∈
[
0, π

4

]
and all z ∈ [mX , 0];

or

2. m+(θ) > µ+(θ) for all θ ∈
[
0, π

4

]
, and the function

Pr (X sin θ + Y cos θ ≤ z)

is Schur-convex in (sin2 θ, cos2 θ) for all θ ∈
[
0, π

4

]
and z ∈ [0,mX ].

Proof. See Appendix A.
If Pr (X sin θ + Y cos θ ≤ z) is Schur-concave for all θ ∈

[
0, π

4

]
, and if the rotated

median is always below the mean, it must hold that

mX ≤ mX sin θ+Y cos θ ≤ m√
2
2
X+

√
2
2
Y
≤ µX .

Hence, the distance between the mean and the rotated median mX sin θ+Y cos θ is small-

est when θ = π/4. The suffi cient conditions in Proposition 2 only involve the model’s

primitives (i.e., the distributions of types) and can be, in principle, checked for any

distribution.21

For example, we verified that Pr (X sin θ + Y cos θ ≤ z) is Schur-concave if X and

Y are I.I.D. exponential and thus the π/4-rotation is globally optimal in that case.22

For other standard distributions such as gamma, Pareto and Rayleigh, we used Math-

ematica to plot the aggregate expected welfare as a function of the rotation angle

θ ∈ [0, π/2]. Our simulations suggest that the π/4-rotation is optimal for these distri-

butions, but we were unable to analytically prove it. In general, the π/4-rotation may

not be optimal, as illustrated by Example 2 below. Therefore, some restrictions on

the symmetric marginals are indeed necessary for the optimality of the π/4-rotation.

Example 2 Let (X, Y ) denote a random vector on the plane. Suppose that X and

Y are I.I.D. according to the following discrete distribution:

values of X 0 0.45 1

probability 0.4 0.3 0.3

21Similar Schur-concavity/convexity conditions appear in the literature: For example, if X,Y are

non-negative I.I.D. random variables with a log-concave density then Pr(aX + bY ≤ z) is known

to be Schur-concave function of (a2, b2) for all z (see Karlin and Rinott [1983]). We cannot directly

use this result because of the non-negativity restriction.
22The verification details for the exponential distribution are available upon request.
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so that µX = µY = 0.435 and mX = mY = 0.45. The distribution of X + Y is given

by
values of X + Y 0 0.45 0.90 1 1.45 2

probability 0.16 0.24 0.09 0.24 0.18 0.09

so that µX+Y = 0.87 and mX+Y = 1. The expected utility from the 0-rotation is

−2 (µX −mX)2 = −2 (0.435− 0.45)2 = −0.000 45

and the expected utility from the π/4-rotation is

−
(√

2

2

(
µX+Y −mX+Y

))2
= −

(√
2

2
(0.87− 1)

)2
= −0.008 45

Therefore, the π/4-rotation is strictly dominated by the 0-rotation. Since the welfare

dominance is strict, we can approximate the discrete distribution by a continuous

distribution and maintain it.

3.3 When does “Top-Down”Dominate “Bottom-Up”?

We now compare the expected utility under the π/4-rotation with that under the

0-rotation. As is apparent from Figure 4, this amounts to check whether the orig-

inal coordinate-wise median vector (mX ,mY ) is closer to the origin than the new

coordinate-wise median vector (mX+Y /2,mX+Y /2). Therefore, if mX < µX and

mX + mY < mX+Y , or if mX > µX and mX + mY > mX+Y , then the π/4-rotation

dominates the zero-rotation.

Assuming that X and Y are I.I.D., we present below a simple suffi cient condition

that simultaneously guarantees mX < (>)µX and mX + mY < (>)mX+Y .23 The

need to control for sub/super-additivity of medians parallel the conditions on second-

highest order statistics for bundling in auctions (see Palfrey [1983]).

Proposition 3 Suppose that X and Y are I.I.D. and that mX 6= µX . The expected

utility at θ = π
4
exceeds the expected utility at θ = 0 if either

FX (mX + ε) + FX (mX − ε) ≤ 1 for all ε > 0, (9)

23As is illustrated in Example 1, both condition mX < µX and the super-additivity condition

mX + mY < mX+Y hold for the exponential distribution which is strictly concave. We show in

Section 7.5 of Appendix A that the super-additivity condition is satisfied for the gamma distribution

(a generalization of the exponential) and the Rayleigh distribution, where the suffi cient condition

(9) may not be easily checked, or does not hold. There we also construct, by using a copula, an

example where independence is not necessary for the π/4-rotation to dominate the 0-rotation.
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or

FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε > 0. (10)

In particular, condition (9) implies mX < µX and mX +mY < mX+Y , and is satisfied

if FX is strictly concave. Condition (10) implies mX > µX and mX + mY > mX+Y ,

and is satisfied if FX is strictly convex.

Proof. See Appendix A.
It is worth noting that van Zwet [1979] shows that condition (9) implies µX >

mX > MX and (10) implies µX < mX < MX . It follows from Corollary 1 that each

of the two conditions is also suffi cient for the zero-rotation to be sub-optimal.

Remark 3 Whenever the median function is super (sub)-additive, the top-down pro-
cedure where a total budget is determined first leads to a higher (lower) overall budget

than the bottom-up procedure where votes are item-by-item and where the total budget

is gradually determined.24

4 Bounds on Relative Effi ciency

In this section we provide several lower bounds on the (relative) effi ciency loss of

the marginal median mechanisms augmented by rotations. We keep the assumption

that the number of agents is large. The various bounds are obtained under different

distributional assumptions governing the distribution of voter’s ideal points, and the

proofs use several classical statistical inequalities, and some more recent concentration

inequalities. In particular, for the logconcave case studied by Caplin and Nalebuff
([1988], [1991]), the lower bound is 88% of the first-best utility.

Note that each assertion in the following Theorem holds for a large class of dis-

tributions, and therefore that the results do not require exact knowledge of the par-

ticular distribution (as long as it is known that it belongs to the respective class).

In particular, the optimal rotation achieves, in each case, a possibly higher relative

effi ciency.

Assume that ideal points are distributed such that the marginals are given by

random variables (X, Y ) where X and Y are not necessarily identical, and are poten-

tially correlated. Since the results heavily use statistical results that establish relations

between the mean, median and variance, we work here with the non-normalized
variables (so that the role of the mean and its relations to the other statistics does not

get obscured by the normalization we used above). The first-best expected utility,

24Note that this question is not identical to the question of utility comparisons.
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attained by choosing the mean in each coordinate, decreases as variances increase and

is given by

−E(X − µX)2 − E(Y − µY )2 = −σ2X − σ2Y .

The expected utility of rotated medians with angle θ is given by

U (θ) = −σ2X − σ2Y −
(
µ− (θ)−m− (θ)

)2 − (µ+ (θ)−m+ (θ)
)2
.

Thus, the relative effi ciency of the rotation with angle θ is given by:

EF (θ) =
σ2X + σ2Y

σ2X + σ2Y +
(
µ− (θ)−m− (θ)

)2
+
(
µ+ (θ)−m+ (θ)

)2 ≤ 1.

Two forces play here a role: on the one hand, a distribution that is concentrated

around a central location (such as the mean or the median) will have a small difference

between mean and median, which tends to increase the relative effi ciency. On the

other hand, such a distribution also has a low variance so that the difference between

mean and median plays a bigger overall role.25 The first-best outcome can be attained

by majority voting (in the limit with a large number of agents) if the distributions of

both X and Y are symmetric around their respective means (e.g., both are normally

distributed). In this case we have µ− (θ) = m− (θ) and µ+ (θ) = m+ (θ).

A random variableX has increasing failure rate (IFR) if its hazard rate f (x) / (1− F (x))

is increasing in x.

Theorem 2 The following relative effi ciency bounds hold:

1. For any random variables X and Y and for any angle θ, EF (θ) ≥ 1
2
.

2. For any unimodal random variables X and Y and for any angle θ, EF (θ) > 5
8
.

3. For any random variables X and Y that have an increasing failure rate (IFR)

and that satisfy µX ≤ mX and µY ≤ mY , and for any angle θ, EF (θ) > 0.603.

In addition, if X and Y are I.I.D., then EF (π
4
) ≥ 0.753.

4. For any X and Y that are identically distributed and for any angle θ, EF (π
4
) ≥

2σ2X
3σ2X+Cov(X,Y )

. Thus, when X and Y are independent, EF (π
4
) ≥ 2

3
. In the polar,

co-monotonic scenario, EF (π
4
) = EF (0) ≥ 1

2
and welfare cannot be improved

by rotation.26

25It is interesting to note that the covariance ofX and Y does not play a direct role in the effi ciency

calculations: it only enters in the way medians of convolutions are calculated.
26A random vector is co-monotonic if and only if it agrees in distribution with a random vector

where all components are non-decreasing functions (or all are non-increasing functions) of the same

random variable.
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5. If X and Y are I.I.D. and if each has a log-concave density, then EF (π
4
) ≥

0.876.

Proof. 1. A classical inequality due to Hotelling and Solomons [1932] says that the
squared distance between the mean and median of any random variable is always

less than the variance:

(µ−m)2 ≤ σ2.

Therefore,(
µ− (θ)−m− (θ)

)2 ≤ σ2−(θ) = σ2X cos2 θ + σ2Y sin2 θ − 2 sin θ cos θCov(X, Y ),(
µ+ (θ)−m+ (θ)

)2 ≤ σ2+(θ) = σ2X sin2 θ + σ2Y cos2 θ + 2 sin θ cos θCov(X, Y ).

We obtain the universal bound:

EF (θ) ≥ σ2X + σ2Y
2σ2X + 2σ2Y

=
1

2
.

2. For the class of unimodal distributions the squared distance between mean

and median is at most 3
5
variance (see Basu and DasGupta [1997]). Thus, for such

distributions we get:

EF (θ) ≥ σ2X + σ2Y
(σ2X + σ2Y ) + 3

5
(σ2X + σ2Y )

=
5

8
.

3. For the class of distributions with an increasing failure rate (IFR), if µX ≤ mX ,

then we obtain from Rychlik [2000] that

(µX −mX)2

σ2
≤

(− log(1
2
)− 1

2
)2

3
4

+ log(1
2
)

= 0.656,

and hence an effi ciency rate of

EF (θ) ≥ σ2X + σ2Y
(σ2X + σ2Y ) + 0.656(σ2X + σ2Y )

=
1

1 + 0.656
= 0.603.

If in addition, X and Y are I.I.D., then the convolution of two such variables is again

IFR (see Barlow and Proschan [1965]) and we obtain

EF (
π

4
) ≥ 2σ2X

2σ2X + 0.656σ2X
= 0.753.

4. If X distributes as Y (not necessarily independent), we know that X − Y is

symmetric and hence that m−
(
π
4

)
= µ−

(
π
4

)
= 0. This yields:

EF (
π

4
) =

2σ2X

2σ2X +
(
µ+
(
π
4

)
−m+

(
π
4

))2 ≥ 2σ2X
3σ2X + Cov(X, Y )
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Assume that (X1, Y1) and (X2, Y2) belong to the same Frechet class M(F1, F2) of bi-

variate distributions with fixed marginals F1 and F2. Moreover, assume that (X1, Y1)

≤PQD (X2, Y2) where PQD stands for the positive quadrant order (see Lehmann

[1966]). This stochastic order measures the amount of positive dependence of the un-

derlying random vectors.27 We obtain that all one-dimensional variances are identical,

but that Cov(X1, Y1) ≤ Cov(X2, Y2). Thus, the worst case effi ciency bound is higher

when the variates are less positive dependent. In particular, for given marginals, the

highest worst-case effi ciency of the π
4
rotation is achieved for the I.I.D. case where

Cov(X, Y ) = 0, and where:

EF (
π

4
) ≥ 2σ2X

3σ2X
=

2

3
.

The polar case to independence is the case where X and Y are co-monotonic. Then

their covariance is maximized for given marginals, and their convolution is quantile-

additive (see Kaas et al. [2002]). In other words, quantiles and thus medians (i.e., the

50% quantile) are linear functions. Hence we obtain for the median that m+(π
4
) =√

2mX . Hence, (
µ+

(π
4

)
−m+

(π
4

))2
= (µX −mX)2 ≤ 2σ2X

and we obtain

EF (
π

4
) = EF (0) ≥ 1

2
.

This holds analogously for any other rotation.

5. Consider now the I.I.D. case with log-concave densities.28 Then X and Y

are unimodal. Their convolution is log-concave (Prekopa [1973]), and hence also

unimodal.29 Let fX = fY denote the respective log-concave densities. Bobkov and

Ledoux [2014] prove that:30

1

12σ2X
≤ f 2X(mX) ≤ 1

2σ2X
.

On the other hand, Ball and Böröczky [2010] prove that:

fX(mX) · |mX − µX | ≤ ln

(√
e

2

)
.

27It is implied, for example, by the supermodular order.
28Note that any log-concave distribution on the plane yields log-concave marginals (Prekopa

[1973]).
29The convolution of unimodal densities need not be unimodal. But the convolution of X and Y

is unimodal for any Y if and only if X is log-concave (see Ibragimov [1956]).
30Interestingly enough, the left hand side of the inequality applies to any probabiliy density on

the real line.
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Combining the two inequalities above yields

(mX − µX)2 ≤ 1

f 2X(mX)
ln2
(√

e

2

)
≤ 12σ2X ln2

(√
e

2

)
.

The effi ciency bound in the log-concave case becomes then

EF (
π

4
) ≥ 2σ2X

2σ2X + 12σ2X ln2
(√

e
2

) =
1

1 + 6 ln2
(√

e
2

) = 0.876.

The above calculations also show that the improvement obtained by rotation may

be significant. Just to give one example, consider the original (e.g., unrotated) distri-

butions for which the Hotelling-Solomons bound is achieved with equality.31 Then,

the welfare in the I.I.D. case without rotation is exactly half of the first-best welfare,

while the welfare following the 45 degree rotation is at least two-thirds of the original

first best, yielding an improvement of at least 30%.

In Appendix B, we show how the above bounds can be obtained for the case of

more dimensions. For example, in the I.I.D, case, the relative effi ciency tends to 1

when the number of dimensions becomes infinite.

5 Extension to Other Utility Functions

In this section we briefly illustrate how our method can be applied to a more general

class of utility functions that are based on a distance generated by an inner product.

Thus, we assume that the utility of agent i with peak ti from decision v ∈D ⊆ R2 is
given by

−∆ (||ti − v||I) ,

where ||·||I is some inner-product norm, and where ∆ is a strictly monotonically

increasing function.

Since inner-product norms are strictly convex, choosing a marginal median with

respect to any orthogonal coordinates yields a DIC mechanism (see Peters et al.

[1993]).32 Recall that two vectors are orthogonal if their inner-product (that induces

the distance function) is zero.

31This is a discrete distribution concentrated on two points. But, it can be easily approximated

by continuous distribution that satisfy the bound with almost equality, for any needed degree of

precision.
32These authors also show that, as in the case of the Euclidean norm in the plane, the class of

marginal medians coincides with the class of DIC, anonymous and Pareto effi cient mechanims.
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For the Euclidean norm, every rotation is an isometry that fixes the origin and

preserves orthogonality and orientation: it transforms a basis of orthogonal vectors

into another such basis, and each oriented orthogonal basis is obtained (modulo trans-

lation) from another via a suitable rotation.

In order to proceed in an analogous fashion, we need to first identify the set of

isometries: for any inner product norm ||·||I this is always an infinite multiplicative
group (see Garcia-Roig [1997]). Because medians and welfare measures that are based

on distances are translation equivariant, it is enough, as above, to characterize the

sub-group of isometries that fix the origin and that preserve orientation (i.e., their

corresponding matrices have determinant +1). We start with the simplest case.

5.1 Weighted Euclidean Norm

An agent with ideal point ti = (xi, yi) has a weighted Euclidean preference over points

v = (x, y) given by

−β2 (x− xi)2 − (y − yi)2 ,

with β > 0. Note that, without loss of generality, we can always normalize one of the

weights to be +1 without changing the underlying (ordinal) preferences. Let

M =

(
β2 0

0 1

)
,

and define an inner-product and its associated norm by:

〈(x1, y1), (x2, y2)〉 ≡ (x1, y1)M(x2, y2)
T ,

||(x, y)|| ≡
√

(x, y)M(x, y)T =

√
β2x2 + y2.

The “unit circle”is here an ellipse

β2x2 + y2 = 1,

with axes parallel to the standard Cartesian coordinate axes. Isometries that fix the

origin leave this ellipse invariant (i.e., a point on the ellipse is translated to another

point on the ellipse) and can be represented by generalized “rotation”matrices of the

form

Rβ(θ) =

(
cos θ − 1

β
sin θ

β sin θ cos θ

)
.

While the mean in each coordinate is still the first-best, the welfare measure

changes to incorporate the weight β. By normalizing the mean to zero, the welfare

maximization problem becomes:

min
θ

[β2m2
β− (θ) +m2

β+ (θ) + β2σ2X + σ2Y ]⇔ min
θ

[β2m2
β− (θ) +m2

β+ (θ)],
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where

mβ− (θ) = median (X cos θ − 1

β
Y sin θ),

mβ+ (θ) = median (βX sin θ + Y cos θ).

As before, it is straightforward to verify that the minimum attained by any angle

θ ∈ [π/2, 2π] can be attained by an angle θ ∈ [0, π/2]. Hence, it is without loss of

generality to restrict attention to θ ∈ [0, π/2]. Instead of θ = π/4, the rotation that

yields mβ− (θ) = 0 is defined here by

cos θ =
1

β
sin θ ⇔ θ = arctan β.

We now show that Theorem 1 continues to hold:

Theorem 3 Assume that X and Y are independent. The rotation with angle θ = 0 is

a local utility minimum if

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0, β2m2

X +m2
Y 6= 0.

Proof. See Appendix A.
It is also straightforward to derive effi ciency bounds. Here are two examples:

1) The universal bound based on the Hotelling-Solomons inequality (without any

assumption on the underlying random variables) remains 1
2
, independently of β. 2)

If X and Y are independent, using the generalized rotation where θ = arctan β, we

obtain

EF (arctan β) ≥ 1 + β2

1 + 2β2 + (1− β2) cos2(arctan β)
.

We depict below the bound as a function of β (recall that EF (π
4
) ≥ 2

3
with β = 1).

Note that the bound tends back to the universal Hotelling-Solomons bound 1
2
for

β → 0 and for β → ∞. This is intuitive since in those limit cases one dimension
becomes irrelevant and we obtain in the limit a one-dimensional voting problem where

“rotations”cannot help.
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Figure 5. Bound on relative effi ciency for I.I.D. random variables.

5.2 General Inner Product Norm

Consider next a general norm defined by an inner-product. Such a norm is generated

by a symmetric, positive definite matrix Q:

||(x, y)|| ≡
√

(x, y)Q (x, y)T .

The “unit circle”is now an ellipse that is possibly tilted with respect to the standard

coordinates. Let AQ be the orthogonal matrix representing the change of variables

that diagonalizes Q, and let MQ be the obtained diagonal matrix.33 Then MQ is

the matrix of a weighted Euclidean inner product, as explained above. The set of

isometries that fix the origin and preserve orientation is thus given here by the com-

position:

AQRMQ
(θ)A−1Q ,

where RMQ
(θ) is the set of generalized rotations that keep invariant the untilted unit

ellipse associated to the diagonal matrixMQ, as explained in the previous subsection.

Note that the unit circle (i.e, ellipse) of this norm has now axes that are parallel to

the coordinate axes defined by the change of variables AQ. In particular, the relevant

“zero rotation” is the one corresponding to these new variables; it is sub-optimal if

the distribution of peaks has independent projections on these coordinates (rather

than on the standard Cartesian ones).
33Note that any symmetric, positive definite matrix can indeed be diagonalized, and its two

eigenvalues are always real.
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6 Concluding Remarks

A re-definition of issues facilitates the search for consensus among ex-ante conflicting

interests. We have shown that voting by simple majority on each dimension becomes

a highly effective aggregation mechanism when combined with a judicious choice of

the issues that are put up for vote. Our study endogenizes the process by which

a “structure induced equilibrium” can be reached in a complex multi-dimensional

collective decision problem with incomplete information about preferences. While we

have focused on welfare maximization, other goals (such as maximizing the utility of

an agenda setter) can be analyzed by the same methods.

7 Appendix A: Omitted Proofs

7.1 Proof of Theorem 1

In order to show that θ = 0 is suboptimal, it is suffi cient to show that

m−(0)m′−(0) +m+(0)m′+(0) = 0, (11)

and that

m′′−(0)m−(0) + (m′−(0))2 +m′′+(0)m+(0) + (m′+(0))2 < 0. (12)

By the definition of m+ (θ) ,

1

2
= FX sin θ+Y cos θ (m+ (θ))

=

∫ ∞
−∞

Pr

(
Y <

m+ (θ)− x sin θ

cos θ

)
fX (x) dx

=

∫ ∞
−∞

FY

(
m+ (θ)− x sin θ

cos θ

)
fX (x) dx

Since the above identity holds for all θ, we take the derivative with respect to θ and

obtain

0 =

∫ ∞
−∞

fY

(
m+ (θ)− x sin θ

cos θ

)(
m′+ (θ) cos θ − x+m+ (θ) sin θ

cos2 θ

)
fX (x) dx (13)

Taking the second derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

f ′Y

(
m+ (θ)− x sin θ

cos θ

)(
m′+ (θ) cos θ − x+m+ (θ) sin θ

cos2 θ

)2
fX (x) dx

+

∫ ∞
−∞

fY

(
m+(θ)−x sin θ

cos θ

)
cos4 θ

( [
m′′+ (θ) cos θ +m+ (θ) cos θ

]
cos2 θ

+2 cos θ sin θ
(
m′+ (θ) cos θ − x+m+ (θ) sin θ

) ) fX (x) dx

(14)
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If θ = 0, then conditions (13) and (14) reduce to

0 =

∫ ∞
−∞

fY (m+ (0))
(
m′+ (0)− x

)
fX (x) dx (15)

and

0 =

∫ ∞
−∞

f ′Y (m+ (0))
(
m′+ (0)− x

)2
fX (x) dx+

∫ ∞
−∞

fY (m+ (0))
(
m′′+ (0) +m+ (0)

)
fX (x) dx

(16)

Note that m+ (0) = mY , so it follows from (15) that

m′+ (0) =
fY (mY )

∫∞
−∞ xfX (x) dx

fY (mY )
∫∞
−∞ fX (x) dx

= µX = 0,

and follows from (16) that

m′′+ (0) = −mY −
f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx.

Similarly, we can write

1

2
= FX cos θ−Y sin θ (m− (θ)) =

∫ ∞
−∞

FX

(
m− (θ) + y sin θ

cos θ

)
fY (y) dy

Taking the derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

fX

(
m− (θ) + y sin θ

cos θ

)(
m′− (θ) cos θ + y +m− (θ) sin θ

cos2 θ

)
fY (y) dy

Taking the second derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

f ′X

(
m− (θ) + y sin θ

cos θ

)(
m′− (θ) cos θ + y +m− (θ) sin θ

cos2 θ

)2
fY (y) dy

+

∫ ∞
−∞

fX

(
m−(θ)+y sin θ

cos θ

)
cos4 θ

( [
m′′− (θ) cos θ +m− (θ) cos θ

]
cos2 θ

+2 cos θ sin θ
[
m′− (θ) cos θ + y +m− (θ) sin θ

] ) fY (y) dy

If θ = 0, then the above two conditions reduce to

0 =

∫ ∞
−∞

fX (m− (0))
(
m′− (0) + y

)
fY (y) dy

and

0 =

∫ ∞
−∞

f ′X (m− (0))
(
m′− (0) + y

)2
fY (y) dy+

∫ ∞
−∞

fX (m− (0))
(
m′′− (0) +m− (0)

)
fY (y) dy

Since m− (0) = mX , we have

m′− (0) = −
∫∞
−∞ yfY (y) dy∫∞
−∞ fY (y) dy

= −µY = 0
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and

m′′− (0) = −mX −
f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy

Therefore, the first-order condition (11) holds because m′− (0) = m′+ (0) = 0. For

the second order condition (12), note that

m′′−(0)m−(0) + (m′−(0))2 +m′′+(0)m+(0) + (m′+(0))2

= mX

(
−mX −

f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy

)
+mY

(
−mY −

f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx

)
= −m2

X −m2
Y −mX

f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy −mY
f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx

As a result, condition (12) is equivalent to

m2
X +m2

Y +mX
f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy +mY
f ′Y (mY )

fY (mY )

∫ ∞
−∞

x2fX (x) dx > 0.

Therefore, a suffi cient condition for the sub-optimality of zero rotation is

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0 and m2

X +m2
Y 6= 0.

7.2 Proof of Proposition 1

If X and Y are I.I.D., then we have

m− (π/4) = 0 and m+ (π/4) =

√
2

2
mX+Y .

Therefore, θ = π/4 is a critical point if

0 = m− (π/4)m′− (π/4) +m+ (π/4)m′+ (π/4) =

√
2

2
mX+Ym

′
+ (π/4) .

Recall (13) from the proof of Theorem 1 that

0 =

∫ ∞
−∞

fY

(
m+ (θ)− x sin θ

cos θ

)(
m′+ (θ) cos θ − x+m+ (θ) sin θ

cos2 θ

)
fX (x) dx.

Hence, if X and Y are I.I.D. and θ = π/4, we have

0 =

∫ ∞
−∞

fX

(√
2m+ (π/4)− x

)(√
2m′+ (π/4)− 2x+

√
2m+ (π/4)

)
fX (x) dx.

It follows from the convolution of the distributions for X and Y that
√

2m′+ (π/4) fX+Y

(√
2m+ (π/4)

)
=

∫ ∞
−∞

fX

(√
2m+ (π/4)− x

)(
2x−

√
2m+ (π/4)

)
fX (x) dx.
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Note that by change of variable y =
√

2m+ (π/4)− x, we have∫ ∞
−∞

f ′X

(√
2m+ (π/4)− x

)(
2x−

√
2m+ (π/4)

)2
fX (x) dx

=

∫ ∞
−∞

f ′X (y)
(

2y −
√

2m+ (π/4)
)2
fX

(√
2m+ (π/4)− y

)
dy.

Therefore,

0 =

∫ ∞
−∞

[
f ′X

(√
2m+ (π/4)− x

)
fX (x)− f ′X (x) fX

(√
2m+ (π/4)− x

)](
2x−

√
2m+ (π/4)

)2
dx

=

[
fX

(√
2m+ (π/4)− x

)
fX (x)

(
2x−

√
2m+ (π/4)

)2]∞
−∞

−
∫ ∞
−∞

fX

(√
2m+ (π/4)− x

)
fX (x) 4

(
2x−

√
2m+ (π/4)

)
dx

= 4
√

2m′+ (π/4) fX+Y

(√
2m+ (π/4)

)
where we use the assumption that

lim
x→∞

fX

(√
2m+ (π/4)− x

)
fX (x)

(
2x−

√
2m+ (π/4)

)2
= lim

x→−∞
fX

(√
2m+ (π/4)− x

)
fX (x)

(
2x−

√
2m+ (π/4)

)2
= 0.

Therefore, m′+ (π/4) = 0. It follows that
√

2mX+Ym
′
+ (π/4) = 0, so θ = π/4 is indeed

a critical point.

7.3 Proof of Proposition 2

We prove the case where mX < µX . The case mX > µX is analogous. In order to

show that π/4 is globally optimal, it is suffi cient to show for any β ∈ [1/2, 1],

mX ≤ m√βX1+
√
1−βX2 ≤ m√

2
2
X1+

√
2
2
X2
< 0 = µX . (17)

Schur-concavity of Pr (X sin θ + Y cos θ ≤ z) in (sin2 θ, cos2 θ) for all θ ∈
[
0, π

4

]
and

all z ∈ [mX , 0] is equivalent to

h (β) ≡ Pr
(√

βX1 +
√

1− βX2 ≤ z
)
is weakly increasing in β for all z ∈ [mX , 0] .

(18)

Now suppose condition (18) holds. It implies that

Pr
(√

βX1 +
√

1− βX2 ≤ mX

)
≤ Pr (X1 ≤ mX) =

1

2
⇒ mX ≤ m√βX1+

√
1−βX2 .
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Furthermore, (18) implies that, for all β ∈ [1/2, 1],

Pr

(√
2

2
X1 +

√
2

2
X2 ≤ m√βX1+

√
1−βX2

)
≤ Pr

(√
βX1 +

√
1− βX2 ≤ m√βX1+

√
1−βX2

)
=

1

2
.

which implies

m√βX1+
√
1−βX2 ≤ m√

2
2
X1+

√
2
2
X2
.

Condition (17) then follows immediately, and thus the π/4-rotation is optimal.

7.4 Proof of Proposition 3

Suppose that FX (mX + ε) + FX (mX − ε) ≤ 1 for all ε > 0. The other case is

completely analogous. We first use an argument by van Zwet [1979] to claim that

mX < µX . Note that

mX − µX =

∫ mX

−∞
(mX − x) fX (x) dx+

∫ ∞
mX

(mX − x) fX (x) dx

=

∫ mX

−∞
FX (x) dx−

∫ ∞
mX

(1− FX (x)) dx

=

∫ ∞
0

[FX (mX − x) + FX (mX + x)− 1] dx

It follows from mX 6= µX that mX < µX . It also implies that FX (mX − x) +

FX (mX + x)− 1 < 0 for some set of x with positive measure.

Next, we use an argument adapted from Watson and Gordon [1986] to prove that

the median function is super-additive. The super-additivity of the median function

is equivalent to

Pr (X + Y < mX +mY ) <
1

2
(19)

Note that

Pr (X + Y < mX +mY )

=

∫ ∞
mY

∫ mX+mY −y

−∞
fX (x) fY (y) dxdy +

∫ mY

−∞

∫ mX

−∞
fX (x) fY (y) dxdy

+

∫ ∞
mX

∫ mX+mY −x

−∞
fX (x) fY (y) dydx

=

∫ ∞
mY

FX (mX +mY − y) fY (y) dy +
1

4
+

∫ ∞
mX

fX (x)FY (mX +mY − x) dx

=

∫ ∞
0

FX (mX − ε) fY (mY + ε) dε+

∫ ∞
0

fX (mX + ε)FY (mY − ε) dε+
1

4
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Therefore, condition (19) is equivalent to

4

∫ ∞
0

FX (mX − ε) fY (mY + ε) dε+ 4

∫ ∞
0

fX (mX + ε)FY (mY − ε) dε < 1 (20)

Let us define non-negative random variables X+, X−, Y +, Y − as

X+ = X −mX |X ≥ mX and X− = mX −X|X ≤ mX

Y + = Y −mY |Y ≥ mY and Y − = mY − Y |Y ≤ mY

Then

Pr
(
X− > Y +

)
=

∫ ∞
0

2FX (mX − ε) 2fY (mX + ε) dε

Pr
(
Y − > X+

)
=

∫ ∞
0

2FY (mX − ε) 2fX (mX + ε) dx

Therefore, condition (20) is equivalent to

Pr
(
X− > Y +

)
+ Pr

(
Y − > X+

)
< 1 (21)

A suffi cient condition for (21) is

Pr
(
X+ < ε

)
≤ Pr

(
X− < ε

)
and Pr

(
Y + < ε

)
≤ Pr

(
Y − < ε

)
(22)

for all ε > 0 , and with strict inequality for some open interval of ε, because by setting

ε = Y + and ε = X+, respectively, we obtain

Pr
(
X+ < Y +

)
< Pr

(
X− < Y +

)
and Pr

(
Y + < X+

)
< Pr

(
Y − < X+

)
and thus (21). Since X and Y are I.I.D., the suffi cient condition (22) reduces to

Pr
(
X+ < ε

)
≤ Pr

(
X− < ε

)
for all ε > 0.

Equivalently,

Pr (X −mX < ε) ≤ Pr (mX −X < ε) .

which simplifies into the first inequality in (9). As we argued above, since mX 6= µX ,

we must have FX (mX − ε) +FX (mX + ε)− 1 < 0 for some positive measure of ε, as

desired.

Finally, we show that condition (10) ((9), respectively) is satisfied if FX is strictly

convex (concave, respectively). Note that F (X) is uniformly distributed, so that

E [F (X)] = 1/2. Suppose here that F is strictly convex. The concave case can be

proved analogously. By Jensen’s inequality

F (mX) =
1

2
= E [F (X)] > F (E [X]) = F (µX) .
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Hence, mX > µX . In order to show that mX + mY > mX+Y , it is suffi cient to show

that

FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε > 0.

Note that fX (mX + ε)−fX (mX − ε) > 0 by strict convexity of F , so FX (mX + ε)+

FX (mX − ε) is increasing in ε and reaches a minimum at ε = 0. Since FX (mX) +

FX (mX) = 1, we must have FX (mX + ε) + FX (mX − ε) ≥ 1 for all ε > 0.

7.5 Examples for Section 3.3

We show here how the super-additivity condition of median is satisfied for two well-

known families of distributions where condition (9) is not easily checked, or does not

hold.34

Consider first the large and important family of gamma distributions with density

fα,β (x) =
βα

Γ (α)
xα−1e−βx for x > 0.

This family contains the exponential (that can be obtained by setting α = 1) and

many other well known distributions. For any constant c > 0, the random variable

cX is also gamma with parameters α and β/c. If X and Y are independent gamma

with parameters (αX , β) and (αY , β), respectively, then X + Y is also gamma with

parameters (αX +αY , β). Thus, the gamma family is closed under scaling and under

convolution. In a classic study, Bock et al. [1987] showed that Pr (aX + bY ≤ t),

0 ≤ a, b ≤ 1, is Schur-convex in (a, b) for all t ≤ µX . Since (1, 0) �
(
1
2
, 1
2

)
, we have

F 1
2
X+ 1

2
Y (t) ≤ FX(t) for all t ≤ µX . Note that mX < µX for gamma distributions

(Groeneveld and Meeden [1977]), so we have m 1
2
X+ 1

2
Y ≥ mX as desired.35

A second family is the Rayleigh distribution with cumulative distribution

F (x) = 1− e−x2 for x ≥ 0.

34Although the super-additivity (or sub-additivity) condition is derived for normalized distribu-

tions, it is straightward to verify that it is also suffi cient for original distributions.
35Alternatively, let m(α, β) denote the median of gamma random variable X with parameters α

and β. Then m(α, β) = m(α, 1)/β. Note that

U(
π

4
) = −2σ2 (α, β)−

(
µ+ −m+

)2
= −2σ2 (α, β)−

(√
2α

β
−
√
2

2β
m(2α, 1)

)2
= −2σ2 (α, β)− 1

2β2
(2α−m(2α, 1))2

and

U(0) = −2σ2(α, β)− 2 (µX −mX)
2
= −2σ2(α, β)− 2

β2
(α−m(α, 1))2.
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Suppose X, Y are I.I.D. distributed according to Rayleigh.36 Then, according to

Lemma 4 in Hu and Lin [2000], we have

Pr (X cos θ + Y sin θ ≤ z) = 1−
∫ π/2

0

sin(2τ)
(
1 + φ2(θ, τ , z)

)
e−φ

2(θ,τ ,z)dτ

where φ(θ, τ , z) = z/ cos(θ − τ). The medians of X and of Y are mX = mY =
√

ln 2.

It can be (numerically) verified that

Pr
(

(X + Y ) /
√

2 ≤
√

2mX

)
= 1−

∫ π/2

0

sin(2τ)
(

1 + φ2(
π

4
, τ ,
√

2 ln 2)
)
e−φ

2(π
4
,τ ,
√
2 ln 2)dτ

≈ 0.4658

< 0.5

= Pr
(

(X + Y ) /
√

2 ≤ m+(π/4)
)

where the last equality follows from the definition of m+(π
4
). Hence, m+(π

4
) >
√

2mX

as desired.

By assuming independence between X and Y , we were able to derive operational,

suffi cient conditions for the π/4 rotation to dominate the zero rotation, but indepen-

dence is not necessary. We now present an example where, even though X and Y are

correlated, the median function is super-additive (sub-additive) so the π/4 rotation

is welfare superior to the zero rotation. The standard tool we use to model corre-

lation between X and Y for given marginals is the copula (see Nelson [2006] for an

introduction).

Example 3 Suppose that X and Y are identically distributed on [0, 1] with marginals

FX (x) = x2 and FY (y) = y2. To model correlation between X and Y , we consider

here the Farlie-Gumbel-Morgenstern (FGM) copula

Cδ (p, q) = pq + δpq (1− p) (1− q)

Therefore,

U(
π

4
) > U (0) ⇔ 1

2β2
(2α−m(2α, 1))2 < 2

β2
(α−m(α, 1))2

⇔ (2α−m(2α, 1))2 < 4(α−m(α, 1))2

⇔ m2(2α, 1)− 4αm(2α, 1) < 4m2(α, 1)− 8αm(α, 1)
⇔ m(2α, 1) > 2m(α, 1).

The last inequality holds because, as shown in Berg and Pedersen [2008], m(α, 1) is convex in α.
36If Z1, Z2 is a random sample of size 2 from a normal distribution N(0, 1) then the distribution

of X =
√
Z21 + Z

2
2 is Rayleigh. In other words, the Rayleigh is the distribution of the norm of a

two-dimensional random vector whose coordinates are normally distributed.
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with p, q ∈ [0, 1] and δ ∈ [−1, 1]. The correlation coeffi cient for FGM copula is

ρ = δ/3 ∈ [−1/3, 1/3]. It follows from the Sklar theorem that we can write the joint

distribution F (x, y) in terms of its marginals and a copula C (p, q):

F (x, y) = C (FX (x) , FY (y)) .

With some algebra, we can derive the joint density as

f (x, y) = 4xy + 4δxy
(
2x2 − 1

) (
2y2 − 1

)
.

Therefore, as in the proof of Proposition 3, we can write Pr (X + Y < mX +mY ) as

2

∫ 1

mY

∫ mX+mY −y

0

f (x, y) dxdy +

∫ mY

0

∫ mX

0

f (x, y) dxdy

= 2

∫ 1

√
2/2

∫ √2−y
0

(
4xy + 4δxy

(
2x2 − 1

) (
2y2 − 1

))
dxdy

+

∫ √2/2
0

∫ √2/2
0

(
4xy + 4δxy

(
2x2 − 1

) (
2y2 − 1

))
dxdy

=

(
146

35
− 104

35

√
2

)
δ − 8

3

√
2 +

13

3
> 0.5

for all δ ∈ [−1, 1]. Consequently, we have mX+Y < mX + mY . Since FX (x) = x2

is convex, µX < mX . It follows that the π/4-rotation dominates the zero-rotation in

ex ante welfare. Alternatively, suppose FX (x) =
√
x and FY (y) =

√
y. If we again

restrict attention to the FGM copula, we can follow the same procedure to show that

mX+Y > mX +mY and µX > mX .

7.6 Proof of Theorem 3

The proof follows the same steps as in proving Theorem 1. In order to show that

θ = 0 is suboptimal, it is suffi cient to show

β2mβ−(0)m′β−(0) +mβ+(0)m′β+(0) = 0, (23)

and

β2m′′β−(0)mβ−(0) + β2(m′β−(0))2 +m′′β+(0)mβ+(0) + (m′β+(0))2 < 0. (24)

By definition of mβ+ (θ), we note that

1

2
= FβX sin θ+Y cos θ (mβ+ (θ))

=

∫ ∞
−∞

Pr

(
Y <

mβ+ (θ)− βx sin θ

cos θ

)
fX (x) dx

=

∫ ∞
−∞

FY

(
mβ+ (θ)− βx sin θ

cos θ

)
fX (x) dx
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Since it holds for all θ, we take a derivative with respect to θ to obtain

0 =

∫ ∞
−∞

fY

(
mβ+ (θ)− βx sin θ

cos θ

)(
m′β+ (θ) cos θ − βx+mβ+ (θ) sin θ

cos2 θ

)
fX (x) dx

(25)

By taking the second derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

f ′Y

(
mβ+ (θ)− βx sin θ

cos θ

)(
m′β+ (θ) cos θ − βx+mβ+ (θ) sin θ

cos2 θ

)2
fX (x) dx

+

∫ ∞
−∞

fY

(
m+(θ)−βx sin θ

cos θ

)
cos4 θ

( [
m′′β+ (θ) cos θ +mβ+ (θ) cos θ

]
cos2 θ

+2 cos θ sin θ
(
m′β+ (θ) cos θ − βx+mβ+ (θ) sin θ

) ) fX (x) dx

(26)

If θ = 0, then conditions (25) and (26) reduce to

0 =

∫ ∞
−∞

fY (mβ+ (0))
(
m′β+ (0)− βx

)
fX (x) dx

and

0 =

∫ ∞
−∞

f ′Y (mβ+ (0))
(
m′β+ (0)− βx

)2
fX (x) dx+

∫ ∞
−∞

fY (mβ+ (0))
(
m′′β+ (0) +mβ+ (0)

)
fX (x) dx

Note that mβ+ (0) = mY , so that we have

m′β+ (0) =
βfY (mY )

∫∞
−∞ xfX (x) dx

fY (mY )
∫∞
−∞ fX (x) dx

= βµX = 0,

and

m′′β+ (0) = −mY −
f ′Y (mY )

fY (mY )

∫ ∞
−∞

βx2fX (x) dx.

Similarly, we can write

1

2
= FX cos θ− 1

β
Y sin θ (mβ− (θ)) =

∫ ∞
−∞

FX

(
mβ− (θ) + 1

β
y sin θ

cos θ

)
fY (y) dy

Taking the derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

fX

(
mβ− (θ) + 1

β
y sin θ

cos θ

)(
m′β− (θ) cos θ + 1

β
y +mβ− (θ) sin θ

cos2 θ

)
fY (y) dy

Taking the second derivative with respect to θ, we obtain

0 =

∫ ∞
−∞

f ′X

(
mβ− (θ) + 1

β
y sin θ

cos θ

)(
m′β− (θ) cos θ + 1

β
y +mβ− (θ) sin θ

cos2 θ

)2
fY (y) dy

+

∫ ∞
−∞

fX

(
mβ−(θ)+

1
β
y sin θ

cos θ

)
cos4 θ

( [
m′′β− (θ) cos θ +mβ− (θ) cos θ

]
cos2 θ

+2 cos θ sin θ
[
m′β− (θ) cos θ + 1

β
y +mβ− (θ) sin θ

] ) fY (y) dy
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If θ = 0, then the above two conditions reduce to

0 =

∫ ∞
−∞

fX (mβ− (0))

(
m′β− (0) +

1

β
y

)
fY (y) dy

and

0 =

∫ ∞
−∞

f ′X (mβ− (0))

(
m′β− (0) +

1

β
y

)2
fY (y) dy+

∫ ∞
−∞

fX (mβ− (0))
(
m′′β− (0) +mβ− (0)

)
fY (y) dy

Since mβ− (0) = mX , we have

m′β− (0) = − 1

β

∫∞
−∞ yfY (y) dy∫∞
−∞ fY (y) dy

= − 1

β
µY = 0

and

m′′β− (0) = −mX −
f ′X (mX)

fX (mX)

∫ ∞
−∞

1

β2
y2fY (y) dy

Therefore, the first-order condition (23) holds because m′β− (0) = m′β+ (0) = 0.

For the second-order condition (24), note that

β2m′′β−(0)mβ−(0) + β2(m′β−(0))2 +m′′β+(0)mβ+(0) + (m′β+(0))2

= β2mX

(
−mX −

f ′X (mX)

fX (mX)

∫ ∞
−∞

1

β2
y2fY (y) dy

)
+mY

(
−mY −

f ′Y (mY )

fY (mY )

∫ ∞
−∞

β2x2fX (x) dx

)
= −β2m2

X −m2
Y −mX

f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy −mY
f ′Y (mY )

fY (mY )

∫ ∞
−∞

β2x2fX (x) dx

As a result, condition (24) is equivalent to

β2m2
X +m2

Y +mX
f ′X (mX)

fX (mX)

∫ ∞
−∞

y2fY (y) dy +mY
f ′Y (mY )

fY (mY )

∫ ∞
−∞

β2x2fX (x) dx > 0.

Therefore, a suffi cient condition for the sub-optimality of zero rotation is

mXf
′
X (mX) ≥ 0,mY f

′
Y (mY ) ≥ 0 and β2m2

X +m2
Y 6= 0.

8 Appendix B: More than Two Dimensions

In this appendix, we sketch the generalizations of our main results (Theorems 1-2) to

higher dimensions. Consider K independent issues, denoted by Xk, k = 1, ..., K. We

writeX = (X1, ..., XK)T and assume that all random variablesXk are normalized. Let

SOK denote the special orthogonal group in dimension K which consists of K × K
orthogonal matrices with determinant +1. This group is isomorphic to the set of

rotations in RK . A K ×K orthogonal matrix Q ∈ SOK is a real matrix with

QTQ = QQT = I
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where QT is the transpose of Q, and where I is the K × K identity matrix. As a

result

Q−1 = QT .

Each K × K special orthogonal matrix Q transforms an orthogonal system X into

another orthogonal system while preserving the orientation in RK . The transformed
orthogonal system X is denoted as QX. The planner’s objective is to choose Q in

order to maximize welfare.

8.1 The (Sub)-Optimality of the Zero- and π/4-Rotations

Theorem 1 can be easily extended to higher dimensions by applying our previous

two-dimensional analysis to rotations of the first two dimensions only (while keeping

all other dimensions fixed).

Suppose now that X1, ..., XK are I.I.D. drawn from a common distribution. What

is the counterpart of π/4 rotation (or equivalently the top-down procedure) in higher

dimensions? We look for an orthogonal matrix Q that transforms X into a new

vector QX whose one coordinate is given by the sum X1 + ... + XK while the other

coordinates consists of various differences. For example, if K = 4, the orthogonal

matrix Q (with determinant equal to +1) is given by
1
2

1
2
−1
2
−1
2

1
2
−1
2
−1
2

1
2

−1
2

1
2
−1
2

1
2

1
2

1
2

1
2

1
2




X1

X2

X3

X4

 =
1

2


X1 +X2 −X3 −X4

X1 +X4 −X2 −X3

X2 +X4 −X1 −X3

X1 +X2 +X3 +X4


More generally, consider an orthogonal matrix Q̂ with

1√
K
Q̂ij =

{
either 1 or − 1 for all j if i 6= K

1 for all j if i = K
(27)

such that for all k 6= K, Q̂kX contains an equal number of Xk’s appearing with

positive and negative signs. The matrix Q̂k is a Hadamard matrix, and the order of

such a matrix must be 1, 2 or a multiple of 4. Sylvester [1867] constructed Hadamard

matrices of order 2k for every non-negative integer k.37 In those cases it is easy to see

that the same condition we had before, namely the super-additivity of the median

function, is again suffi cient for the π/4-rotation to dominate the zero-rotation.

37The existence of Hadamard matrices of order 4k for every positive integer k is the well-known

Hadamard conjecture. It was proven for all k up to 167.
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8.2 Effi ciency Bounds

As in the main text, we work here with the non-normalized random variablesX1, ..., XK .

With K dimensions, the expected utility of choosing marginal medians under an or-

thogonal transformation Q is given by

U (Q) = −E ||QX−median(QX)||2 = −
K∑
k=1

var (QkX)−
K∑
k=1

(mean (QkX)−median(QkX))2

whereQk is the k-th row of theQmatrix. The first-best expected utility is−
∑K

k=1var(QkX).

We define the relative effi ciency of transformation Q relative to the first-best as:

EF (Q) ≡
∑K

k=1 var (QkX)∑K
k=1 var (QkX) +

∑K
k=1 (mean (QkX)−median(QkX))2

Again, we can apply the Hotelling-Solomons inequality to obtain that

EF (I) ≥
∑K

k=1 var (QkX)∑K
k=1 var (QkX) +

∑K
k=1 var (QkX)

=
1

2

Analogously, we can use the Basu-DasGupta inequality to show that, for unimodal

distributions, we have

EF (I) ≥
∑K

k=1 var (QkX)∑K
k=1 var (QkX) + 3

5

∑K
k=1 var (QkX)

=
5

8

Now consider any even numberK such that the Hadamard matrix exists. Suppose
X1, ..., XK are I.I.D. with log-concave densities. Consider again an orthogonal matrix

Q̂ given in (27). It follows from the I.I.D. assumption that

mean(Q̂kX)−median(Q̂kX) =

{
0 if k 6= K,

1√
K

(mean(
∑K

k=1Xk)−median(
∑K

k=1Xk)) if k = K.

Therefore, we have

EF (Q̂) =

∑K
k=1 var(Q̂kX)∑K

k=1 var(Q̂kX) + 1
K

(
mean(

∑K
k=1Xk)−median(

∑K
k=1Xk)

)2
Given that X1, ..., XK have log-concave densities, the convolution Z ≡

∑K
k=1Xk

also has a log-concave densities. Then the inequalities of Bobkov and Ledoux [2014]

and of Ball and Böröczky [2010] together imply

(mZ − µZ)2 ≤ 1

f 2Z(mZ)
ln2
(√

e

2

)
≤ 12σ2Z ln2

(√
e

2

)
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Hence,

EF (Q̂) ≥
∑K

k=1 var(Q̂kX)∑K
k=1 var(Q̂kX) + 1

K
12σ2Z ln2

(√
e
2

)
Let σ2Xk denote the variance of Xk. Then we have σ2Z = Kσ2Xk and

var(Q̂kX) = Q̂kQ̂
T
k σ

2
Xk

= σ2Xk

since Q̂kQ̂
T
k = I by the definition of an orthogonal matrix. Therefore, we obtain the

following effi ciency bound for log-concave densities

EF ≥ EF (Q̂) ≥
Kσ2Xk

Kσ2Xk + 12σ2Xk ln2
(√

e
2

) =
1

1 + 1
K

12 ln2
(√

e
2

)
For example, if K = 4, the bound is 93.4%. Note that this bound is increasing the

number of dimensions K, and tends to 100% when K goes to infinity.38

Remark 4 More generally, consider any I.I.D. random variables X1, ..., XK with

finite means and variances and consider K such that the Hadamard matrix exists.

Then, for the analog of the π/4 rotation we obtain that

EF (Q̂) =
Kσ2Xk

Kσ2Xk + 1
K

(mean(
∑K

k=1Xk)−median(
∑K

k=1Xk))2

=
σ2Xk

σ2Xk + 1
K2 (mean(

∑K
k=1Xk)−median(

∑K
k=1Xk))2

→ 1 as K →∞

where the last assertion follows from the central limit theorem.
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