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Abstract

We study two-sided markets with heterogeneous, privately informed agents who gain from

being matched with better partners from the other side. Our main results quantify the relative

attractiveness of a coarse matching scheme consisting of two classes of agents on each side, in

terms of matching surplus (output), an intermediary�s revenue, and the agents�welfare (de�ned

by the total surplus minus payments to the intermediary). Following Chao and Wilson (1987)

and McAfee (2002), our philosophy is that, if the worst-case scenario under coarse matching is

not too bad relative to what is achievable by more complex, �ner schemes, a coarse matching

scheme will turn out to be preferable once the various transaction costs associated with �ne

schemes are taken into account. Similarly, coarse matching schemes can be signi�cantly better

than completely random matching, requiring only a minimal amount of information.
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1 Introduction

Achieving allocative e¢ ciency when faced with a large diversity of alternatives and preferences

requires complex price and allocation schedules. The studies by Chao and Wilson (1987), Wilson

(1989) and McAfee (2002) have, however, uncovered instances in which rather simple schemes

su¢ ce to obtain most of the e¢ ciency gains from the optimal schemes. Chao and Wilson (1987)

and Wilson (1989) consider the case of a monopolist seller faced with a continuum of customers

with di¤erent valuations for quality and a continuum of feasible qualities. They show that the

e¢ ciency loss due to the usage of a limited number of quality classes, n; converges to zero at a rate

proportional to 1=n2; as n tends to in�nity. This elegant result is, however, not very informative

about the relative performance of schemes involving a small number of classes.

McAfee (2002) addresses this crucial issue in a matching model with a continuum of types on

both sides. In his model, e¢ ciency requires assortative matching, pairing the best agent from one

side with the best agent from the other side, the second-best with the second-best, and so forth,

i.e., the �nest possible matching. This matching is contrasted with a scheme involving only two

classes, high and low: high types pay common price for being randomly matched within the high

class; low types get randomly matched within the low class. McAfee�s remarkable result is that,

for a broad class of distribution of types, the two-class scheme achieves at least as much surplus as

the average of e¢ cient assortative matching and completely random matching. In other words, the

surplus loss associated with this very coarse scheme may in fact be rather modest.

The purpose of this paper is to extend the idea of McAfee (2002) to incomplete information

settings. If the agents�types are private information, intermediated exchange consisting of price

and matching schedules may induce agents to reveal their private information or parts of it, thus

allowing the implementation of allocations that satisfy some optimality criterion with respect to the

underlying preferences. Thus, even if coarse matching schemes may perform relatively well in terms

of total surplus, it does not follow that it is similarly attractive to an designer who is not always

committed to e¢ ciency but rather seeks to maximize revenue and/or the agents�welfare (de�ned

by the total surplus minus payments to the intermediary).1 What is needed is an evaluation of

the relative performance of coarse matching in terms of the revenue obtainable by an intermediary

as well as the agents�net welfare. This is precisely the task of the present paper. The paper�s

1Examples are employment and recruiting agencies, dating and marriage matchmakers, real estate brokers, technol-

ogy and business brokers. Also, multi-product �rms act as intermediaries by matching customers with heterogeneous

tastes to products of di¤erent qualities. For other examples, see Spulber�s (2005) recent survey of the literature on

two-sided markets.
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results will quantify, within worst-case scenarios, the revenue and net welfare gains for large classes

of distributions of attributes - thus introducing the idea of coarse mechanism design.

In a nutshell, our philosophy is that, if the worst-case scenario is not too bad in terms of total

surplus, revenue, and/or the agents�welfare relative to what is achievable by more complex, �ner

schemes, simple coarse matching scheme will turn out to be preferable once the transaction costs

associated with �ne schemes are taken into account. These transaction cost may take the form of

communication, complexity (or menu), and evaluation costs for the intermediary (who needs more

detailed information about the environment in order to implement a �ne scheme) and for the agents

(who need precise information about their own and others�attributes in order to optimally respond

to a �ne scheme), or higher production costs for �rms o¤ering di¤erent qualities. In addition, coarse

matching schemes have the advantage that agents reveal only partial information about themselves,

thus avoiding, at least to some extent, exploitation in the future. Finally, coarse matching schemes

using a minimal amount of information may also generate signi�cant welfare and revenue increases

with respect to random matching.

McAfee�s analysis of the surplus gains associated with coarse matching is based on Chebyshev�s

inequality. This approach is, however, not applicable to our analysis of total revenue and net welfare.

New techniques are required and identi�ed in our paper. Roughly speaking, we use several results

from mathematical statistics that o¤er bounds on the variability and on the values of distribution

functions at certain points in their range for large, non-parametric classes of functions. These

bounds enable us to obtain lower bounds on the total revenue and net welfare obtainable through

the two-class matching scheme for large classes of distributions of types. Moreover, applying these

techniques to the analysis of total surplus also enables us to generalize the result obtained by

McAfee.

The models of Chao and Wilson (1987) and Wilson (1989) assume privately informed customers,

similar to the one-sided version of our model.2 But in contrast to our analysis, the authors restrict

attention to the e¢ ciency e¤ects of coarse allocation schemes. Accordingly, only those pricing

schemes leading to full information revelation and maximum e¢ ciency are characterized. In a

model with a continuum of types and incomplete information on each side, Damiano and Li (2007)

provide a characterization of incentive-compatible pricing schedules leading to coarse matching or,

in the limit, to assortative matching. They employ the standard mechanism design approach in

order to derive conditions under which the intermediary achieves a higher revenue by using the

e¢ cient scheme (assortative matching) rather than some other coarser scheme. The loss in terms

2Wilson�s analysis is extended to the case of multi-unit demands in Spulber (1992).
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of total surplus, revenue or/and net welfare associated with a limited number of classes is not

addressed in their paper. Related is also Rayo (2003) who looks at a monopolist selling a menu of

conspicuous items whose consumption is used as a signal about the agents�hidden characteristics

(e.g., luxury goods). By restricting the variety of signals and forcing some subsets of consumers

to pool (which corresponds to coarse matching), the monopolist can sometimes extract additional

informational rents.3

The papers by Blumrosen and Feldman (2008) and Blumrosen and Holenstein (2008) who

study mechanism design with restricted action spaces are closely related to ours. The results of

Blumrosen and Feldman, however, focus on total surplus in a one-sided incomplete information

setting, similar to Chao and Wilson (1987), Wilson (1989), and McAfee (2002). Comparing the

optimal mechanism with unrestricted action space to mechanisms that employ only k actions, they

�nd that the latter incurs an e¢ ciency loss of O
�
1=k2

�
in their setting. Furthermore, they show that

under certain conditions allocative e¢ ciency may be achieved in environments with two players and

two alternatives. For single-item auctions, Blumrosen and Holenstein compare the optimal auction

to that of posted-price auctions in terms of the seller�s revenue. It is shown that posted-price

auctions with discriminatory (i.e., personalized) prices can be asymptotically equivalent to optimal

full revelation auctions as the number of bidders increases.

The present paper is organized as follows: In Section 2 we describe the two-sided matching model

with heterogeneous and privately informed agents on both sides of the market. As in McAfee (and

most of the related matching literature), we assume that the value of a match is the product of

the types of the agents (or the product of the agent�s type and the good�s quality in one-sided

models). We further assume that matched agents share the surplus equally. Our analysis easily

extends to other �xed sharing rules, as we illustrate in Section 5 for a one-sided model. In Section

3, we consider the incentive compatible price schedules that lead to assortative matching and coarse

matching (Subsections 3.1. and 3.2, respectively). For assortative matching, we also establish a

connection between those schedules and the unique stable payo¤ vector in the core of the market.

Section 4 contains our main results. Subsection 4.1 presents several de�nitions and results from

mathematical statistics which we subsequently apply in our analysis of the relative performance

of coarse matching. In Subsection 4.2, we �rst reconsider McAfee�s surplus analysis. Using our

new tools, we �nd that the surplus loss from coarse matching is less than one-quarter of the total

surplus from assortative matching for the class of distributions considered by McAfee. Furthermore,

3This is related to the so-called "ironing conditions" emphasized by Mussa and Rosen (1978) and Maskin and

Riley (1984).
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we are able to extend McAfee�s result to other classes of distributions. Our �ndings suggest that

coarse matching performs relatively well in terms of total surplus if the distribution functions are

logconcave and have a low coe¢ cient of covariation - this o¤ers some intuition for the rather "magic"

analysis performed by McAfee.

Subsection 4.3 analyzes the e¤ects of coarse matching on the intermediary�s revenue. We estab-

lish a counterpart to McAfee�s surplus result, which requires, however, more restrictive conditions.

Roughly speaking, these conditions ensure that the expected utility of agents in the upper class

from being randomly matched with agents in the lower class is su¢ ciently small. As a consequence,

agents in the upper class have a relatively high willingness to pay for being matched with part-

ners in the upper class. For the two-class scheme, we also characterize the circumstances under

which one side of the market pays more to the intermediary than the other. This question is in-

tensely discussed in the literature on two-sided markets, which tends to focus on random matching

among homogenous agents and on network externalities.4 By contrast, our explanation is based on

heterogeneity di¤erentials.

In Subsection 4.4 we show that the two-class scheme may perform surprisingly well in terms of

the agents�welfare when compared to both assortative and random matching. In particular, we

identify conditions under which the agents�welfare under coarse matching even exceeds the one

under assortative matching.5

In Section 5 we illustrate how the previous results can be applied to a model of price dis-

crimination where a monopolist produces several levels of quality for a market with heterogeneous

customers. Section 6 concludes. The Appendix contains several results about the concepts de�ned

in Subsection 4.1 and most of our proofs.

2 The model

There are two groups of agents, "men" and "women". Each man is characterized by an attribute

x; each woman by an attribute y: Agent i�s attribute is private information to i: Attributes are

distributed according to distributions F (men) and G (women) over the intervals [0; �F ] and [0; �G];

�F ; �G � 1; respectively. The distributions F and G are atomless and have continuous densities,

f > 0 and g > 0; respectively. We assume here that the two groups have the same measure,

4See, e.g., Armstrong (2006) and Rochet and Tirole (2006) and the literature cited in these papers.
5This is related to a result by Hoppe, Moldovanu and Sela (2006) in a framework where partners use wasteful

signals in order to match. They describe circumstances where agents may be better o¤ under random matching

(without any waste) than under assortative matching which needs to be sustained by wasteful signaling.
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normalized to be one.

An intermediary who cannot observe the agent�s types o¤ers contracts that are characterized

by a matching rule �, a set-valued function that maps any x 2 [0; �F ] to a subset � (x) � [0; �G],
and by price schedules, pm : [0; �F ] ! R for men, and pw : [0; �G] ! R for women. If man x

and woman y are matched, they generate an output (or matching surplus). To capture production

complementarities in the simplest way, we assume that the surplus function takes the form u(x; y) =

xy: We also assume that surplus is shared according to a �xed rule that does not react to market

conditions: speci�cally, if matched, man x receives �xy and woman y receives (1� �)xy , where
� 2 [0; 1] :6 Thus, the utility of a man with attribute x that is matched to a woman with attribute
y after paying pm to the intermediary is given by �xy � pm (and similarly for women).7

For any A � [0; �F ] let �m (A) the measure of men announcing types in A: Similarly, de�ne

�w(A) for women. The matching rule � is feasible if for any A � [0; �F ]; �m (A) = �w (� (A)) :

That is, each subset of men is matched to a subset of women of equal measure. As shown by

Damiano and Li (2007), a feasible and incentive-compatible matching rule partitions the sets of

men and women, respectively, into n corresponding subsets, matches the elements of this partition

in a positively assortative way, and then, within each matched partition, matches agents randomly.

In this paper, we restrict attention to three special matching rules. First, we consider the limit

case where the number of classes n goes to in�nity - this is called assortative matching. Second,

we consider the case of n = 2; i.e., coarse matching with two classes. Finally, we also consider the

case n = 1; which yields completely random matching.

Throughout the paper we assume that those agents who are not served by the intermediary will

be randomly matched with each other.

3 Matching and incentive compatible price schedules

In this section we derive formulas for total surplus and for the intermediary�s revenue obtained

when incentive compatible price schedules are used.

6Below we compare this setting to the benchmark where agents share output in a way that guarantees payo¤s in

the core of the matching market.
7The utility function is a straightforward generalization of the standard one-sided independent private value

model considered in the auction literature. From that literature it is well-known that results beyond the case of risk

neutrality are seldom analytically tractable. An advantage of this formulation (which is also used in most of the

related matching literature, e.g., Chao and Wilson, 1987; McAfee, 2002; Damiano and Li, 2007) is that all our results

can be stated solely in terms of properties of the distribution functions.
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3.1 Assortative matching

Under assortative matching each man x is matched with a woman  (x) ; where  : [0; �F ]! [0; �G]

is implicitly de�ned by

F (x) = G ( (x)) (1)

If the matching surplus function u (x; y) is supermodular, assortative matching yields the e¢ cient

outcome in terms of total output.8 Given a matching rule �; the sharing of the surplus among

matched agents is called stable if:

8x; � (x) + � (� (x)) = x� (x) (2)

8x; y; � (x) + � (y) � xy (3)

As e¢ ciency is easily shown to be a prerequisite for stability, the only feasible rule for which

the surplus can be shared in a stable way is assortative matching  : Let ' =  �1: It is well-known,

and straightforward to show that the unique stable shares are given by:

� (x) =

Z x

0
 (z) dz (4)

� (y) =

Z y

0
' (z) dz (5)

In order to implement the assortative matching rule  (given a �xed sharing rule � among

the matched partners), the intermediary�s price schedules pm and pw need to satisfy the following

incentive-compatibility constraints:

�x (x)� pm (x) � �x (x̂)� pm (x̂) (6)

(1� �) �1 (y) y � pw (y) � (1� �) �1 (ŷ) y � pw (ŷ) (7)

for all x; x̂ 2 [0; � ] ; and y; ŷ 2 [0; � ] ; respectively.
The following result establishes the relation between stable shares and incentive-compatible

price schedules (see the Appendix for the proof).

Proposition 1 1. The incentive compatible price schedules for the �xed sharing rule � satisfy

pm (x) = �� ( (x)) (8)

pw (y) = (1� �) � ('(y)) ; (9)

8A matching surplus is u (x; y) is supermodular if u1 > 0; u2 > 0; and u12 > 0 where ui; i = 1; 2 denotes the

derivative with respect to the i�th coordinate, and u12 denotes the mixed derivative. It is not di¢ cult to generalize our

results about assortative matching (Proposition 1) to the case of a general supermodular matching surplus functions

u(x; y).
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Consequently, the net utilities of any agents x and y are �� (x) and

(1� �) � (y) ; respectively.

2. The intermediary�s revenue from each matched pair satis�es:

min (�; 1� �)x (x) � pm (x) + pw ( (x)) � max (�; 1� �)x (x)

3. In particular, the revenue from each matched pair is exactly half the matching surplus if

� = 1=2:

The above result shows that the incentive compatible price schedules e¤ectively correct for the

induced distortion of incentives caused by the fact that the �xed sharing rule � does not respond

to outside options: the net utilities of the agents form a stable sharing of the output that is left

after payments to the intermediary were made.

Total surplus and the intermediary�s revenue from price schedules (8) and (9) are, respectively,

given by:

Ua =

Z �F

0
x (x) dF (x) (10)

Ra� = �

Z �F

0
 (x)

�
x� 1� F (x)

f (x)

�
dF (x) (11)

+(1� �)
Z �F

0
x

�
 (x)�  0 (x) 1� F (x)

f (x)

�
dF (x)

Until the application of Section 5, we will henceforth assume that surplus is shared equally, i.e.,

� = 1=2; and we will therefore omit this index.

3.2 Coarse matching

We now turn our attention to a matching scheme that involves only two categories on each side of

the market. Under coarse matching, the intermediary sets only two prices: pcm; p
c
w: Men that are

willing (not willing) to pay pcm are randomly matched with women that are willing (not willing) to

pay pcw: Our setting thus captures situations where agents who are not willing to pay still have the

possibility to match randomly with each other. The case where excluded agents remain unmatched

is discussed below in the context of a multiproduct monopolist (see Section 5).

Denote by x̂ (ŷ) the lowest type of men (women) who is willing to pay pcm ( pcw). By the

assumptions on the match surplus and utility functions, these types are well de�ned. Such a
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pricing scheme is incentive compatible if and only if the following equations are satis�ed:9

�

Z ŷ

0

x̂y

G (ŷ)
dG (y) = �

Z �G

ŷ

x̂y

1�G (ŷ)dG (y)� p
c
m (12)

(1� �)
Z x̂

0

xŷ

F (x̂)
dF (x) = (1� �)

Z �F

x̂

xŷ

1� F (x̂)dF (x)� p
c
w (13)

ŷ =  (x̂) (14)

The prices pcm pcw are such that the cuto¤ types x̂ and  (x̂) are indi¤erent between being randomly

matched in the high class (while paying the price) and being randomly matched in the low class

(for free). Note also that ŷ needs to be x̂�s partner in assortative matching in order to ensure

feasibility.

In order to assess the relative performance of the coarse matching scheme, we derive, in the

next section, lower bounds on the total surplus, revenue and net welfare obtainable through the

two-class scheme. Hence, as in McAfee, it will su¢ ce to consider only a crude form of coarse

matching where the cuto¤ between the upper and lower classes is determined by the mean of one

of the distributions. Clearly, the lower bounds for either criteria obtained in this paper remain

lower bounds if the cuto¤s were optimally chosen to maximize surplus, revenue or net welfare,

respectively.

Let UEX be the total surplus from coarse matching with two categories where the cuto¤ point

x̂ = EX; the mean of F: Furthermore, let EXL be the mean x-type of the low class, and EYL the

mean y-type of the low class when using the cuto¤s x̂ = EX and ŷ =  (EX) : We have:

EXL =

R EX
0 xf(x)dx

F (EX)
= EX �

R EX
0 F (x)dx

F (EX)

EYL =

R  (EX)
0 yg(y)dy

G( (EX))
=  (EX)�

R  (EX)
0 G(x)dx

G( (EX))

Using these de�nitions, we can write the total surplus as:

UEX =

Z EX

0

Z  (EX)

0

xy

F (EX)
g (y) f (x) dydx

+

Z �F

EX

Z �G

 (EX)

xy

1� F (EX)g (y) f (x) dydx (15)

= EXEY +
F (EX)

1� F (EX)(EX � EXL)(EY � EYL) (16)

Similarly, we denote the respective revenue obtained with cuto¤ x̂ = EX by REX :

9See also Damiano and Li (2007).
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For � = 1=2; we obtain:

REX =
1

2
EX

"Z �G

 (EX)
ydG(y)� 1�G ( (EX))

G ( (EX))

Z  (EX)

0
ydG (y)

#

+
1

2
 (EX)

�Z �F

EX
xdF (x)� 1� F (EX)

F (EX)

Z EX

0
xdF (x)

�
=

1

2
[EX(EY � EYL) +  (EX) (EX � EXL)] (17)

4 The relative performance of coarse matching

This section contains our main results. How attractive is coarse matching relative to assortative

and random matching? In the following, we establish worst-case scenarios from the point of view of

total surplus, the intermediary�s revenue, and the agents�welfare, while focusing on the case where

output is shared equally among matched partners, i.e., � = 1=2:10

4.1 Failure rates and covariance

We �rst introduce several de�nitions and results that will be used in our analysis below:

De�nition 1 1) A distribution function F is said to have an increasing failure rate - IFR (de-

creasing failure rate - DFR) if f (t) = [1� F (t)] is increasing (decreasing) on [0; �F ); �F � 1:11

2) A distribution function F is said to have an increasing reversed failure rate - IRFR (de-

creasing reversed failure rate - DRFR) if f (t) =F (t) is increasing (decreasing) on [0; �F ); �F � 1:
3) Let X, Y be non-negative random variables on [0; �F ] and [0; �G]; �F ; �G � 1; respectively.

The coe¢ cient of covariation of X and Y is given by12

CCV (X;Y )) �
p
Cov(X;Y )=EXEY

In particular, note that E(XY ) = (1 + CCV 2(X;Y ))EXEY for any two non-negative random

variables.

10 In Section 5 we provide a discussion of the case of � = 1 where one side receives the whole match surplus.
11For example, the exponential, uniform, normal, power (for � � 1), Weibull (for � � 1); gamma (for � � 1)

distributions are IFR. The exponential, Weibull (for 0 < � � 1); gamma (for 0 < � � 1) are DFR. See Barlow and
Proschan (1975) who use the terminology in the context of reliability theory. Other authors refer to "hazard rates".
12By the integral form of Chebychevs�s inequality (see Theorem 236 in Hardy et al., 1934), Cov(X;h(X)) � 0 for

any increasing function h: Hence the coe¢ cient of covariation is well de�ned for any X non-negative random variable

and for any increasing function h. The coe¢ cient of covariation reduces to the more common coe¢ cient of variation

CV (X) �
p
V ar (X)=EX when X = Y . This is a dimensionless measure of variability relative to the mean.
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Lemmas 3 and 4 in the Appendix establish various relations among the above de�ned concepts

and exhibit several bounds on values of distributions with the above properties. Using these results,

we obtain the following lemma, which provides the main working horse for our analysis. The lemma

is proved in the Appendix.

Lemma 1

1. EX�EXL � (�) 12EX if F is convex (concave), and  (EX)�EYL � (�) 12 (EX) if G is
convex (concave).

2. EX � EXL � (�)EXe
�1

F (EX) if F is IFR (DFR):

3. EY � EYL � (�) 12EY if G is convex (concave) and  is concave (convex).

4. EY � EYL � (�)EX � EXL if  is convex (concave) and if EX � (�)EY:

4.2 Total surplus - revisiting McAfee (2002)

In Chao and Wilson (1987) and Wilson (1989) it is shown that the total surplus loss due to the

usage of coarse matching with n categories is of order 1=n2; that is, U (n) � Ua�O
�
1=n2

�
; where

U (n) denotes the maximal total surplus from coarse matching with n classes. Of course, the order

of magnitude in their analyses may still mean that the surplus from coarse matching with only a

few categories is small relatively to that in assortative matching. The following elegant result is

due to McAfee (2002):

Proposition 2 (McAfee, 2002) Let the distributions F and G be both IFR and DRFR: Then

UEX � Ua + U r

2
(18)

where U r denotes the total surplus from random matching.

Thus, for a broad class of distributions, the scheme involving only two classes achieves at least

as much as the average of assortative and random matching.

Using Lemma 3-(9) (Appendix), it is straightforward to establish a tighter, explicit link be-

tween the surplus in assortative matching and the surplus in the two-class scheme for the class of

distributions considered by McAfee (see the Appendix for the proof):

Corollary 1 Under the conditions of Proposition 2, we have

UEX � 3

4
Ua: (19)
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Applying the results presented in Subsection 4.1, we are also able to provide new insights for

the class of DFR distribution functions about which McAfee�s result is silent. We �rst derive lower

bounds on the total surplus from two-class coarse matching; expressed as a mark-up on the random

output:13

Proposition 3 1) Let F be DFR; and let  be convex. Then

UEX � 3

2
U r (20)

2) Let F be DFR; let  be convex, and assume that EX � EY: Then

UEX � e

e� 1U
r ' 1: 582U r (21)

3) Let  be concave, and switch the role of F and G . Then the above result holds for UEY :

Proof. 1) Since F is DFR and  is convex, G must be DFR and hence concave. Thus, since  is

convex, we know by Lemma 1-(3) that

EY � EYL �
1

2
EY

Furthermore, since F is DFR; we have by Lemma 1-(2) that

EX � EXL �
EX

eF (EX)

Combining the above insights, we get:

UEX = EXEY +
F (EX)

1� F (EX)(EX � EXL)(EY � EYL)

� EXEY +
F (EX)

(1� F (EX)
EX

eF (EX)

EY

2

= EXEY +
EXEY

2e(1� F (EX))

� EXEY +
eEXEY

2e
=
3

2
EXEY =

3

2
U r

13Since Ur = Ua=
�
1 + CCV 2(X; (X)

�
, this bound can be easily translated into a bound involving the coe¢ cient

of covariation and the surplus in assortative matching Ua:
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2) By Lemma 1-(4) we know that EY �EYL � EX �EXL: Thus, together with Lemma 1-(2),

we obtain the following chain of inequalities:

UEX = EXEY +
F (EX)

1� F (EX)(EX � EXL)(EY � EYL)

� EXEY +
F (EX)

1� F (EX)(
EX

eF (EX)
)2

= EXEY +
EXEY

e2F (EX)(1� F (EX)

� EXEY +
e2EXEY

(e� 1)e2 =
e

e� 1U
r

where the last inequality follows by Lemma 4-(7).

3) This is obvious by the above calculations.

It is instructive to compare the above result with McAfee�s proposition for those distributions

where both results apply. Consider F = G = 1 � e�t which is IFR and DFR: In this case,

CCV (X;X) = 1 , Ua = 2U r; and UEX = e
e�1U

r: Thus, our estimate in Part 2 is tight. Note

also that e
e�1U

r = 1
2U

r + 2e�1
2e�2U

r = 1
2U

r + 2e�1
4e�4U

a > 1
2U

r + 1
2U

a. Thus, by continuity, we obtain

a better estimate than McAfee�s for IFR distributions that are not too convex with respect to the

exponential.

Proposition 3 is now used to extend McAfee�s result beyond a subclass of IFR distributions

(see the Appendix for the proof).

Proposition 4 Let F be DFR;  be convex, 1 � CCV 2(X; (X)) � 2
e�1 ; and EX � EY:14 Then

UEX � Ua + U r

2

Let  be concave, and switch the role of F and G . Then the above result holds for UEY :

The following example illustrates the result:

Example 1 Assume that F and G are Weibull: F (x) = 1 � e�x
19
20 ; G(y) = 1 � e�y

19
20 on [0;1).

Thus, F and G are not IFR; but the conditions of Proposition 4 are satis�ed. In fact, UEX ' 1:712;
[Ua + U r] =2 ' 1:628; and thus UEX > [Ua + U r] =2:

To understand the intuitive reason behind these results, note that DRFR and hence DFR

distributions are logconcave (see Lemma 3 in the Appendix). Similarly to concavity, this property

provides an upper bound on the survivor function of the distribution (see Sengupta and Nanda,

14Alternatively, one could assume that F is DFR;  is convex, 1 � CV 2(X) � 2
e�1 , and EX = EY:
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1999), implying an upper bound on the mass of agents with types above the mean. If the mass

of these high-type agents is relatively small, the loss from matching them randomly instead of

assortatively is relatively small. This tends to make coarse matching attractive. Note though that

the surplus from matching agents randomly approaches the surplus under assortative matching as

the coe¢ cient of covariation goes to zero. Therefore, for the two-class scheme to perform su¢ ciently

well, the property of logconcavity has to be combined with speci�c bounds on the coe¢ cient of

variation. For example, logconcavity of the survivor function, which is equivalent to IFR; ensures

that the coe¢ cient of variation is less than 1. Roughly speaking, if the distribution is IFR, then

properly normalized di¤erences between expected values of attributes in successive quantiles are

decreasing. This implies an upper bound on the surplus gains from matching agents assortatively

instead of randomly.

4.3 The intermediary�s revenue

If the intermediary�s goal is to maximize revenue, the decision to employ a coarse matching scheme

will depend on how well it performs relatively to other schemes. Taking into account the fact that

a larger number of classes will usually be associated with higher transaction costs (or production

costs - see the application in Section 5), the two-class scheme may be superior to in�nitely many

classes if the simpler scheme yields a su¢ ciently high fraction of the revenue achievable from the

more complex one. The crucial question of how well the two-class scheme fares against assortative

matching in terms of revenue is addressed in the next proposition. In order to prove our result, we

use the tools presented in Subsection 4.1.

Proposition 5 Let F and G be both IFR and concave. Then

REX � 1

2
Ra (22)

Proof. By Lemma 1-(1), we know that

EX � EXL � 1

2
EX; and

EYL � 1

2
 (EX); and hence EY � EYL � EY � 1

2
 (EX)

14



This yields the following inequality chain:

REX =
1

2
[EX(EY � EYL) +  (EX) (EX � EXL)]

� 1

2
[EX(EY � 1

2
 (EX)) +  (EX)

1

2
EX]

=
1

2
[EXEY � 1

2
EX (EX) +

1

2
 (EX)EX]

=
1

2
U r =

1

2

�
E(XY )

1 + CCV 2(X; (X))

�
=

1

1 + CCV 2(X; (X))
Ra

By Lemma 3-(9) we know that CCV 2(X; (X)) � 1 if F and G are IFR, which yields the

result as stated.

Proposition 5 identi�es conditions under which the revenue from two-class coarse matching is

at least half the revenue from assortative matching. The proposition thus constitutes the analog

of McAfee�s surplus result in terms of revenue i.e., REX � 1
2R

a , REX � [Ra +Rr] =2; where the
revenue from matching agents randomly is zero. Interestingly, we �nd that the revenue relation

holds for a subclass of the class of distribution functions identi�ed by McAfee (Proposition 2).

That is, while the surplus relation requires DRFR (logconcavity), concavity is needed here, which

is stronger (cf. Lemma 3 in the Appendix):

Example 2 Assume that F = x3; G = y3 on [0; 1]. F , G are then IFR and DRFR (but not

concave). In fact, REX < 1
2R

a:

The main message is that, for the class of distributions characterized in Proposition 5, coarse

matching involving only two classes performs relatively well not only in terms of e¢ ciency, but also

in terms of revenue. Examples include the uniform distribution and the exponential distribution.

To understand why concavity plays an important role here, recall that payments are obtained

only from agents in the high class. Their willingness to pay for being matched with a random

partner from the high class on the other side of the market is determined by the value of the

outside option, i.e. being randomly matched with a partner from the low class. As the distribution

of types on the other market side becomes more concave, the mass of potential partners with very

low types gets larger, reducing the value of the outside option. As a consequence, agents in the

high class are willing to pay more, leading to a higher revenue. Recall, however, that the revenue

from assortative matching is tightly linked to the assortative surplus (Proposition 1-(3)). Since the

assortative surplus is linearly increasing in the coe¢ cient of covariation, the property of concavity

15



needs to be combined with a property ensuring that this coe¢ cient is bounded from above. Note

that the coe¢ cient of variation is less than 1 for IFR distributions:

Which side pays more? In practice, price schedules observed in two-sided markets are often

uneven, with one side paying more than the other.15 Answers to the question of which side pays

more tend to focus on network externalities.16 A result in Hoppe, Moldovanu, Sela (2006) can

be adapted to show that men�s total payment is larger (smaller) than women�s total payment if

the intermediary uses assortative matching, and if the assortative matching function  = G�1F

is convex (concave). In particular, agents are willing to pay more as the other side becomes more

heterogeneous (since then the marginal gains in terms of winning a better matching partner are

larger at the high end of the type range).

We inquire here whether this �nding carries over to coarse matching. Let REXm be the total

payments obtained from men, and REXw the total payments obtained from women under the two-

class scheme.

Proposition 6 1) Assume that either (a) F is convex and G concave, or (b) F is IFR and G is

DFR: Then  is convex and REXm � REXw :

2) Assume that EX � EY and that  is convex. Then REXm � REXw :

Part 2 of Proposition 6 resembles the �nding for assortative matching, but the intuition is

slightly di¤erent here. Under coarse matching, the agents�willingness to pay is determined by the

outside option of being randomly matched within the low class. If F and G have the same mean,

but the distribution of women, G; has a higher variance, the chances for men who take the outside

option to end up with a very low type partner are higher than for women. As a consequence, for

types in the high class, men�s willingness to pay is larger than women�s.17

4.4 The agents�welfare

Another important criterion for measuring the relative performance of coarse matching is the agents�

welfare, de�ned as total surplus minus the total payment to the intermediary. Let W a = Ua �Ra

be the agents�welfare under assortative matching and WEX = UEX �REX under coarse matching
15See, e.g., The Economist, "Matchmakers and trustbusters", p.84, Dec 10th, 2005.
16For an analysis of two-sided markets with network externalities, see, for instance, Rochet and Tirole (2003).
17 In addition, there is a size e¤ect (this is similar to assortative matching): if  is convex, the mass of men with

types above a certain threshold is larger than the mass of women with types above that threshold.
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with cuto¤ EX: Note that W r = U r under random matching since the intermediary�s revenue is

zero.

The following two results exhibit the relations between the agents�welfare in these schemes. In

order to prove the results, we need to �nd upper bounds on the revenue from coarse matching and

combine them with lower bounds on the total surplus (see Appendix).

Proposition 7 1) Let F and G be IFR and concave; and let  be convex. Then

WEX � 3

4
W a (23)

2) Let F and G be DRFR and convex. Then

WEX �W a (24)

The proposition indicates that coarse matching fares relatively well against assortative matching

for subclasses of IFR distributions. Part 2 of Proposition 7 even identi�es a class of distributions

for which the agents�welfare exceeds the one obtainable under assortative matching! From our

previous analysis, we know that for this class of distributions, coarse matching is relatively strong

in terms of surplus (Proposition 2), but tends to be weak in terms of revenue (Proposition 5).

Intuitively, the combination of these two features strengthens coarse matching from a net welfare

point of view.

Example 3 Assume that F;G are uniform on [0; 1] : Thus, the distributions are convex and DRFR:

we get WEX = 3=16; W a = 1=6; and thus WEX=W a = 9=8:

The next proposition shows that coarse matching, using a minimal amount of information,

performs relatively well compared to random matching for the class of DFR distributions.

Proposition 8 Let F and G be DFR and let  be convex. Then

WEX � 3

4
W r (25)

Recall that random matching generates zero revenue. In practice, many intermediaries must,

however, respect a budget constraint. Our insights here together with those for revenue (Proposi-

tion 5) suggest that an intermediary who wishes to maximize the agents�welfare while collecting

su¢ cient revenue to recover their costs of capital (analogous to the Ramsey-Boiteux problem in the

theory of public �nance) may �nd a coarse scheme to be quite attractive relative to both assortative

and random matching.
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5 An application to one-sided incomplete information models

Throughout the above analysis, we assumed that privately informed agents populate both market

sides. Here we brie�y illustrate how some of our previous insights can be modi�ed for a context

where there are privately informed agents only on one side who get matched to observable items

(or partners) on the other side18. For instance, Wilson (1989) studies a multi-product seller in

the electricity industry, seeking to match customers having heterogeneous valuations for power

provision to di¤erent service qualities that represent di¤erent service probabilities. In this case,

consumers naturally obtain the whole surplus from their purchase minus their payment to the seller.

In other words the sharing rule corresponds to � = 1; and we have to adjust our previous revenue

and welfare results for this case. Total surplus is of course una¤ected by the value of �:

For � = 1; total revenue from assortative matching is given by

Ra1 =

Z �F

0
 (x)

�
x� 1� F (x)

f (x)

�
dF (x) (26)

and the total revenue from coarse matching is given by

REX1 = EX(EY � EYL) (27)

Simple relations between revenues for � = 1 and � = 1=2 are:

Lemma 2 If the assortative matching function  is convex (concave) then Ra1 � (�) Ra1=2. If the
assortative matching function  is convex (concave) and if EX � (�) EY then REX1 � (�) REX1=2 :

The next two results illustrate how our previous results can be adapted to this framework, and

provide a comparison of the two matching rules in terms of revenue and agents�welfare:

Proposition 9 Let F and G be IFR and concave, and  be convex. Then REX1 � 1
4R

a
1:

Proposition 10 1) Let F and G be IFR and concave, and let  be convex. Then WEX
1 � 1

2W
a
1 :

2) Let F and G be convex and DRFR, and let  be convex. Then WEX
1 �W a

1 :

In Wilson�s model, the distributions of customers�valuations and the feasible distribution of

service probabilities (and hence the assortative matching function  ) are exogenously given.19

Propositions 9 and 10 can therefore be directly used to identify lower bounds on the revenue

and/or the agents�welfare associated with two service classes.

18The classical references are Mussa and Rosen (1978) , and Maskin and Riley (1984).
19See McAfee (2002) for a mapping of Wilson�s set-up into the matching framework used here (albeit with complete

information).
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5.1 Price discrimination with quality costs

Here we brie�y illustrate how Propositions 9 and 10 can be applied to the more realistic situation

in which the monopolist takes production costs into account when determining the available qual-

ities. In contrast to Wilson�s model, the assortative matching function will be now endogenously

determined.

We denote quality by q. There is a measure one of consumers, each demanding a unit of the

good. Consumers are distributed over [0; 1] according to distribution F with f = F 0 > 0: The

utility of type v from quality q is vq: The cost of producing y units of quality q is c (q) y where

c (0) = c0 (0) = 0 and where c0 (q) > 0 and c00 (q) > 0 for q > 0:

Consider �rst a monopolist who uses standard non-linear pricing. In this case the monopolist

chooses a menu of prices and qualities from which the consumers can pick their preferred com-

bination. We make the standard assumption that the virtual valuation v � (1� F (v)) =f (v) is
increasing, which holds, for example, if F is IFR. Denote by (p (v) ; q (v)) the element that is

chosen by type v: Using standard arguments, the monopolist�s revenue and pro�t under incentive

compatible price schedules and assortative matching are given by:

Ra1 =

Z 1

0
q (v)

�
v � 1� F (v)

f (v)

�
f (v) dv

�a1 =

Z 1

0

�
q (v)

�
v � 1� F (v)

f (v)

�
� c (q (v))

�
f (v) dv:

Let r be such that r � (1� F (r)) =f (r) = 0: The function q that maximizes the above pro�t
function is determined by

q (v) = 0 if v � r

c0 (q (v)) = v � 1� F (v)
f (v)

if v � r

The pro�t maximizing menu contains a continuum of quality levels. Denote the distribution of

quality levels by G; and note that G (y) = F
�
q�1 (y)

�
for y 2 (0; q (1)]: Thus, the function q plays

here the role of the assortative matching function  :20

We �rst compare the revenue from the optimal menu derived above to the revenue that the

monopolist can achieve by producing only two quality levels and charging two prices. Suppose

20Although q�1(0) is not de�ned here, q can be approximated by an everywhere strictly increasing function, allowing

us to use previous results. In fact, since the monopolist does not get revenue from agents that are not served, the results

from the approximation underestimate the ratio between revenue in coarse matching versus revenue in assortative

matching, since only a fraction of the agents are assortatively matched with a positive quality.
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that customers with valuations below EV =
R 1
0 vdF (v) are matched with the quality level Q

L =R EV
0 q (z) dF (z) =F (EV ) and customers with valuations above this cuto¤ are matched with the

quality level QH =
R 1
EV q (z) dF (z) = (1� F (EV )) =

EQ�F (EV )QL
1�F (EV ) :

Let pL and pH be the prices for low and high quality, respectively. By incentive compatibility

these prices satisfy

pH =
EV

R 1
EV q (x) dF (x)

1� F (EV ) �
EV

R EV
0 q (x) dF (x)

F (EV )
+ pL = EV

�
QH �QL

�
+ pL

The purpose of our analysis is to �nd a lower bound on the revenue associated with the two-

quality scheme. For such a worst-case scenario, it su¢ ces to consider the case of pL = 0; since this

case clearly underestimates the maximal revenue from coarse matching.21 The revenue from the

coarse provision of quality is then given by:

REV1 = EV
�
EQ�QL

�
(28)

which is analogous to expression (27). Hence, Propositions 9 and 10 can be directly used to obtain

revenue and welfare results for speci�c cost functions, as we illustrate in the following example.

Example 4 Suppose that c (q) = q2 and that v is uniformly distributed over [0; 1] : In this case,

q (v) = 0 if v � 1
2 and q (v) =

2v�1
2 if v > 1

2 : Thus G (y) =
1+2y
2 for y 2

�
0; 12

�
, which is concave

and IFR: Although G (0) > 0; we get CCV 2(X; (X)) � 1; which is required for an application of
Proposition 9. Straightforward algebra yields QH = 1

2 ; R
a
1 =

1
12 ; R

EV
1 � 1

16 ; and thus R
EV
1 � 3

4R
a
1:

Furthermore, considering total pro�t (that takes into account the production cost) we get �a1 =
1
24 ;

�EV1 � 1
32 ; and �

EV
1 � 3

4�
a: Moreover, the conditions of Proposition 10-(1) are also satis�ed, which

yields WEV � 1
2W

a:

Note that Proposition 9 deals only with revenue. What can be said about the pro�t comparison?

Since costs are convex, the monopolist saves costs by producing the average quality levels QL and

QH rather than producing the whole range of qualities. This does not immediately translate into

a lower bound on pro�ts from coarse provision of quality. Yet, if the cost function is su¢ ciently

convex, the cost savings will be substantial and the bound on pro�ts will match the bound on

revenues (see the above example).

When the transaction costs of providing di¤erent qualities are also taken into account, our

analysis suggests that the coarse provision of quality may well be the pro�t-maximizing choice of

21A price-discriminating monopolist can either set QL at zero or increase pL to a positive value (thus excluding

some customers) in order to increase revenue. Note that for maximizing the agents�net welfare, pL = 0.
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the monopolist for a broad range of customer type distributions and cost functions. Moreover, a

public agency that is interested in the agents�s welfare but has some revenue considerations (for

budgetary reasons, etc.) will also have a strong incentive to o¤er coarse matching.

6 Conclusion

We have studied the performance of very coarse matching schemes and the associated price schedules

in a two-sided market with heterogenous agents who are privately informed about their attributes.

In a variety of settings we have shown that such schemes are very e¤ective. The type of analysis

performed in this paper is not standard in the Economics literature, which tends to concentrate on

the zero-one dichotomy between optimality versus suboptimality: degrees of suboptimality are not

quanti�ed or compared. Several papers in mechanism design argue that only "simple" mechanisms

are realistic.22 But, a majority of these follow the above dichotomy, by completely specifying special

settings where simple mechanisms are fully optimal.23 Instead, we focus on a priori suboptimal

mechanisms, while identifying settings where such mechanisms are very e¤ective (and thus may

become optimal once transaction costs associated with more complex mechanisms are taken into

account).24 The scarcity of "worst-case" studies (or of other quanti�cations of suboptimality)

in the Economics literature should be contrasted to the wealth of papers following precisely this

philosophy in the Operations Research/Computer Science literature.25 We believe that both our

understanding of existing trading institutions and our ability to design new e¤ective institutions

will pro�t from more studies in this vein.

22This is one argument in what is sometimes called the "Wilson doctrine" (see Wilson, 1987).
23E.g, Myerson (1981) shows that standard one-object auctions with a reserve price are revenue maximizing in the

symmetric, independent private value environment. Holmstrom and Milgrom (1987) identify conditions where linear

contracts are optimal for the provision of intertemporal incentives in a principal-agent relationship.
24Our analysis is similar in spirit to Neeman�s (2003) study about the e¤ectiveness of the English auction in

environments where this auction is not revenue maximizing. See also Rogerson (2003) who describes an example

where simple contracts achieve a substantial shares of the pro�t obtainable by full non-linear pricing in a cost-based

procurement and regulation framework.
25Koutsoupias and Papadimitriou (1999) and Roughgarden and Tardos (2004) are excellent examples since they

also combine game-theoretic reasoning. These authors study the "price of anarchy" in network routing games. This

is de�ned as the ratio between the welfare in the worst Nash equilibrium and the welfare in the Pareto-optimal

allocation.
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Appendix

The next lemma gathers several main relations among the concepts de�ned in Subsection 4.1.

For the less obvious implications, see Barlow and Proschan (1975). We �rst need the following

de�nition:

De�nition 2 A distribution function F is said to be new better than used in expectation - NBUE

(new worse than used in expectation - NWUE) if
R �
t (1� F (x))dx � (�)EX(1� F (t)); t � 0 .
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Lemma 3

1. Any IFR distribution is NBUE:

2. A distribution F is IFR if and only if its survivor function (1� F ) is logconcave.

3. Any DFR distribution is NWUE:

4. Any convex distribution is IFR

5. Any DFR distribution is concave.

6. Any concave distribution is DRFR:

7. A distribution F is DRFR if and only if F is logconcave.

8. CV 2 (X) � (�) 1 if F; the distribution of X; is NBUE (NWUE):

9. CCV 2(X;G�1F (X)) � (�) 1 if both F and G are IFR (DFR) distributions.

Properties such as mentioned in the above lemma are of interest here since they describe large,

non-parametric classes of distribution functions for which various upper or lower bounds on the

values of distributions at various points in their respective range hold. Such bounds are exhibited

in the next lemma:

Lemma 4

1. F (EX)(1� F (EX)) � 1
4 for all F:

2. F (EX) � (�)12 if F is convex (concave).

3. F (t) � (�)1� e� t
EX ; t < EX (t � EX) if F is IFR (DFR):

4.
R �
0 (1� F (x))dx = EX for all F

5.
R t
0 F (x)dx � (�)t� EX(1� e

� t
EX ) if F is NBUE (NWUE):

6.
R EX
0 F (x))dx � (�) EXe�1 if F is NBUE (NWUE):

7. F (EX)(1� F (EX)) � e�1
e2
� 0:23254 if F is DFR:
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Proof. 1) This is immediate by observing that on the interval [0; 1] the function x(1 � x) has a

maximum at x = 1
2 :

2) Note that F (X) is a uniformly distributed random variable on the interval [0; 1]; and hence

E[F (X)] = 1
2 . The claim follows then by Jensen�s inequality since F (EX) � (�) E[F (X)] = 1

2 if

F is convex (concave).

3) The assertions are contained in Theorems 4.4 and 4.7 in Barlow and Proschan (1965).

4) This is immediate from integration by parts.

5) This follows by 4) and by rearrangement of terms from the fact that
R �
t (1 � F (x))dx �

(�) EXe� t
EX if F is NBUE (NWUE) (see Barlow and Proschan (1975), page 187)

6) This is just the instance of 5) for t = EX:

7) By 3) for t = EX; we know that F (EX) � 1 � e�1 for F DFR: Since 1 � e�1 � 1
2 ; we

obtain that the function x(1 � x) is decreasing for x � 1 � e�1. Thus, F (EX)(1 � F (EX)) �
(1� e�1)(e�1) = e�1

e2
:

Proof of Proposition 1. Using the envelope theorem and condition 6, we obtain

�x 0 (x)� dpm (x)

dx
= 0:

Since the man with the lowest type will be matched for sure with the woman with the lowest type,

the willingness to pay of this type is always zero, which yields the boundary condition pm (0) = 0:

Hence, we obtain

pm (x) =

Z x

0
�z 0 (z) dz: (29)

The incentive-compatible price schedule for women is analogously derived. Letting ' =  �1;

we have

pw (y) =

Z y

0
(1� �) z'0 (z) dz: (30)

To derive the net utilities of matched agents x and  (x), note that

u (x;  (x)) =

Z x

0
 (z) dz +

Z x

0
z 0 (z) dz

Thus, the net utilities of agents x and  (x) from contracting with the intermediary (and being

matched with each other) can be written, respectively, as

�x (x)� pm (x) = �

Z x

0
 (z) dz = ��(x)

(1� �)x (x)� pw ( (x)) = (1� �)
Z y

0
' (z) dz = (1� �)�(y)

where �(x), �(y) are the stable shares, respectively.
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Proof of Lemma 1. 1) Geometrically, the term
hR EX
0 F (x)dx

i
= [EXF (EX)] is the ratio among

the area below F up to the mean, and the area of the rectangle with sides of EX and F (EX);

respectively. Note that any chord to the graph of a continuous convex (concave) function lies

entirely above (below) the graph. Thus
R EX
0 F (x)dx covers less (more) than 1

2 of the area of the

rectangle when F is convex (concave). Observe that the equality EX � EXL =
1
2EX is indeed

obtained for the uniform distribution (on any interval), which is both convex and concave. By the

same geometric argument, we get  (EX)�EYL =
hR  (EX)
0 G(x)dx

i
= [G( (EX))] � (�)12 (EX)

if G is convex (concave).

2) This follows immediately from Lemma 3-(1),(3) and Lemma 4-(6).

3) The result follows from by statement 1 and because  (EX) � (�)E( X) = EY if  is

concave (convex) by Jensen�s inequality.

4) Assume �rst that  is convex. If F = G; the result is obvious. Thus, assume F 6= G: By

Theorem 6.2 in Barlow and Proschan (1981) F (t) � G(t) for t < EX: In other words, the unique

crossing of F and G (which must exists in this case) cannot occur below t = EX: Since F 6= G; we

obtain  (EX) < E( X) = EY � EX: Thus

F (t) � G(t) for t �  (EX)

This yields the following chain:R  (EX)
0 G(t)dt

G( (EX))
�

R  (EX)
0 F (t)dt

F (EX)
,R  (EX)

0 G(t)dt

G( (EX))
+

R EX
 (EX) F (EX)dt

G( (EX))
�

R  (EX)
0 F (t)dt

F (EX)
+

R EX
 (EX) F (EX)dt

G( (EX))
,R  (EX)

0 G(t)dt

G( (EX))
+

R EX
 (EX) F (EX)dt

G( (EX))
�

R  (EX)
0 F (t)dt

F (EX)
+

R EX
 (EX) F (t)dt

G( (EX))
,

EX �  (EX) +
R  (EX)
0 G(t)dt

G( (EX))
�

R EX
0 F (t)dt

F (EX)
,

EY � ( (EX)�
R  (EX)
0 G(t)dt

G( (EX))
) �

R EX
0 F (t)dt

F (EX)
,

EY � EYL � EX � EXL

The �rst inequality holds by the above observation and because G( (EX)) = F (EX): The

third holds because F is increasing.

If  is concave, then  �1 is convex, and the argument holds with reversed roles.
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Proof of Corollary 1. The result follows because U r = Ua=
�
1 + CCV 2(X; (X)

�
and because

CCV 2(X; (X)) � 1 by Lemma 3-(9).

Proof of Proposition 4. Assume that F be DFR;  be convex, and that EX � EY: We

need to show that
�
UEX � U r

�
= [Ua � U r] � 1

2 . Note that U
a � U r = CCV 2(X; (X))U r, and

UEX � U r � 1
e�1U

r by Proposition 3-(2). Solving for CCV 2(X; (X)) yields the result as stated.

Proof of Proposition 6. 1) a) By the concavity of G; we get that REXm = 1
2EX (EY � EYL) �

1
4EXEY: By the convexity of F and  ; we getR

EX
w = 1

2 (EX) (EX � EXL) � 1
2EY (EX � EXL) �

1
4EXEY: The result follows.

b) Because G is DFR and  is convex, using Lemma 4-(3), we obtain the following chain:

EY � EYL = EY �  (EX) +
R  (EX)
0 G(t)dt

G( (EX))

� EY �  (EX) +
R  (EX)
0 (1� e� t

EY )dt

(G (EX))

= EY �  (EX) +  (EX)� EY + EY e�
 (EX)
EY

G( (EX))

� (EY �  (EX))(G( (EX)) +  (EX)� EY + EY (1�G( (EX)))
G( (EX)

=
 (EX) (1�G( (EX))

G( (EX))

This yields the following chain:

REXm =
1

2
EX (EY � EYL) �

EX (EX) (1�G( (EX))
2G( (EX))

=
EX (EX) (1� F (EX)

2F (EX))
� 1

2
 (EX) (EX � EXL) = REXw

where the last inequality follows because F is IFR:

2) From Lemma 1-(4) we know that EY �EYL � EX �EXL: Since EX = EY �  (EX); we

obtain REXm = EX(EY � EYL) �  (EX)(EX � EXL) = REXw .

Proof of Proposition 7. To prove the proposition we �rst need to derive upper bounds on the

revenue from coarse matching:

Lemma 5 1) Let F be concave (convex),  be convex (concave) Then

REX � (�)1
2
(UEX � EXLEYL) (31)

27



2) Let F and G be convex. Then

REX <
1

2
UEX (32)

Proof. For the �rst part, consider the following chain that holds for  convex and F concave (the

other direction is analogous):

UEX = EXEY +
F (EX)

1� F (EX)(EX � EXL)(EY � EYL)

� EXEY + (EX � EXL)(EY � EYL)

= 2EXEY � EXEYL � EY EXL + EXLEYL

= 2[
1

2
(EX(EY � EYL) + EY (EX � EXL))] + EXLEYL

� 2[
1

2
(EX(EY � EYL) +  (EX)(EX � EXL))] + EXLEYL

= 2REX + EXLEYL

The �rst inequality follows from Lemma 4-(1) and the second inequality holds since EY �  (EX)

for  convex. The last equality uses formula (17).

For the second case where F;G are both convex, we use (17) to obtain:

REX =
1

2
[EX(EY � EYL) +  (EX) (EX � EXL)]

� 1

2
[EX(EY � 1

2
 (EX)) +  (EX)

1

2
EX]

=
1

2
[EXEY � 1

2
EX (EX) +

1

2
 (EX)EX]

=
1

2
U r <

1

2
UEX

where the �rst inequality follows from Lemma 1.

1) By Lemma 5-(1), we know that REX < 1
2U

EX:. Hence,

WEX = UEX �REX >
1

2
UEX: � 1

4
(Ua + U r)

� 1

4
(Ua +

1

2
Ua) =

3

8
Ua =

3

4
W a

The �rst inequality follows from REX < 1
2U

EX:. The second follows by McAfee�s result (recall that

any concave distribution is DRFR). The last equality follows by Proposition 1.

2) We know from the proof of Lemma 5 that REX � 1
2U

r for F and G convex. This gives:

WEX = UEX �REX � 1

2
(Ua + U r)� 1

2
U r =

1

2
Ua =W a

where the �rst inequality follows from REX � 1
2U

r together with McAfee�s result (recall that convex

distributions are IFR); and the last equality follows by Proposition 1.
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Proof of Proposition 8. We have the chain:

WEX = UEX �REX � UEX � 1
2
(UEX � EXLEYL) =

1

2
UEX � 3

4
U r =

3

4
W r

The �rst inequality follows from Lemma 5-(1), and the second from Proposition 3-(1).

Proof of Lemma 2. The claim for � = 1 follows by observing that dRa=d� =R 1
0

�
x 0 (x)�  (z)

�
(1� F (z)) dz > (<) 0 if  is convex (concave). The claim for � = 1=2 follows

by noting that REX1 = EX(EY � EYL) � 1
2 [EX(EY � EYL) +  (EX) (EX � EXL)] = REX1=2

follows by the same argument as the one used in the proof Proposition 6.

Proof of Proposition 9. By Lemma 1, we know that EY �EYL � 1
2EY if G is concave and  

is convex. This yields:

REX1 = EX(EY � EYL)

� 1

2
EXEY

=
1

2
U r =

1

2

�
E (XY )

1 + CCV 2(X; (X))

�
=

1

2

1

1 + CCV 2(X; (X))
Ua

� 1

2

1

1 + CCV 2(X; (X))
Ra1

The result follows then by noting that CCV 2(X; (X)) � 1 if F and G are both IFR:

Proof of Proposition 10. 1) We have the following chain:

UEX = EXEY +
F (EX)

1� F (EX)(EX � EXL)(EY � EYL)

� EXEY + (EX � EXL)(EY � EYL)

= EXEY +REX1 � EXLEY + EYLEXL

= REX1 + EY (EX � EXL) + EYLEXL

� REX1 +
1

2
EXEY + EYLEXL

= REX1 +
1

2
EXEY � 1

2
EXEYL +

1

2
EXEYL + EYLEXL

=
3

2
REX1 +

1

2
EXEYL + EYLEXL
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The second line follows from Lemma 4-(2) since F is concave, the third line is due to REX1 =

EX(EY � EYL); the �fth line follows from Lemma 1-(1). This implies that

WEX
1 = UEX �REX1 � 1

3
UEX: � 1

6
(Ua + U r)

� 1

6
(Ua +

1

2
Ua) =

1

4
Ua � 1

2
W a
1=2

where the second inequality follows from McAfee�s result (recall the concave distributions are

DRFR), the third inequality is due to the fact that U r � 1
2U

a if F and G are both IFR; and the

last inequality is due to the fact that Ua < 2Ra1 if  is convex.

2) If F;G are both convex, we use Lemma 1. to obtain:

REX1 = EX(EY � EYL) �
1

2
U r <

1

2
UEX

This implies that

WEX
1 = UEX �REX1 � 1

2
(Ua + U r)� 1

2
U r =

1

2
Ua �W a

1

where the second inequality follows from McAfee�s result since convex distributions are IFR. The

last inequality follows from the same argument as the one at the end of part 1.
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