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“Brevity is the soul of wit.”

William Shakespeare, Hamlet (1602)

1 Introduction

Succinct advice is necessarily simplified yet often perceived insightful and valuable. We
provide an explanation: lack of detail in communication provides stronger incentives for
the sender to become informed. In our model there is no conflict of interest nor com-
plexity induced communication cost. Brevity, required or expected from the sender by
the receiver, resolves moral hazard in information acquisition by imposing a loss on the
sender who wanders off-equilibrium by not acquiring information.

Imagine a referee who shares the editor’s objective in that they both want to publish
good papers and reject bad ones. Assessing a paper takes the referee unobservable time
and effort. If the referee is expected to offer their evaluation on a fine scale they might
be tempted to shirk and submit a non-committal report. In contrast, when forced to rec-
ommend either acceptance or rejection, the referee may find it optimal to study the paper
carefully, fearing the embarrassment of being exactly wrong. Unrefined, and hence lossy
communication provides stronger incentives for information acquisition and may end up
socially beneficial overall.

Formally, in the familiar model of cheap talk between a sender and a receiver, with
an arbitrary log-concave state distribution and identical quadratic losses, we show that
binary communication provides stronger incentives for the sender to acquire information
than communication in four or even infinitely many categories. Moreover, we show that
information acquisition followed by binary communication is equilibrium exactly when
it is jointly beneficial for the two parties as compared to uninformed babbling.

A local monotonicity result holds for all logconcave densities: starting from binary
communication, dividing good and bad in subcategories always decreases incentives for
information acquisition. Extending this result to global monotonicity requires more struc-
ture. For a class of densities that includes the uniform and the Laplace at its extremes, we
show that adding categories decreases incentives for information acquisition. More cate-
gories improve decision-making based on informed advice but also make it more tempt-
ing to shirk on information acquisition, and the latter effect dominates. The cardinality of
the welfare optimal and incentive compatible categorization is non-increasing in the cost
of acquiring information. Information that is truly hard to uncover can only be communi-

cated in binary categories.



Binary categories are used, among other examples, in the criminal justice system. The
requirement of returning an either guilty or innocent verdict arguably makes judges and
juries think very hard about the case. Professional reference letters (often either over-
the-top or just lukewarm) and grades also appear to convey less information than they
could.! More than two but still few categories are used in investment advice (strong buy,
buy, etc.), illustrating the trade-off between the desire of communicating more detail and
providing the advisor with incentives for acquiring costly information.

We assume that the sender’s information acquisition is all-or-nothing and that the cat-
egorization forms an equilibrium in the overall game as well as in the continuation game
— there is no commitment to the transmission of information. We explore the robust-
ness of our results by allowing for ex ante optimal categorizations, where the sender’s
covert activity is to pay attention to a signal that is designed by the receiver, and draw
the connection from that analysis to recent developments at the frontier of the Bayesian
persuasion literature. In all model variations incentives for information acquisition pre-
clude that the sender can recommend actions close to the prior mean, which would allow
them to shirk and disguise their ignorance. The inability to distinguish states that differ
only marginally from the prior mean creates an endogenous commitment to nonmarginal
revisions of actions.

We introduce the model in Section 2 and explain the object of analysis in Section 3.
Sections 4 through 6 contain our main results, Section 7 explores an important extension.

Section 8 discusses connections in the literature.

2 Model

The payoff-relevant state of nature is w, drawn from [—w,w| C R according to a log-
concave density f that is symmetric about 0 and has finite variance ¢?. The support of
the distribution may be equal to a strict subset of R or may be equal to IR; symmetry is
assumed mainly for ease of exposition.

There are two players: the Sender (S, he) and the Receiver (R, she). The game is as
follows. First, the Receiver chooses (the cardinality of) a message space M. Then, the
Sender decides whether to covertly learn the state of nature, at cost ¢ > 2. Then he sends
message m € M to the Receiver. Finally the Receiver picks an action, y € IR. The Sender’s
payoff is Us = —(y — w)? — ec, where e € {0,1} is a pure choice that indicates whether or

1“The most frequently awarded grade in Harvard College is actually a straight A” said Harvard’s Dean
of Undergraduate Education in the Harvard Crimson on December 3, 2013.



not he has learned the state; the Receiver’s payoff is Ug = —(y — w)>.

This is an information transmission game without conflict of interest (bias) but with
moral hazard in information acquisition. There is no direct cost of sending messages, so
talk is cheap. The assumption that the Sender’s cost of learning the state, ¢, exceeds the
variance of the state distribution, ¢2, is important. As we show in the next section, this
implies that voluntary information acquisition followed by truthful, full revelation cannot
be part of any equilibrium of the game.

In the rest of the paper, we use the term “equilibrium” in reference to a perfect Bayesian

equilibrium.?

Since S and R have the same objective after the information acquisition
stage, we select equilibria that are best for both parties in the communication continu-
ation game. Such equilibria transmit as much information as possible with the given
message space, and the cardinality of induced actions taken by R is at most equal to the
cardinality of M. By allowing the Receiver to pick the message space ex ante we select
receiver-optimal equilibria in the overall game. Therefore the assumption that R chooses
the cardinality of M could be replaced by appropriately refining equilibria in an unre-
stricted message space.

Logconcavity of the density of the state distribution is a useful technical assumption
that is common in information economics.?> In our model it ensures that the partition of
states conveyed by information transmission from the Sender to the Receiver is unique

for a given number of partition elements. This is explored in the next section.

3 Precoded communication and informative equilibria

In an equilibrium where the Sender is expected to acquire information, if he indeed learns
w then he reports the message for which the Receiver’s response is closest to it. Off the
equilibrium path, if he were not informed, then he would report the message for which the
response is closest to the prior mean. The Receiver, upon receiving the Sender’s message,
forms beliefs over the states of nature that are consistent according to Bayes rule with
the prior and the Sender’s equilibrium strategy. In the first period the Sender chooses
whether or not to acquire information about w depending on which action yields the
greatest expected payoff to him.

In order to characterize all equilibria with information transmission, first, consider the

2See Fudenberg and Tirole (1991), Definition 8.1, pp. 325-326.
3Among others Laplace, normal and uniform distributions belong to this class. See An (1998) for a
characterization and Bagnoli and Bergstrom (2005) for many useful results and applications.



continuation game in case information about the state has been acquired by the Sender.
If R has chosen a message space that allows to communicate the state perfectly, then that
is obviously best for both parties. If R has chosen a message space with a finite cardi-
nality N, then complete information transmission is technically rendered infeasible. For
every positive integer N there exists a unique interval partition P of the states, which
is symmetric about the prior mean 0, such that in an equilibrium of the continuation
game following e = 1 (information acquisition) the Sender reveals which partition ele-

N N

ment PZ.N = [aifl,ai ] the state falls into. If N is even, then the marginal types on the

upper (non-negative) half of the support of the distribution are

0=a) <al¥ <...<all

=w,

where n = N/2. There is another set of cutoffs symmetrically on the lower half of the
support as well. If N is odd, then let n = (N + 1)/2 and delete a))/, and the remainder is
notationally the same as above.

The Receiver’s best reply to any message sent by types in PN coincides with the mean
state in partition element PN, that is (again, by symmetry, restricting attention to the upper
half of the support),

yf\’:yf\]ElE[w]af\ilgwgalN. 1)

The marginal Sender types (those on the boundaries of the partition elements) must be

indifferent between inducing adjacent best replies, that is,

af — ) =piy —ap. 2)
Equations (1) and (2) define the optimal quantization (or precoding) of the state space
for a given number of messages, that is, the optimal way of coding and decoding the
continuous source into the discrete set of actions. This problem is studied in information
theory; early references are Lloyd (1957) published as Lloyd (1982) and Max (1960); Kieffer
(1983) shows that the solution is unique a for a state distribution with a logconcave pdf.
In contrast to the Crawford and Sobel (1982) model of strategic information transmission,
there is no bias.*
If precoded language of cardinality N is used in communicating about the state, then
the Receiver’s best reply will match the true state of nature with some residual variance.

Denote a typical residual variance of the state, conditional on it falling into partition ele-

“For more on the role of logconcavity in cheap talk with sender bias, see Szalay (2012).



ment PIN, by
2
(71-2 =, {(w—y?)

The key incentive condition for the Sender to acquire information, when anticipating in-

wGPZ-N}.

formation transmission inducing the unique N-partition in the continuation, is whether
the cost of acquiring information is “worth” the reduction in the expected residual vari-
ance of the state around the Receiver’s induced actions. If the Sender decides not to ac-
quire information (saving cost c) then he will forego this reduction, and induce the Re-
ceiver’s action that is closest to the prior mean, .

The following lemma establishes when an equilibrium exists with information acqui-

sition followed by communication via the optimal partitional language of cardinality N.

Lemma 1: There exists an equilibrium in which the Sender exerts effort (¢ = 1) and in-

duces N different actions if, and only if,
2 2
IEWV) } + (1) > ©)

Proof: The Sender’s expected utility on the equilibrium path, having acquired information
about w and anticipating to induce N different actions, is —c — E [0?].

If the Sender secretely deviated to e = 0 then he prefers to induce an action as close to
the prior mean of w as possible. In the equilibrium where the Receiver expects him to be
informed and communicating in N different categories he is constrained to induce some
action yN. The constrained-optimal induced action conditional on not having learned the
state is y)Y = ul, i.e., the mean of a partition element that is nearest to 0 (the prior mean).

Therefore the Sender’s maximal expected utility off the equilibrium path is

~E, {(w—ﬂ{“)z} = ().

Comparing this expression with —c — E [0

deed weakly preferred by the Sender in an equilibrium with N optimally-induced actions

} we find that information acquisition is in-

if, and only if,
—c—E [Uiz] > 02 — (y{\])z. 4)



By a variance decomposition identity,

= 0'2.

(m')’

Combining this with inequality (4), we find that the condition that the Sender prefers to

E|o?| +E

acquire information in an equilibrium with N different actions induced via the optimal

partitional language of size N, is equivalent to condition (3). [

Evidently, an odd number of categories destroys the incentive to acquire information,
because Y = 0. In fact, N must be not only even but also finite in our problem:

Lemma 2: E [(;th)z} + (y{\])z > conly if N is even and finite.

The proof, relegated to the Appendix, establishes that logconcavity of the density implies
limy_e {#)} = 0, and hence

tm Lo ()] + () <02 <

The reason is that categories get wider towards the tails. If the support is a compact
interval, then it is easy to see that the first of very many categories must be very narrow,
to make the partition fit into the support. If the support is R, then the argument is quite a
bit more subtle.?

It follows that ¢ > 02 makes it impossible to have an equilibrium with information
acquisition where w is fully revealed or an equilibrium where w is transmitted in arbitrar-
ily fine categories. In contrast, in the next two sections we show that if c is greater than
but close to ¢?, then there are equilibria with information acquisition followed by pre-
coded information transmission using a small and even number of categories, provided

the distribution of the state has tails that are strictly thinner than the exponential.

4 Incentives with Binary Categories

In this section we show that communication in binary categories always provides stronger

incentives than fully revealing communication, and that when communication in binary

>Logconcavity implies nonincreasing mean residual life — which refers to the distance of the tail condi-
tional expectation to the truncation point — and the proof shows and exploits that the difference between the
highest induced action and the highest marginal type must be strictly positive.



terms induces the Sender to learn the state, this is indeed preferred by the players jointly,
ex ante, to uninformative communication.

Suppose that communication is anticipated in binary categories, that is, language par-
tition P is defined by —a; = —w, a9 = 0, a1 = @. The natural interpretation for this is that
a message reveals either a “high” or a “low” w relative to cutoff a9 = 0.

The Receiver’s induced actions are y € {—p, pt+}, where y; = E [w|w > 0]. These
induced actions match the state in expectation conditional on the information revealed
by the binary language. The residual variance, that is, the imprecision with which the
induced action matches the state is 02 = 02 = E[(w — p4)?|w > 0].

The condition for the existence of an equilibrium with information acquisition fol-

lowed by information transmission in binary categories, inequality (4) for N = 2, is simply
—C — Ui > —0? — yi.

This holds for some ¢ > ¢ (the condition for infinitely many categories not being compat-

ible with information acquisition in equilibrium, maintained throughout) precisely when

Uy > oy, (5)

Equivalently, the coefficient of variation (standard deviation divided by the mean) of the
distribution of w conditional on w > 0 must not exceed 1. This condition is always sat-
isfied: The symmetric, logconcave distribution of w truncated to the upper half of the
support remains logconcave, and it is a known result from reliability theory (Barlow and
Proschan, 1981) that every logconcave distribution exhibits a coefficient of variation that
is less than or equal to 1.

The conclusion of the preceding analysis is summarized in the following proposition.

Proposition 1: A binary categorization sets (strictly) stronger incentives than fully reveal-
ing communication or communication with an arbitrarily fine categorization, N — oo, for

all distributions with a (strictly) logconcave density.

With a binary language, as opposed to full revelation of the state, the informed Sender’s
utility is lower on equilibrium path. However, the Sender faces an even greater loss off
the equilibrium path, because in case he does not acquire information, he is still forced to
choose between one of the two possible induced Receiver actions. It is crucial that when
a binary language is used, the Sender cannot deviate to not acquiring the information

and then conveying this fact to the Receiver. Messages have no intrinsic meaning; in a

8



binary-categorization equilibrium all elements of M are interpreted either as “w > 0” or
“w < 07.° We note that fully revealing communication is not the same as communica-
tion in arbitrarily many categories. However, in light of Lemma 2, neither is helpful for
incentives.

A binary-categorization equilibrium makes the Sender acquire information before com-
munication, and this imposes a cost on him that exceeds his own benefit from inducing
a Receiver action that better matches the state than the action that equals the prior mean,
because ¢ > ¢?. This begs the question whether the equilibrium in which binary cate-
gorization induces information acquisition and binary action is socially preferable to the

no-effort, no-communication equilibrium. It always is:

Proposition 2: Whenever information acquisition followed by a binary decision is an equi-
librium, the ex-ante expected joint surplus is weakly greater in this equilibrium than in the
no-effort, babbling equilibrium.

Proof. As seen in the main text, information acquisition followed by binary decisions is

an equilibrium if, and only if,

—C— (T_2|_ > —0? — yi.
Subtracting 02 on both sides and using the law of total variance,

—c—20% > —0* — (,ui + 0’_2|_) = 202

This is precisely the condition that the expected joint surplus with information acquisition
followed by a binary decision weakly exceeds the joint surplus generated by a babbling
equilibrium. [J

5 Monotonicity

In the previous section we have established that communication in a binary language
provides stronger incentives for the Sender’s covert information acquisition than commu-

nication in a language that would allow to describe the state perfectly. The next natural

®Note that the binary categorization still admits a babbling equilibrium, where S mixes uniformly be-
tween high and low and R learns nothing. So, there is an equilibrium that is as if ignorance were expressed.
However, reaching this different equilibrium requires a change in the Receiver’s strategy and belief, which
are outside the control of the Sender.



question to ask is whether these incentives are indeed monotonic in the number of cate-
gories.

Formally, monotonicity of incentives in the number of categories is equivalent to

E {(%N)z] ()’ (6)

being strictly decreasing in N = 2n for n = 1,2,....7 This formula is the left-hand side of
condition 3 in Lemma 1. We establish two results. First, we establish local monotonicity
at n = 1 for any distribution with a logconcave density. Second, we demonstrate global

monotonocity in a subset of logconcave densities.

Proposition 3: For any (strictly) logconcave density, a binary categorization provides
(strictly) stronger incentives for information acquisition than communication in four cat-

egories.

The proof is relegated to the Appendix. Adding more categories increases the value of
communicating on equilibrium path. The value from decision-making when learning
which of four partition elements the state belongs to is higher compared to just learning
whether the state is high or low. This suggests that the result should actually go the other
way. However, there is a second effect which counteracts the first. With more categories
to choose from, the action that is closest to zero — the action that an uninformed sender
would like to induce — necessarily moves closer to zero. The second effect tends to make
it less unpleasant for the sender to be uninformed, because the error in decision-making
is smaller. In fact, the second effect necessarily dominates the first for any logconcave
density.

Two forces are behind this result. First, the marginal value of going from 1 to 2 cat-
egories must necessarily be larger than the marginal value from going from 2 to 4 cate-
gories. By (5), knowing whether the state is high or low reduces uncertainty by at least
50%, leaving at most 50% to making the categories finer. Second, the length of the inter-
vals in a finer categorization must increase towards the extremes of the support.® This
implies that )Y moves in sufficiently fast.

It can be shown that Proposition 3 generalizes to a comparison of the binary catego-

rization to categorizations with an arbitrary, even cardinality for any logconcave density:

7Recall that a language with an odd number of categories can never provide enough incentives for infor-
mation acquisition.
8See the proof of Lemma 2.
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binary categorization provides indeed the strongest incentives for information acquisi-
tion. However, we may want to establish a stronger notion of monotonicity: when is it the
case that fewer categories provide more incentives? This question is substantially more
difficult to address than the comparison with binary categories, because the equilibrium
partitions for both cardinalities cannot be computed in closed form. We now turn to a
class of distributions that allow us to overcome this obstacle. Recall that E [w] = 0. We
impose in what follows:

Assumption: the distribution of w satisfies
1
IE[w]wZz]:y++a-zfor220andtx€{E,l}. (7)

This class of distributions featuring linear tail conditional expectations is introduced in
Deimen and Szalay (2019) where a number of results are shown. First, the associated den-
sity” is derived; it is logconcave for & € [%, 1} . Here &« = % corresponds to the uniform
distribution while x = 1 corresponds to the Laplace distribution. The parameter a cap-
tures the weight in the tails of the distribution. Second, it is shown that the equilibrium

variation of the induced actions is!?

B\ ()] = g2 - () ®

This expression is derived from a dynamic programming procedure. To get the intuition,
consider the case of N = 4, with natural categories “high” and “very high” (and anal-
ogously for the negative realizations). The indifference condition of the marginal type
dividing the “very high” from the “high” category, the law of iterated expectations link-
ing u$, 45 and i and the linearity of the very high mean in the marginal type allow us
to eliminate the very high mean from [E [(le )2} to arrive at exactly expression (8) . Dy-
namic programming is invoked when there are more categories and we apply this logic
repeatedly.

Note that #)¥ depends on the distribution and the number of categories, so the ex-
pression is not “closed form”. However, the form is closed enough to reveal the effect of
changing the number of categories:

Proposition 4. Suppose the state w follows a distribution in the class satisfying (7) for

9We reproduce the density in the proof of Proposition 6 in the appendix.
10See the proof of Proposition 3 in the online appendix of Deimen and Szalay (2019).
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VNS [%,1} . Then, (6) is decreasing in N = 2n for all N. Finer categories provide less
incentives for information acquisition for < 1. Incentives for information acquisition are

independent of the number of categories for the Laplace distribution.

Proof. Substituting into (6), we obtain

(')’

which depends on N only through its effect on y}Y. With more categories, ) must move
N+2
1

() = o+ 2 (),

E

closer to 0. Suppose not and thus a > glV. Take a; as given and compute a5 and so on
by a forward equation (the arbitrage condition of 4; and so on). As an implication of log-
concave densities, the truncated means move slowly in the thresholds and the solutions
of all forward equations are increasing in the initial condition 4. Since a; = a{\] is set so
as to have exactly enough space for n — 1 thresholds in the positive part, there is too little

space for n thresholds and a; needs to be lower to make more space.!! [J

No dynamic programming needs to be invoked for the uniform distribution, since ev-
erything can be computed explicitly. Let w be uniform on [—1, 1] with variance ¢ = 1/3.
For N even, the length of any interval in the partition is % implying residual variances
0? =1/(3N?) and u}Y = 1/N. Using the variance decomposition identity, 0> = E [¢?] +
E [(pth)z} we obtain [E [(‘ulN)z} =3 — a2

cation, an increasing function of N. Adding the off-path hassle, (¥ )2

E[(2) ]+ () =5+ 5

in accordance with the general procedure. On net, this value is decreasing in N, so incen-

representing the on-path value of communi-

1

= 2 we obtain

tives become weaker as N increases.

We can now illustrate the decreasing returns logic. In the limit as N — oo, we obtain
limy e ¥ = 0. For the distributions in the class, it is easy to show!? that the moments are

related as p% = 2;%02

, so indeed the limit features perfectly informative communication.
This implies that the value from communicating just high or low, 12 + 1% = u2 (by

~1
symmetry) is equal to 75% of perfect communication ( ZTZ) for the uniform distribution,

1 A more detailed proof of this fact, applying to biased and as well as non-biased communication, can be
found in Deimen and Szalay (2020).

12Gee the proof of Proposition 6, equation (12), for the density of the distribution which is used to compute
the variance.
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while the value for the Laplace distribution is 50%. Since the tail of a logconcave density
is at most exponential, the Laplace is an extreme case, implying that for any distribution
with a logconcave density, the first two messages contain most of the information that
Sender and Receiver care about: there are decreasing returns to adding categories going
from two to four categories. Moreover, for any N, the effect through reduced unpleas-
antness of being unable to induce the desired action if the Sender shirks always impacts
the incentive constraint stronger than the effect of increased categories on on-path com-
munication, except for the borderline case of the Laplace, where the two effects wash out

exactly.

6 Properties of an Optimal Categorization

A Receiver-optimal categorization solves the problem

max | (5i)"] -

s.LE [(ﬂ)z} + (yiV)z > c.

Proposition 5. Suppose the state w follows a distribution in the class satisfying (7) for
VS [%, 1] . Then, the optimal language N* is the largest N that meets the constraint. N*
is nonincreasing in ¢ for ¢ < (2 —a) ¢?. For ¢ > (2 — &) ¢, no information is acquired in

equilibrium.

The proof follows directly from the monotonicity established in Proposition 4 com-
bined with the fact that the maximal incentive is reached for N = 2 and equal to 2u3 =
(2—a)o?

Fewer categories provide stronger incentives for information acquisition. An optimal
categorization provides just enough incentives to guarantee that the Sender is informed.
Given the structured environment described by (7), there is an inverse relationship be-
tween the cost of acquiring information and the number of categories the Sender can use
to communicate, whenever meaningful communication is possible at all. Things that are

more difficult to find out are described in coarser terms.
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7 Extensions: Alternative Information Acquisition Technolo-
gies

We have maintained two restrictive assumptions so far: information acquisition is all-or-
nothing and there is no commitment to the categorization. We now drop these assump-
tions. As a natural extension, we let the Receiver choose the partitions that the Sender gets
to observe. A further, natural question that we address is how restrictive this new class of
technologies is.

In this variant of our model, ¢ reflects more of an attention cost than an information
acquisition cost. Without spending c, the Sender does not observe any signal. As before,
we let the Sender report one out of the N = 2n distinct signals that are privately observed
on equilibrium path. The Receiver’s problem is now

max Y piui—o? 9)
@i=1

0<a1<ay,...,ay_1<ay,=

piui +ui >c

n
s.t.

i=1

a;
where p; =2 [ f(w)dw.
ai-1
The information transmission incentive constraints on equilibrium path — when the

Sender pays the attention cost — are slack, since the Sender and Receiver have the same
objectives and the Sender only knows the interval that the state belongs to. Off equilib-
rium path, after shirking on paying attention, the Sender would report that the state falls
in category 1. The attention incentive constraint is deliberately identical to the previous
analysis to facilitate comparison. Consequently, the only difference to the previous prob-
lem for any given N is the location of the marginal types dividing the categories.

The solution need not be different from the all-or-nothing information acquisition case.
Recall that the incentive to pay attention — the left-hand side of the incentive constraint —
is monotonic in 7 for the considered class of densities. Hence, for small N — and ¢ not
excessively high — the solution of the unconstrained problem meets the constraint and
hence is optimal. Thus, the new perspective adds anything new only if N is relatively
high so that the unconstrained solution violates the constraint. In that case, the Receiver
can increase a; to control incentives and move ay, ..., a,_1 closer together to fit them into

[a1, @] . To emphasize the difference to the previous case, we investigate the case where N

14



gets very large.

Proposition 6. In the limit as N — oo, for distributions with a linear tail conditional ex-
pectation, the optimal partitional learning achieves the same expected payoff as a policy
that reveals the state perfectly for w > a7 and pools states w € [0, a1] together (and sym-
metrically on the negative half). If ¢ € (02, (2 — a) 0?) , it is optimal to have a; > 0 : the
tirst category has positive interval length. Moreover, the simple pooling policy is optimal
in the class of bi-pooling mechanisms.

For realizations of the state in the tail of the distribution, it does not matter — in terms of
expected utility — whether the sender learns and can reveal the state perfectly or whether
he observes the optimal partition that is arbitrarily fine. States that are close to the prior
mean are pooled together in two intervals of strictly positive length. As a result, the
Sender cannot express that the state is just marginally positive or negative. Rather, a
substantial up- or downward revision takes place to +E [w|w € [0,a1]]. Since from a;
onwards, the decision-schedule is the identity function, there is a further upwards jump
right after a;.

We conclude that some form of — at least partially — categorical communication re-
mains robust in various specifications. Moreover, the optimal form of information provi-
sion does not allow the Sender to induce marginal upward or downward revisions of the

Receiver’s action but rather requires a discrete jump.

8 Discussion and Literature

Our point of departure is the Crawford and Sobel (1982) model of strategic information
transmission, which explains communication in finitely-many categories in the face of dif-
ferences in preferences over decisions. More recently, Sobel (2012) analyzes constraints on
the number of messages that can be sent as a rationale for categorization, where a sender
and a receiver invest simultaneously into abilities to understand and to transmit. Con-
straints on the quantity of information transmission have a long tradition in the literature
on computer science and electrical engineering with early contributions by Lloyd (1982)
(original manuscript from 1957 ) and Max (1960). The connection between the literatures
— that strategic information transmission equals quantization with added incentives —
is not widely known among economists to date. We analyze the quantization problem

with a view to providing incentives for information acquisition, and complement the ex-
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isting explanation for categorization by one based on moral hazard in information acqui-
sition. Few contributions to date have studied information acquisition followed by cheap
talk; exceptions are Pei (2015), Argenziano et al (2016) and Deimen and Szalay (2019). In
contrast to our analysis, the number of messages is not a choice variable in these mod-
els. Deimen and Szalay (2019) develop the class of distributions that lend tractability to
strategic information transmission beyond the uniform case and introduce the dynamic
programming technique to characterize equilibrium utilities.

Most of our analysis assumes all-or-nothing information acquisition followed by cheap
talk communication. Relative to the recent literature on Bayesian persuasion (Kamenica
and Gentzkow (2011)), all-or-nothing information acquisition is restrictive. On the posi-
tive side, we drop the commitment in information transmission; we have the sender ob-
serve the outcome of information acquisition and choose to transmit whatever he wants.
Building on Gentzkow and Kamenica (2016), Arieli et al (2019) and Kleiner et al (2020), we
allow for more general ways to learn about the state. The receiver designs an experiment
and the sender needs to pay attention to obtain a meaningful signal. For the quadratic ob-
jectives in our problem, an experiment is described by a distribution of conditional means.
Any distribution that satisfies the law of iterated expectations and is at most as risky as
the distribution of the state is a feasible experiment. Arieli et al (2019) and Kleiner et al
(2020) show that the solution to problems of maximizing a function of conditional means
subject to a majorization constraint is in the class of bi-pooling mechanisms, where either
of two things happens, state by state: either the state is perfectly revealed or states in at
most two intervals are pooled together and the sender observes the same signal for states
in these two intervals. The information acquisition constraint places additional restric-
tions on the distribution of the posterior mean, so it is not obvious that the fully optimal
form of information provision is still a bi-pooling mechanism.!3

Our interest in generalizations lies in richer ways of quantization, where we allow the
receiver to choose intervals that the receiver gets to observe, i.e., simple pooling policies.
When the receiver can create arbitrarily many of such pools, then an optimal way to place
them — an ex ante optimal form of quantization — is outcome equivalent to having two
equally sized pools on each side of the prior mean and to reveal the state perfectly for
realizations in the tails of the distribution. There is no gain from allowing for bi-pooling
relative to this solution.

The form of the experiment reminds of Szalay (2005) where incentives for information

13More specifically, the distribution must have no mass around its mean. Clearly, this does not disprove
the conjecture that the fully optimal mechanisms remains in the class of bi-pooling mechanisms.
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acquisition in a delegation problem are set by eliminating the compromising options. In
common with Szalay (2005), the induced choice schedule displays some commitment to
choices in the tails of the distribution as opposed to choices close to the prior mean. The
essential difference is a discontinuity of the choice schedule around the bound of the first
category, a; in the present problem. The discontinuity arises because the actions taken
by the Receiver are optimal against the information provided by the Sender as opposed
to excessively extreme by commitment. This difference is essential: the current approach
generates an endogenous commitment to extreme options, because the sender cannot dis-
tinguish states in the two sets adjacent to the prior mean. This endogenous commitment
to the extreme choices is also present in Che and Kartik (2009) in a model of disclosure,
and, more recently, in Lipnowski et al (2020) in a model of attention management. In com-
mon with the present approach, the inability to distinguish states around the prior mean

generates better incentives to pay attention.

Appendix

Proof of Lemma 2. Consider any a1 € [0,w). We show that logconcavity implies that the
optimal partition of [a1, W] features lim, o (42 —a1) = 0. The case a3 = 0 is Lemma 2,
a1 > 0is needed for Proposition 6.

Interval length is nondecreasing towards the tails of the distribution. Since any log-
concave density is strongly unimodal (see Dharmadhikari and Joag-Dev (1988) and refer-
ences therein), the symmetric density is nonincresing over the positive half. For a strictly
decreasing density, intervals increase strictly. For a nonincreasing density, the mean over
any interval is at most equal (smaller for the strict case) to the midpoint of the truncation
points; to satisfy the arbitrage condition, intervals must get longer.

If @ is finite, then w — 4 is finite. Suppose there is an € such that If a, — a; > ¢ for any
n. But then the interval partition does not fit into [a1, W] . Hence, limy, s (2 —a1) = 0.

If w = oo, then note that logconcavity implies nonthick tails (relative to the exponen-
tial), strict logconcavity implies thin tails. We show that a,_; must be finite. Consider
tirst the case of strict logconcavity. Since intervals are nondecreasing, the one below a,,_4

is at least as long as the ones below. By the arbitrage condition of a,,_1, 4,1 — py—1 =

Un — Ap—1-

Now suppose that lim;,_,« 4,1 = 0. Due to thin tails we would need to have
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limy,—yeo(ftn — ay—1) = 0. However, this would imply that all intervals must have zero
length. But the support cannot be covered with countably infinitely many isolated points.
Now, since limy_s« 4,1 is finite, on the finite support [a1,lim, ;e a,-1], the argument
above implies that there cannot be an ¢ > 0 such that lim;, 0o a0 — a1 > &.

Consider now the case of the Laplace distribution (exponential distribution on the pos-
itive part) which implies neither thin nor thick tails in the sense of constant mean residual
life. For the Laplace case, yi, — a,_1 = }i+, a constant, independent of the location of a,,_;.
Hence, the location of a a,,_1 cannot be used so directly to argue it must be bounded.

Consider a7 as given and construct an optimal quantization on [a1, o) . Suppose there
is ¢ > 0 such that lim;, . a2 — a1 > . Since intervals are increasing and all intervals have
positive length, ¢ > 0 implies that we can find a number » < 1 such that a; —a;_1 <
r-(ajyq—a;) foralli = 2,...,n—2. Note that a, 1 = a1 + nil (a; —a;_1) . Hence, the

=2
series is convergent and thus lim, . a,_1 = a* < co. However, it is not possible to to

have infinitely many intervals of length ¢ and longer on the interval [a1,a*] . Hence, the
initial hypothesis that there is a ratio r < 1 is wrong. Since intervals are increasing, the
ones closest to the low end must tend to zero. [

Proof of Proposition 3. For N = 4, denote the partition thresholds inserted on the up-
per and lower half of the support by 44, and the new conditional means on the up-
per (positive) half by y1 and pp. For N = 2, (6) is simply 2u%. Therefore the claim is
u? + E[u?] < 2u3 with strict inequality if the density of w is logconcave.
Let p = Prw € [0,a] |w > 0]. By the law of iterated expectations, py = pu; + (1 —
p)H2, hence
(L =p)(u2 — 1) = py — p, (10)

where both sides are positive.
For any distribution with a (strictly) logconcave density %]E [wjw >t <1(< 1) for
all t. (See Prékopa, 1973). Therefore, for any cutoff a > 0,

po—py = [f 2E[w|w > t]dt < a (11)

with a strict inequality if the pdf of w is strictly logconcave. In the four-partition, by the
indifference of S at w = a, we have yuy —a = a — y;. Combined with (11) this yields

p1+ 2 < 2(py + ),
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with strict inequality if the pdf of w is strictly logconcave. Note that both sides are positive.
Multiply this and (10) together to obtain

(1= p) (3 — 1) <2013 — p3).

After rearranging, this is equivalent to

w4 pui+ (1 —p)us <243,

with strict inequality if the pdf of w is strictly logconcave, which proves the claim. []
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Online Appendix

Proof of Proposition 6:
We first derive first-order conditions. Transform the objective, using the law of total
variance, back into its original form. Letting A > 0 denote the shadow cost of increasing

¢, the Lagrangian takes the form

Z (w—u)* f(w) dew + A 2 (w— 1) f(w)dw — c+ 0% + 12

1—1 1—1

where A > 0 measures the shadow cost of increasing c and f = 2f is the density condi-
tional on w > 0. Setting a9 = 0 and a,, = @, and neglecting monotonicity constraints on a;
(because they are satisfied automatically at the solution), the first-order conditions for a;,

i=2,...,n—1are
(= = 1 f (@) + (@ = i) F (@) ) (1+2) = 0,
while the first-order condition for a7 is
(= (= ) ) + (a1 — )2 (an)) (14 2) + A2 =0

The former condition is the same as the one we obtain without commitment, except for

the fact that a4, is different: rearranging the condition for a;, we obtain

A A A
(= (=) F @)+ (o = o) f ()) = =y 2
Since the right side of the inequality is negative, the left side must be as well

(a1 — p2)* < (a1 — )%,

implying that
B2+
a; > ’
! 2
so that the first threshold is set larger than in an equilibrium without commitment. The
remaining thresholds are set at the optimal quantizers of the interval [a1, @] .
The first-order conditions for a4;, i = 2,...,n — 1 are necessary and sufficient for an

optimum for given a; by the uniqueness of optimal quantizers. The first-order condition
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for a; is necessary for an optimum.
The proposition is proved by a series of Lemmata.

Lemma A1l. Consider any given a; € [0, @) . For any distribution with a logconcave den-

sity, the optimal partition of the interval [a1, @] has the feature that lim;, e (#2 —a1) = 0.
Proof: See the proof of Lemma 2 in the Appendix. [

Lemma A2. For the class of distributions with a linear tail conditional expectation, in
the limit as n — oo, the expected value from communicating in the ex ante optimally
quantized way converges to the expected value from revealing w perfectly for w > a4; and
from pooling states together to the same signal for w € [0,a1). Moreover, a; is bounded

away from zero to meet the moral hazard constraint.

Proof: Deimen and Szalay (2019) show that the value from optimal partitioning above a;
is
b

E [ (g —ap)’ |0 2 ar) = o5 ((@pe)” = (ap2)?) +26%m (ﬁ (4 +p2) — “V+) :

By the law of iterated expectations, considering y; as the realizations of a discrete random
variable
E[yi|lw > @] = py + aaq.
Using this fact as well as the fact that the conditional distribution, conditional on w > ay,
n

satisfies ) p; = 1, we find that
i=2

n n

Z pi (ni — M+)2 = Z pi (.”i)z - Vi — 2 aa.
i=2 i=2

Thus, dividing by a? and decentering again by adding % + 2paa;, we get

14 14
E|(u)|wzm] =55 () = (02)*) +20m (r (4 + p2) - W+) 123 + 20000,
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Letting a1 = pp = a (which obtains due to Lemma A1)

b 1
2 (P‘%r - “2) +2aa (m (ns +a)— 14+) + %+ 20

(4 —a (1 —a))*.

_ 2 _ _
= @20 — (1-a)a) + 5

Consider now the value from the optimal pooling policy which reveals w perfectly
beyond some value a* and reveals only that w € [0,47) .
The density of distributions with a linear tail conditional expectation, conditional on

w > 0, obtained in Deimen and Szalay (2019), is

flw)=ap ™" (pp —w(1—a))T= (12)

Let f (w) = 1{ (12‘81). Integrating by parts twice, we find

[ @F @)do =at+ 20— (1= w)a) + 52 (e —a (1 - )",

The same value is feasible in both problems. Hence, the solutions satisfy a; = a*.
Consider the level of the left-side of the incentive constraint as a function of a; :

(14 £ (ar) (o1 (1) + (1= E (1)) (a%+2a1 (s~ (1 =) a) + 5 (i~ (1 —a))z),

where y1 (1) = E [w|w € [0,a1]].

We must have a; > 0. If a4 = 0, then the left side of the constraint attains value
ﬁ (;4+)2 = 02 < ¢, so that the constraint is violated. On the other hand, for a; = @, the
left side of the constraint takes value 2 ( y+)2 =2-a)c?>c.

By continuity, for a < 1and ¢ € (02, (2 —a)0?), there exists a; that meets the con-

straint. [J

Lemma A3. The optimal bi-pooling policy is a simple pooling policy that reveals w per-
fectly for w > a7 and from pooling states together to the same signal for w € [0,4a1) .
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Proof: The optimal bi-pooling policy solves

as

0

2 27 22

0<a12§‘§a3<wl9ﬂ1+/w f(w) dw+/w f(w)dw
ay as

a3

0
s.t.py%—k/wzf(w)dw—k/wzf(w)dw—ky%:c

p:?ﬂw)dw/@f(www
0 a;

fwf(w) dw+j§wf(w)dw

0 as
p
1 < ag.

1=

(13)

The last constraint ensures that the agent who shirks wants to claim he believes the con-

ditional mean is ;.

Step 1: a policy is optimal only if it is either a simple pooling policy that reveals w

perfectly beyond some a1 and pools states together for w € [0,a1) or it is a bi-pooling

policy with one pool at the low end and one pool at the top end; formally a3 = w.

To prove this, suppose contrary to the claim that 2; < a4y < a; < @. It suffices to

consider policies such that

2

1a)f (w)dw + afawf(w)dw

a2

1f(w)dw+}3f(w)dw

o

= u1 = constant,

o =

Differentiating totally wrt a; and a3, keeping a1 and y; constant, we obtain

<f<a3> ay_ f () m) das <f<a2> m _ f(n) m) day = 0
p p p p '

Provided that a; < a3 and a3 < @, we can adjust a3 after a change of a; such that

das _ f(a2) a2 —
day  f(a3)as —p1
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Taking account of this relationship, the objective and constraint change according to

(f (a3) das = f (az) daz ) (1)* + V2 (a2) daz — (as)? f (a3) das
= f(a2)daz ((a3 — a2) (1 — a2))

Hence, by raising 4, (and adjusting a3 upwards accordingly), we can raise the payoff and
the left side of the constraint, contradicting the supposed optimality.

Noting that a; = a4, < a3 < W is in fact a simple pooling policy with only one pool at
the low end and a; < a; < a3 = w is a bi-pooling policy with a pool at the low end and a
pool at the high end, completes the proof of the step.

We can relabel thresholds, since at most two of them are needed.

Step 2: a bi-pooling policy with a pool at the low end and a pool at the top end is
optimal only if 2y = yy and ap < w or a; > py and a; = w.

Suppose contrary to the claim that y; < a1 < a, < @. Given that ¢ < (2 —a)0?,
a; = ap is not optimal and hence need not be considered.

Considering again policies such that y is constant, differentiating totally wrt a; and
a,, we obtain

(f(al)al _f(al);q) dﬂll— <f(112)(12 _f(QZ).u1> dllz
p p p P

Provided that 4y > a;and a, < w

day _ f(m) (a1 — )
day  f(ap) (a2 —p1)

Taking account of this, objective and incentive constraint change according to

(f (a1)dar — f (az) daz ) (1)” = (@1)* f (1) das + (a2)°  (a2) das
= f(ar)day (1 —a1) (a1 — a2).
Hence, if 41 > a1 and a; < @, then we can raise the objective by increasing a;.
Hence, either the policy is a simple interval pooling policy with pooling at the low end

only, in which case we are done, or it is a bi-pooling policy with y; = 47 and ay < @.
Step 3: A bi-pooling policy with y; = a; and a, < @ is suboptimal.
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The Lagrangian of problem (13), using the structure provided by the first steps, is

b

b
L=p(@b) (i (@0)+ [ @f (@)do 4%(@mm+n0ummf+/a¥www—a

a

65 (1 (a,0)) — m1) + 6 (a2 — @)

where §, > 0 and ¢, > 0 are the Kuhn-Tucker constraints on the constraints y; (a,b) —
a; < 0and a; — w < 0. We note that the constraints a; > 0 and a4, > 4 are automatically
satisfied. To see this, note that a; = 0 implies y; = 0 and thus a; = w, which does
not meet the constraint. Likewise, a; = a, provides too much incentives for information
acquisition given that ¢ < (2 — &) 0.

Taking derivatives, necessary conditions for a solution are

(L+A)f(m) ((m (a1,a2))% — (a1)2> b A20 (ay, ap) 21012 92) (a1, 82)

8611
0 , d ’
+ (14 A) 20 (an,a2) i1 (a1, 32) M Iy ((M) _ 1) _0
a1 aa1
and
R ouq (ay,a
(4N £ @2) (0 (1, 02) — (02)2) 442 (1 (o, a2)) 21 00022)
0 ay,a 0 ai,a
+ (1 +/\) 2p (al,az) "1 (lll,az) % + 4 ((%)) +6,=0
We note that

o (ar,a2) _ [ flar)m [ (a1) pa (a1, 42)
day p (a1, a2) p (a1, az)

Substituting back into the first-order condition for a; we obtain,

S @A) F (@) (i (0, @2)) — @)+ A2 (g, 2) =2 (@) — iy (a1, 2))
p (a1, a2)
+04 (% (a1 — pq1 (a1,a2)) — 1) =0.

a1 — p1 (ay,a2) is a stationary point only if 6, = 0. Hence, we must be able to find the

stationary point from the unconstrained problem which neglects the constraint a priori.
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However, the derivative of the unconstrained problem

A

—(1+2) f(a1) (1 (2, b)) = a1)* + A2 (a1, a2) % (a1 — p1 (a,0))
is strictly negative for a < uj (a,b), and either negative or positive for a > uq (a,b),
depending on the value of A. It follows that @ = py (a,b) is either a saddle point or a
minimum of the unconstrained problem, but never a maximum, as would be required for
the solution to take this form.
It follows from steps 1-3 that the solution in the class of bi-pooling policies is a simple
pooling policy. [
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