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Abstract

We study a simple model of the firm comprised of a production unit, a

sales unit, and an owner with interests in both units. The owner has the right

to adapt the production quantity to changes in demand and costs. Whether

the owner effectively assumes this right or delegates decision-making depends

on the relative uncertainty about demand and costs, on the division of surplus

in the firm, and on the riskiness of the environment the firm faces. We char-

acterize conditions that make acquiring ownership rights feasible and efficient.

The same conditions determine the boundaries of the firm in our model.
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1 Introduction

Understanding the boundaries of the firm and what happens inside these bound-

aries is one of the most important questions in economics.1 Theories of incomplete

contracting offer important guidance towards understanding why and when firms

integrate, and how they operate after integration. Grossman and Hart (1986) and

Hart and Moore (1990) explain the optimal allocation of ownership through residual

rights of control.2 We propose a model of the firm built around actual rights of

control as in Coase (1937) and Simon (1951), who think of the firm as a power rela-

tionship (Coase) and the employment contract as an authority relationship (Simon).

In our theory, ownership of a firm provides the owner with formal authority – the

right to make decisions on behalf of the entire firm. As emphasized by Aghion and

Tirole (1997), formal authority need not confer real authority – the effective control

over decisions. Indeed, once in place, the owner may prefer to put someone else in

charge. We build a formal model to disentangle the resulting trade-offs. We show

that acquiring formal authority through ownership rights in the firm is only optimal

for a potential owner if the owner expects to assume real authority this way. In other

words, formal and real authority are reunited in the equilibrium of our model.

Envision the firm as a supply chain comprised of a producer, P, and a seller,

S. An owner, M, holds shares in P and S. If perfect information were available

from the start or a comprehensive mechanism were in place to make efficient use of

information later on, then neither the notion of a firm nor the notion of authority

would be meaningful. Market based transactions between independent units would

1Lafontaine and Slade (2007) report that the volume of transactions inside firms in the US is

roughly equal to the volume of transactions over markets.
2The owner of an asset can use the asset in any way if the relationship falls apart; these residual

rights of control shape incentives to invest and, thereby, determine efficient ownership structures.
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achieve efficiency; likewise, with perfectly aligned objectives of S, P, and M, it would

not matter who makes decisions. This is no longer true when information is privately

observed and no sophisticated monetary mechanism is in place to deal with it. This is

our starting point. In particular, we consider a situation in which S and P privately

observe information about their own costs, and in addition, S – who is closer to

customers – gets private information about demand. The new information is relevant

to S, P and M to different extents: Since S, P and M would all want to respond to

information about demand in the same way, demand corresponds to a common value

component. In contrast, the individual costs correspond to private value components.

S and P want to adapt to changes in their own cost but not to changes in the other

one’s costs. M, who has an interest in the payoffs of S and P, wants to consider

changes in all costs but to a smaller degree than S and P do. In this situation,

everybody favors different choices and, hence, authority matters.

As the owner of the firm, M has the formal authority to decide or to delegate

the decision. Whoever makes the decision can take advice from the others. Because

of differences in preferences, information transmission is strategic in our problem, as

in Crawford and Sobel (1982). When M makes the decision, M communicates with

the units beforehand. We term this consultative decision-making. When M delegates

decision-making to P, then P can take advice from S. We term this delegation to

P. When M delegates decision-making to S (delegation to S ), then there will be

no meaningful communication. This is the essence of private value information.

Common value information, by contrast, can be shared.

Before we study ownership, we analyze optimal decision-making for a given own-

ership structure. We determine the optimal mode of decision-making – the allocation

of real authority – as a function of three factors: the information about common and

private values, the distribution of surplus in the organization, and the riskiness of

the environment.

To understand the role of these factors step-by-step, we first look at the pure

private value case where demand is commonly known. For a large set of payoff

division rules around equal sharing, M ends up making decisions at the optimum;

delegating to S or P is optimal only for relatively unequal surplus division rules.

Adding an element of common values makes it relatively more attractive to delegate
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to S and relatively less attractive to delegate to P. The reason is a pecking order

in the use of common value information. S, who has direct access to common value

information, makes efficient use of that piece of information. M is next in line since M

has a comparative advantage relative to P at extracting common value information

from S, because M’s preferences are better aligned with those of S than P’s. By

implication, real authority is redistributed from P to M and from M to S. When the

common value component gets very large – in an almost common value environment

– this redistribution is pushed to its limit. By monotonicity, any point of indifference

between those arising in the extreme cases of pure private value and almost common

value information can arise in some informational environment.

With the allocation of real authority pinned down, we can take one step back and

discuss the incentives to acquire ownership – formal authority – in our model. We

envision that M makes a take it or leave it offer to P and S, who both need to accept

to transfer ownership rights to M. This pins down the equilibrium payoff sharing rule.

Two questions arise. When is some form of formal authority better than a purely

market based transaction? When does an integrated structure with M on top arise?

We find that in a pure private value environment, S and P would never integrate on

their own, but they may agree to integrate with M on top. In particular, if S and P

face the same amount of uncertainty with respect to their costs, then M can acquire

the right to make decisions on behalf of all three of them in exchange for a fraction of

the payoffs of S and P. The resulting payoff division rule effectively makes M indeed

acquire real authority through this arrangement. We also show a partial converse

to this result: If S and P benefit to sufficiently different extents from adapting to

changes in costs, then there does not exist any arrangement that puts M in charge

and is individually rational for both of them. The model can also rationalize which

integrated structure is most efficient, if several ones are feasible. In particular, in an

environment with quite a lot of common value uncertainty, some form of integration

will always occur, either with S or with M on top. The integrated structure with M

on top is efficient if and only if it is socially efficient to have M assume real authority.

In sum, our theory provides a connection from real authority to formal authority.

In particular, acquiring formal authority is optimal only if formal authority confers

real authority to the owner. Hence, we obtain a theory of ownership based on actual
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rights of control – as opposed to residual rights of control as in Grossman and Hart

(1986) and Hart and Moore (1990).

We build on the notion of real authority first analyzed in Aghion and Tirole

(1997). The main focus of that work is that delegating formal authority may benefit

a principal by providing better incentives for information acquisition for a subordi-

nate.3 We focus on aspects that are not present in Aghion and Tirole (1997). In

particular, we explain the allocation of real authority in the presence of common and

private value information in an environment in which some – strategic – communica-

tion of that information is possible and explore the consequences for the acquisition

of formal authority – i.e., ownership rights. Dessein (2002) has first studied authority

in the strategic communication model of Crawford and Sobel (1982) with one sender

and one receiver. He shows that whenever meaningful communication is possible at

all, the receiver prefers to delegate decision-making to the sender. Even though con-

trol is lost, the informational loss through strategic communication is more severe.

Our main point of departure from that literature is our take on the conflicts between

the participants. Developing our model from scratch in Section 2, we show that in

the context of coordinating arrangements in a supply chain, the systematic conflicts

assumed in Crawford and Sobel (1982) do not arise. Instead, conflicts based on ex

ante known information are eliminated; ex post, conflicts may still arise depending

on the realizations of shocks.

The papers that are most closely related to the present one are Alonso et al.

(2008) and Rantakari (2008). This work studies the allocation of decision-authority

in a multi-divisional organization in which each division needs to take an action –

thus, there is a desire for coordinating actions.4 Such coordination motives arise, e.g.,

in a horizontally integrated firm that is organized in multiple divisions. Each division

is represented by a division-manager, so there are no incentive problems within the

divisions. In contrast, we analyze how management wants to organize decision-

3See Hidir and Migrow (2019) for a more recent contribution showing that a principal may

benefit from delegating to a relatively less able agent.
4See also Dessein (2013), which views organizational architectures, as we do, as incomplete

contracts. Blume et al. (2020) study the interplay of incomplete contracts and cheap talk. See

Gibbons et al. (2012), for an overview of approaches to choosing organizational architectures.

4



making in a single vertical chain. In terms of a broader organizational picture, this

complements their approach by looking at the incentive problems within a single

division. Clearly, the reasons we find for or against keeping decision-authority in the

hands of management are unrelated to coordination motives. An interesting next

step is to integrate both approaches to study organizations that have both breadth

and depth.5

We start from the smallest organizational form that may be called a firm and

arguably the simplest decision-problem it might face: how much to produce. The

problem mandates several ingredients, some – but not all combined – have been

studied in the literature, some are entirely new. There are three pieces of informa-

tion, one common value and two private value components;6 S has multi-dimensional

information: S observes some information about the common value component and

some information about the own private value component;7 and information is noisy

and dispersed in the organization and communicated strategically.8 Moreover, infor-

mation is collected from many senders with uncorrelated pieces of information.9

Technically, our own prior work (Deimen and Szalay (2019)) is most closely con-

nected. In that paper, we look at incentives for information acquisition and commu-

nication in a sender-receiver game. Conflicts arise and get eliminated depending on

the type of information that the sender acquires. Since communication under con-

5See also Liu and Migrow (2019) for an analysis of uncertainty about relative division profits in

the framework of Alonso et al. (2008) and Rantakari (2008). Unlike we do, they focus on verifiable

information.
6This relates to Li and Madarász (2008) and Li (2010), where the sender’s bias is unknown.
7This contrasts with Levy and Razin (2007) and Chakraborty and Harbaugh (2007) which study

one-sender models with high-dimensional actions and information.
8Blume et al. (2007) look at the effect of exogenous noise in communication.
9Wolinsky (2002) looks at aggregating independent, partially verifiable signals in a setting with

and without commitment. Battaglini (2002), Ambrus and Takahashi (2008), and Meyer et al.

(forthcoming) study problems with multidimensional states and actions where the senders have the

same information. In McGee and Yang (2013), the senders have partial and non-overlapping private

information, and their information transmissions exhibit strategic complementarity. Hagenbach and

Koessler (2010) study a pure common value problem with known sender-biases in the context of

networks with a coordination motive. In contrast, we look at the mixed private and common value

case in a three-player game, in which the private value components impact the biases.
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flicts works very badly in the fat-tailed environments considered there, the sender

prefers to acquire information that aligns incentives completely. To deal with the

updating of noisy, multidimensional information in a concise way, we assume an el-

liptically contoured joint distribution of the state. In the current paper, we focus

on thin-tailed environments in the same class of distributions. These are much more

conducive to mechanisms involving communication: in fat-tailed environments, M

would have less authority. Importantly, breaking up information into common and

private value components is new here.

Elliptical distributions are well known in statistics and have been found useful

in finance theory, roughly because they are accessible by similar methods as the

Normal distribution but are more flexible (see Fang et al. (1990) for an in-depth

analysis). There is a huge advantage over the Normal for the analysis of strategic

communication, due to the partial pooling such communication induces. For a class

of distributions, expected payoffs arising from such partial pooling can be computed

in closed form. The most prominent members of this class are the uniform and the

Laplace distribution (see, e.g., Kotz et al. (2001)); a single parameter, capturing the

mass in the tails, spans all the distributions between them.10 We have characterized

this class in Deimen and Szalay (2019). Since there – for fat-tailed environments

– biased communication occurs only off equilibrium path, no proof of existence of

equilibria is necessary. We provide this proof here, for the entire class of elliptical

distributions with logconcave marginal densities.

The remainder of the paper is organized as follows. In Section 2, we first motivate

our setup formally and then present the reduced form model in Section 3. We analyze

strategic communication in Section 4. In Section 5, we derive the optimal mode

of decision-making and discuss different private and common value constellations.

Section 6 discusses ownership. Finally, Section 7 extends to endogenous information

and the role of risk. We show that if M can choose what S and P get to know, then real

authority is redistributed systematically towards M. In particular, M always decides if

surplus is divided equally within the firm. Moreover, we provide comparative statics

10While the use of tail risk in economic theory is not yet wide spread, actuarial scientists have

long been using the tail conditional expectation function of a distribution – the expected value

conditional on truncations to the tail – as a consistent measure of risk (Artzner et al. (1999)).
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of the set of payoff division rules for which M has real authority, as a function of the

riskiness of the environment. In riskier environments, communication is less effective

and hence M has less authority because consultative decision-making relies heavily

on communication. Section 8 concludes. Proofs of theorems are in the Appendix,

technical proofs of lemmas and propositions are in the Online Appendix.

2 In a nutshell

In this section, we justify the reduced form of our model from scratch that we analyze

from Section 3 onwards. The algebraic details matter only for the analysis of optimal

ownership in Section 6.

Consider a vertically integrated firm: a parent company, M, owns shares in two

subsidiaries, S and P, where S is the sales unit and P is the production unit. Let

kP and kS denote the marginal costs of units P and S, respectively. The firm faces

a linear market demand function, P (y) = A− y, where y denotes the quantity that

the firm brings to the market. Contracts are in place to coordinate the units as

follows. The units P and S split the revenue with shares ωP and ωS, ωP +ωS = 1. A

transfer price governs trade between the units. As has been shown by Cachon and

Lariviere (2005), if the transfer price is set appropriately, then this arrangement is

efficient.11 In particular, it is easy to verify that a transfer price of ωSkP − ωPkS

completely aligns the incentives of S and P. The arrangement coordinates the supply

chain: it does not matter whether S or P decides how much to supply, the quantity

that maximizes aggregate profits maximizes also the individual payoffs. Thus, the

allocation of decision-rights is irrelevant given an efficient and perfectly coordinated

arrangement.

After contracts are fixed, however, demand or cost conditions may change. Let

a = A−kP−kS denote everything that is commonly known ex ante. Let demand and

cost parameters change to a+∆A, kP−∆kP , and kS−∆kS, respectively. Suppose that

M receives shares of 1−δP and 1−δS of the units’ profits. Then, P’s and S’s objectives

are δP (ωPy (a+ ∆A − y) + ∆kPy) and δS (ωSy (a+ ∆A − y) + ∆kSy), respectively;

11See also the seminal work by Holmström and Tirole (1991).
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M receives the residual, (1− δS) (ωSy (a+ ∆A − y) + ∆kSy)+(1− δP ) (ωPy (a+ ∆A − y) + ∆kPy).

The allocation of decision rights now matters. With complete information about

demand and cost shocks, S, P, and M would all favor different quantity choices.

More precisely, they would all respond to the demand shock in the same way but

would all respond to cost shocks differently – demand corresponds to a common value

component, costs correspond to private value components. Authority matters in a

second way if the realizations of the shocks are observed by different parties: As is

natural, let S observe the realizations of the demand shock and the own cost shock;

and let P observe the realization of the own cost shock. The allocation of authority

determines what the one who makes the decision knows to begin with and how well

this decision-maker can communicate with others.

We turn to the formal analysis, starting from the assumption that a structure with

M on top with a given payoff sharing rule is in place. We justify these assumptions

in Section 6.

3 Model

There are three players, M, P, and S. A decision to change production by ∆y ∈ R
has to be made. The state of the world (xC , xP , xS) is the realization of a random

variable (XC , XP , XS) that decomposes into a common value component XC and two

private value components XP and XS of P and S, respectively. In the linear demand

and cost environment, xC = ∆A

2
, xP = ∆kP

2ωP
, and xS = ∆kS

2ωS
, and payoffs are constant

fractions of

πS (∆y, xC , xS) = π∗S − (∆y − (xC + xS))2

and

πP (∆y, xC , xS) = π∗P − (∆y − (xC + xP ))2 ,

where π∗S and π∗P correspond to the maximal unit profits that arise if the individually

ideal adaptation decisions to change production by ∆y∗S = xC+xS or ∆y∗P = xC+xP

are taken.

M obtains a constant fraction of a weighted average of the units’ payoffs

πM (∆y, xC , xP , xS) = λπS (∆y, xC , xS) + (1− λ) πP (∆y, xC , xP ) ,
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where λ ∈ [0, 1] is determined by the payoff sharing rule; it measures the relative

importance of S’s payoff for M. For the special case in which λ = 1 (λ = 0), the

interests of M and S (P) coincide. We skip constant factors of proportionality for

parsimony, since they do not affect preferences over decisions. We reintroduce these

factors below when we discuss ownership in Section 6.12

M has the right to choose ∆y. M’s first-best ideal choice is the weighted sum of

S’s and P’s ideal choices and given by ∆yfb = xC + λxS + (1− λ)xP . If M knew

the state, then M would choose the first-best action. However, M does not know

the state. Instead, P and S privately receive some information about the state. In

particular, P privately observes a noisy signal sP = xP + εP about P’s private value

component, and S privately observes noisy signals (sC , sS) = (xC + εC , xS + εS)

about the common value component and S’s private value component. The noise

terms (εC , εP , εS) are the realizations of the random variables (EC , EP , ES).

We assume that the random vector Z = (XC , XP , XS, EC , EP , ES) follows a

joint elliptically contoured distribution with finite first and second moments, and

with a logconcave marginal density f on appropriate interval supports Si ⊆ R, i ∈
{XC , XP , XS, EC , EP , ES}. Elliptical distributions owe their name to the fact that

the level curves of their densities are elliptical; they have convenient symmetry and

linearity properties (that we summarize in Lemma A.1 in the Appendix).13 Promi-

nent members of the class of elliptical distributions include the Normal distribution,

the Laplace distribution, the Uniform distribution, and many more. As we demon-

strate below, there is a huge benefit to working with this larger set rather than the

Normal only: for other members in this class, the trade-offs in strategic information

12We attribute the exact mapping from the linear demand and cost environment to the quadratic

loss functions to Alonso and Matouschek (2008), where we have first seen it in a regulation context.

To the best of our knowledge, the application to coordinating arrangements in a supply chain is

new to the literature.

For completeness, the factors of proportionality are δSωS , δPωP and ((1− δS)ωS + (1− δP )ωP ) .

A natural case is δS = δP and ωS = ωP in which case λ = 1
2 .

13The joint distribution is defined by the characteristic function, so that all marginal distributions

have the same characteristic (generator) function. The characteristic function is a quadratic form,

ψ(t) = exp(it′µ)φ(t′Σt), with covariance matrix Σ and some scalar function φ. For more details

on elliptical distributions see, e.g., Fang et al. (1990).
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transmission environments can be analyzed with closed form expressions. Due to the

coordinating arrangement, the first moment is zero, E [Z] = 0. The second moments

are given by the covariance matrix of Z, Σ = diag
(
σ2
C , σ

2
P , σ

2
S, σ

2
εC
, σ2

εP
, σ2

εS

)
∈ R6

+;

thus, the state components and the noise terms are all uncorrelated.14 We assume

that the joint distribution is commonly known. Only the signal realizations are

private information.

The game unfolds as follows. At the outset, M chooses between three modes of

decision-making: consultative, delegation to P, or delegation to S (explained below).

Then, the state is realized, and the signals are observed. The remainder of the game

depends on the chosen mode of decision-making.

Consultative decision-making. P privately observes the signal realization

sP = xP + εP ∈ SSP , and S privately observes (sC , sS) = (xC + εC , xS + εS) ∈
SSC × SSS . P and S choose what messages mP ,mS ∈ M to send to M. We do

not impose restrictions on the message space M. Formally, P’s message strategy is a

function MP : SSP →M and S’s message strategy is a function MS : SSC×SSS →M.

After observing the messages, M takes an action. Thus M’s action strategy is a

function YM : M2 → R. We assume that there is no cost of sending messages and

M is unable to commit to the strategy YM as a function of the information received

– i.e., communication is modeled as cheap talk in the sense of Crawford and Sobel

(1982).

Delegation to P. Given the privately observed signal realizations (sC , sS) ∈
SSC × SSS , S chooses what message m ∈M to send to P. Formally, S’s strategy is a

function Ms : SSC × SSS →M. P’s strategy is to choose an action as a function the

own signal realization and S’s message, YP : SSP ×M → R. As under consultative

decision-making, we assume cheap talk communication.

Delegation to S. Given the privately observed signal realizations (sC , sS) ∈
SSC × SSS , S chooses what action to take, YS : SSC × SSS → R. There is no

communication, because P has no relevant information from S’s perspective.

We solve for Bayesian equilibria of the game. For each message, the receiving

party forms a belief over the types who might have sent the message. The belief

14We define the generalized inverse of a degenerate covariance matrix as inverse of the full rank

matrix while keeping the zero entries zero.
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is derived from the prior and the sending parties’ strategies. The receiving party’s

strategy maximizes the payoff given the belief and the sending parties’ strategy.

Likewise, the sending parties’ message strategies maximize their payoffs given the

receiving party’s strategy.

4 Strategic communication

Under consultative decision-making, P and S communicate with M; under delegated

decision-making to P, S communicates with P. Naturally, pure common value infor-

mation could be shared easily, but the private value components give rise to conflicts.

As long as interests are only partially aligned, we expect that the information trans-

mitted is garbled. We have to deal with two types of garbling. First, the action

is one-dimensional but S obtains a two-dimensional signal; S optimally aggregates

the signals to send a one-dimensional message. Second, as is standard in strategic

communication, information is partially pooled into an interval partition of the state

space and recommendations are coarse: instead of revealing the precise realizations

of the signals, P and S only communicate the respective partition intervals.

4.1 Merging signals into recommendations

It is intuitive that P and S only reveal information that matters for their optimal

actions. Since we assume quadratic loss functions, the optimal actions are the poste-

rior means. Moreover, in our statistical environment, the posterior means are linear

functions of the signals.15 We define S’s and P’s posterior means as

θS := E [XC +XS| (SC , SS) = (sC , sS)] =
σ2
C

σ2
C + σ2

εC

sC +
σ2
S

σ2
S + σ2

εS

sS,

θP := E [XP |SP = sP ] =
σ2
P

σ2
P + σ2

εP

sP .

S’s (P’s) interim expected utility satisfies the single-crossing condition in ∆y and

15Lemma A.1 in the Appendix gathers the properties of elliptical distributions that we refer to

in this section.
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θS (θP ).16 Moreover, the level of the posterior mean θ = θP , θS is the only statistic

of the posterior distribution that interacts with the action ∆y. Hence, it is natural –

and proven formally in Deimen and Szalay (2019) – that without loss of generality

we can describe all equilibria of the communication games in which S communicates,

in terms of communication about θS only; naturally, P communicates about θP

only. The following observation is useful to understand the informational content of

communication.

Observation 1 θS and θP follow an elliptical distribution with the same character-

istic generator with mean vector zero as Z.

Variances and covariances play an important role in our analysis, as they measure

informational contents. For readability, we introduce the following notation:

c :=
σ2
C

σ2
C + σ2

εC

σ2
C , s :=

σ2
S

σ2
S + σ2

εS

σ2
S, p :=

σ2
P

σ2
P + σ2

εP

σ2
P ,

such that c represents the amount of common value information and s and p the

private value information of S and P , respectively. The variances of ΘS and ΘP

are given by var(ΘS) = c + s and var(ΘP ) = p; the covariances can be calculated

from cov (Xi,Θi) = var (Θi) for i = S, P and by recalling non-correlation. For

example, the covariance of M’s optimal action and S’s posterior ΘS is given by

cov (XC + λXS + (1− λ)XP ,ΘS) = c+ λs, it measures the informational content of

ΘS for M.

4.2 Conflicting interests

Consider now the optimal actions from the receiver of some communication. Let

θ = θS, θP be the realization of the state Θ = ΘS,ΘP that is communicated. To fix

ideas, consider truthful non-strategic communication of conditional means. Under

16S’s interim expected utility takes the following form E
[
− (∆y − (XC +XS))

2 | (SC , SS) = (sC , sS)
]

=

−(∆y)2 + 2∆yθS − E
[
X2
C +X2

S | (SC , SS) = (sC , sS)
]
. Similarly, for P,

E
[
− (∆y − (XC +XP ))

2 |SP = sP

]
= −(∆y)2 + 2∆yθP − E

[
X2
C +X2

P |SP = sP
]
.
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consultative decision-making, the recommendations θP , θS would induce an ideal

action of M of

E [XC + λXS + (1− λ)XP | (ΘS,ΘP ) = (θS, θP )] = βMS · θS + βMP · θP ,

where

βMS :=
c+ λs

c+ s
and βMP := (1− λ) . (1)

We term the regression coefficients βMS = cov(XC+λXS ,ΘS)
var(ΘS)

and βMP = cov(XC+(1−λ)XP ,ΘP )
var(ΘP )

the sensitivities of M relative to S and P, respectively. The sensitivities reflect how

much a receiver is inclined to follow a sender’s advice.

Likewise, under delegated decision-making to P, P’s optimal decision function

based on S’s recommendation θS and the own information sP is

E [XC +XP |ΘS = θS, SP = sP ] = βPS · θS + θP ,

where

βPS :=
c

c+ s
. (2)

Here, P’s sensitivity with respect to S’s recommendation is the regression coefficient

βPS = cov(XC+XP ,ΘS)
var(ΘS)

.17 Note that the players agree in expectation on the optimal

choice only for β = 1, where β ∈ {βMS, βMP , βPS}. Thus, the sensitivities mea-

sure the conflicts of interest and how much information can be communicated when

communication is strategic. In the terminology of the literature, we have a state-

dependent bias (1− β) · θ.
Due to single crossing, all strategic communication equilibria either take the form

of interval partitions of the Θ-space or are fully revealing, mixtures of these two

cannot occur. Conveniently, updating conditional on a partition interval remains a

linear function in our model. For example,

E
[
XC |ΘS ∈

[
θ, θ
]]

= βPS · E
[
ΘS|ΘS ∈

[
θ, θ
]]
.

Since the states are uncorrelated, S’s signals are uninformative about xP and P’s

signal is uninformative about xS and xC .

17Under delegated decision-making to S, no meaningful communication from P to S is possible,

since βSP = 0.
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4.3 Communication equilibria

As is standard in cheap talk, partitional equilibria are characterized by a sequence of

indifference types, {ani }i, with ani−1 < ani and n relating to the number of induced ac-

tions. Types strictly within an interval,
(
ani−1, a

n
i

)
, induce the same expected action;

types on the boundaries are indifferent between inducing the action in the interval

below or the action in the interval above. For any finite number of induced actions,

equilibria are symmetric in our model.18 For notational simplicity, we, therefore take

ani ≥ 0 and denote the indifference types below zero by −ani for all i and n. The

description of communication equilibria (Proposition 1) does not depend on who ex-

actly communicates. We, therefore, skip the indices for P and S whenever possible,

in this section. We define the conditional expectations for a given interval
[
ani−1, a

n
i

)
by

µni := E
[
Θ|Θ ∈

[
ani−1, a

n
i

)]
for i = 1, . . . , n and µnn+1 := E [Θ|Θ ≥ ann] .

Thus, the expected action in the i − th interval above zero is β · µni , with β ∈
{βMS, βMP , βPS} and µni ∈

{
µnθS ,i, µ

n
θP ,i

}
. We define the random variables µS and µP

of truncated expectations that have supports
{
µnθS ,i

}
i

and
{
µnθP ,i

}
i
. These discrete

random variables are important for the calculation of the value of communication: to

compute expected payoffs, we need to determine the moments var (µS) and var (µP )

from the marginal distributions of ΘS and ΘP and the equilibrium characterization.

The indifference conditions of marginal types that determine partitional equilibria

are

ani − β · µni = β · µni+1 − ani , for i = 1, . . . , n. (3)

Symmetric equilibria come in two classes, depending on whether the total number of

induced actions is even or odd. In an equilibrium with an even number of actions,

type θ = 0 must be a threshold type. We call this type of equilibrium a Class I

equilibrium, and the characterization uses an0 = 0. If the total number of induced

18By symmetry of distributions and loss functions, symmetric equilibria exist. Moreover, logcon-

cavity implies that the equilibrium partition of S types is unique (see Szalay (2012)). Hence, only

symmetric equilibria exist. For a related argument – that logconcavity implies uniqueness – in a

dynamic context, see Meyer-ter Vehn et al. (2018).
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actions is odd, then a symmetric interval around zero is part of the equilibrium. We

call this a Class II equilibrium. In this case, we omit an0 from the construction.

Proposition 1 For all elliptical distributions with a logconcave marginal density the

following holds.

i) For all n, there exist an essentially unique equilibrium, which is symmetric and

induces 2 (n+ 1) actions (Class I), and an essentially unique equilibrium, which is

symmetric and induces 2n+ 1 actions (Class II).

ii) For n → ∞, the limits of the finite Class I and Class II equilibria exist and

correspond to equilibria inducing infinitely many actions (limit equilibria).

iii) Within any of the two classes of equilibria, the sequence of first thresholds above

zero {an1}n satisfies limn→∞ a
n
1 = 0.

Class I: 0

an0
. . . . . . ann−an1 an1

−βµn2 βµn2−βµn1 βµn1 βµnn+1

Class II: βµn1

0. . . . . . ann−an1 an1

−βµn2 βµn2 βµnn+1

Limit: 0

. . . . . .−ani ani−ani−1 ani−1

Figure 1: Partitional equilibria. Intervals around the prior mean E [Θ] = 0 get

arbitrarily small as n→∞.

Proposition 1 proves the existence of partitional equilibria for arbitrary n.19 More-

over, it proves that the limit as n→∞ also is an equilibrium. While the partitional

19For the proof, we take equilibria as a combination of a “forward solution” and a “closure

condition”. A forward solution that starts at a0, takes the length of the first interval, say t, as given,

and computes the “next” threshold, a2 (t) , as a function of the preceding two, t and a0. Likewise,

all following thresholds are constructed using their two predecessors. The closure condition for an

equilibrium with n positive thresholds requires that t is such that type ann (t) satisfies the indifference
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form of equilibria is known from the literature, (e.g., Crawford and Sobel (1982),

Gordon (2010)), it is typically assumed that the state space is a compact interval.

In contrast, we allow for the case of an unbounded state space. For the Laplace dis-

tribution, a characterization of partitional equilibria is shown in Deimen and Szalay

(2019). Proposition 1 generalizes the characterization to all elliptical distributions

with a logconcave marginal density. For an illustration, see Figure 1.

The take-away for the analysis that follows is that limit equilibria always exist.

Moreover, it is standard in the literature to focus on the equilibrium with the highest

number of partition elements, because all players unanimously prefer this equilibrium

over any other equilibrium from an ex ante perspective. We can, therefore, mean-

ingfully compare different forms of decision-making, since we can stick to the same

type of equilibrium in the communication subgames.

We now turn to the moments var (µS) and var (µP ), which are needed for ex-

pected equilibrium payoffs. To determine these values in closed form, we make the

following assumption.

Assumption 1 The marginal density f has linear tail conditional expectations: let

α ∈
[

1
2
, 1
]
, for any θ ∈

[
0,SΘ

]
, we have

E
[
Θ|Θ ≥ θ

]
= E [Θ|Θ ≥ 0] + α · θ. (4)

The class of elliptical distributions with linear tail conditional expectations is

well-defined for our purposes for α ∈ (0, 2).20 For α ∈
[

1
2
, 1
]
, the distribution has

a logconcave density. Note that the uniform distribution features α = 1
2
, at one

extreme, and the Laplace distribution α = 1, at the other extreme.

condition. We prove existence of an equilibrium for any n, and logconcavity of the density ensures

uniqueness.
20The distribution per se is well-defined more generally, the second moment is finite only for α < 2.

The covariance matrix is finite if and only if the variances of the marginals are finite. The joint

distribution is defined using the characteristic function of the marginal distribution, extended to

the multivariate case. Deimen and Szalay (2019) introduce this class of distributions. Importantly,

in that paper, the focus is on distributions with logconvex half-support distributions, α ≥ 1.
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Proposition 2 Under Assumption 1, the variance of µθ in a limit equilibrium is

given by

var (µθ) =
2− α

2− β · α
var (Θ) . (5)

The proposition follows from the conjunction of two results: first, the existence of

equilibria for logconcave distributions is given in Proposition 1; second, Deimen and

Szalay (2019) show that expression (5) provides an upper bound for the variance of

µθ. The exact value is attained in the most informative equilibrium and this exists

if the distribution has a logconcave density.

Naturally, var (µθ) ≤ var (Θ) ; the fraction 2−α
2−β·α – that we call effectiveness of bi-

ased communication – reaches unity exactly if β = 1, that is, if interests are perfectly

aligned. For a given β < 1, the effectiveness is decreasing in α. The parameter α is a

measure for the mass in the tails of the distribution. Hence, the variance is smaller

and communication is less effective if the distribution has more mass in the tails –

i.e., has more tail-risk.21 The intuition for this argument is the following: more mass

in the tail of the distribution means that extreme realizations of the state are more

likely. The bias is increasing in the state and, thus, very large at extreme realizations

of the state. Hence, under a distribution with high tail risk, large disagreement is

more likely and communication is less effective. For an illustration, see Figure 2.

We maintain Assumption 1 for the remainder of the paper.

fθ (θ;α)

θ−1 1

1

∆y = θ

∆y = β · θ

Figure 2: The one-dimensional density depicted for α = 0.5 uniform (solid), α = 0.65

(dashed), and α = 1 Laplace (dotted), all for a variance of one.

21The tail conditional expectation is a well known risk measure (see Artzner et al. (1999)).
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5 The optimal mode of decision-making

M’s payoff, πM , can be written as an expected payoff gain, ∆πM , net of prior uncer-

tainty, σ2
C + λσ2

S + (1− λ)σ2
P . To compare modes of decision-making, we focus on

the expected payoff gains.

While unrealistic as an institution, the first-best scenario is a useful benchmark.

M would like to observe the signal realization (sC , sP , sS) directly and, then, take an

action that maximizes the payoff, ∆yfb =
σ2
C

σ2
C+σ2

εC

sC +λ
σ2
S

σ2
S+σ2

εS

sS +(1− λ)
σ2
P

σ2
P+σ2

εP

sP .

It is straightforward to show that M’s expected payoff gain in this first-best scenario

is

∆πfbM = c+ λ2s+ (1− λ)2p.

Under delegation to S, S’s optimal adaptation ∆ydelS, determined by the own

signals sC , sS, is simply S’s posterior mean. Under delegation to P, P’s optimal

adaptation ∆ydelP is derived conditional on the own signal sP and on a message

send by S that reveals that θS ∈ [aS,i−1, aS,i]. Under consultative decision-making,

M makes the adaptation ∆ycon based on recommendations from P and S: P reveals

that ΘP has realized in some interval, θP ∈ [aP,j−1, aP,j], and S reveals that ΘS

has realized in some interval, θS ∈ [aS,i−1, aS,i]. Formally, the respective optimal

adaptations are

∆ydelS = θS,

∆ydelP = βPS · (µS)i + θP ,

∆ycon = βMS · (µS)i + βMP · (µP )j ,

where the sensitivities βMS and βMP , and βPS are defined in equations (1) and (2),

and the realizations of the truncated expectations are given by (µS)i and (µP )j.

These optimal adaptation decisions result in the following expected payoff gains

for M.

Lemma 1 M’s expected payoff gains under delegation to S, consultative decision-
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making, and delegation to P are

∆πdelSM =c+ (2λ− 1)s,

∆πconM =β2
MS

2− α
2− αβMS

(c+ s) + (1− λ)2 2− α
2− αβMP

p,

∆πdelPM = (2λ+ (1− 2λ) βPS)
2− α

2− αβPS
c+ (1− 2λ) p.

To get an intuition for these expressions, consider, first, the payoff gain from

delegation to S. Since everyone benefits from common value information and S has

direct access to this information, ∆πdelSM increases one for one with c. In contrast,

the amount of private value information s is a gain to S which counts with weight

λ, but a loss from P’s perspective which counts with weight 1− λ, adding up to the

factor 2λ− 1. Consider, next, the gain from consultative decision-making. The total

amount of information held by S is captured by the variance of ΘS; M would like

to follow that information with sensitivity βMS, thus generating a maximal value of

β2
MS(c + s). However, due to strategic information transmission, only the fraction
(2−α)

2−αβMS
of this information gets through to M (see equation (5)). Finally, the value

of delegating to P can be decomposed by the same logic. This is a bit more intricate

due to the fact that S benefits to a higher degree than P, if P is convinced to base

the decision on information provided by S.

Suppose that we only have a common value but no private values, s = p = 0. In

this case, we can directly see from Lemma 1 that the payoffs from all three modes of

decision-making coincide with the first-best payoff. For the remainder of the paper,

we assume

Assumption 2 There is some private value element, s > 0 or p > 0.

The comparison of the three modes of decision-making yields the following char-

acterization.

Proposition 3 There exist λP (c, s, p, α), λS(c, s, p, α) with 0 ≤ λP ≤ λS ≤ 1 such

that

i) Delegation to P is optimal if and only if we have λ ∈ [0, λP ] and λS > 0.
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ii) Consultative decision-making is optimal if and only if we have λ ∈ [λP , λS] ∪
{1} or λ = 0 and λS > 0.

iii) Delegation to S is optimal if and only if λ ∈ [λS, 1].

We first compare the modes of decision-making pairwise; then, we determine the

overall winner as a function of λ. Key properties that we use are that ∆πdelSM is

linearly increasing, ∆πdelPM is linearly decreasing, and ∆πconM is convex in λ. More-

over, consultative decision-making coincides with delegation to P in λ = 0 and with

delegation to S in λ = 1.

The points of indifference of M between delegation to P (S) and consultative

decision-making at λP (λS) are the objects of our interest, in what follows. It is

important to note that the regions described in Proposition 3 can be empty. If, for

example, λS = 0, then delegation to S is the only mode that is chosen by M.

We now turn to the comparative statics of the indifference points with respect

to the amount of common value information. We trace out the consequences of the

informational environment for the allocation of real authority – effective control over

decisions – in our model. In turn, this provides the key building block for the optimal

acquisition of formal authority – ownership rights.

5.1 Private values

In the pure private value environment, with c = 0, the payoff gains under dele-

gation to S and P simplify to (2λ − 1)s and (1− 2λ) p, respectively. Information

used by S constitutes pure noise from the perspective of P and vice versa. In the

absence of a common value component, βMS reduces to λ, and under consultative

decision-making, the payoff gain from communicating with S simplifies to λ2 2−α
2−αλs.

This is isomorphic to the payoff gain from communicating with P, (1− λ)2 2−α
2−α(1−λ)

p.

Clearly, there is no fundamental difference between S and P, and we expect the com-

parison between delegating to any one of them and consultative decision-making to

be symmetric. Formally, the choice between the modes of decision-making depends

on (
∆πconM −∆πdelSM

)∣∣
c=0

= (1− λ)

(
2 (1− λ)− αλ

2− αλ
s+

2 (1− λ)− α (1− λ)

2− α (1− λ)
p

)
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and (
∆πconM −∆πdelPM

)∣∣
c=0

= λ

(
2λ− αλ
2− αλ

s+
2λ− α (1− λ)

2− α (1− λ)
p

)
.

The comparison yields the following result.

Theorem 1 Consider the pure private-value environment with c = 0. If p, s > 0,

then 0 < λP < λS < 1. Moreover, λP and λS are increasing in p and decreasing in

s. If p = 0, then λP = 0 and λS = 2
2+α

. If s = 0, then λS = 1 and λP = α
2+α

.

λSλP

0.2 0.4 0.6 0.8 1.0
λ

-2.0

-1.5

-1.0

-0.5

M's payoffs

Delegation to S

Delegation to P

Consultative

First-best

(c,s,p)=(0,1,1); α=0.75

Figure 3: Payoffs for pure private values with c = 0, s = p = 1, α = 0.75.

We illustrate M’s payoffs as functions of the payoff weight λ, in Figure 3. The

vertical lines in the figure depict the intersections λP < λS of the payoffs under con-

sultative decision-making and delegation to P and S, respectively – i.e., the switching

points of the optimal modes of decision-making.

The allocation of real authority is jointly determined by the division of surplus

within the organization, λ, and the information held by P and S. At the optimum,

P makes the decision if λ is close to zero, S makes the decision if λ is close to

one, and M decides if the surplus division rule is relatively balanced. The precise

arrangement depends on the relative amount of information held by P and S, and

on the riskiness of the environment, α. Naturally, the set of payoff weights for which

P (S) is in charge is larger – P (S) has more real authority – if P (S) provides
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relatively more information. The pure private value setting is quite conducive to

real authority on the part of M. M always has real authority in a substantial set of

environments, around a relatively equal division of surplus within the organization:

regardless of the information held by the units P and S, M optimally decides in the

range λ ∈
(

α
2+α

, 2
2+α

)
. This range depends on the effectiveness of communication

that is determined by the risk parameter α. In the uniform environment (α = 1
2
), in

which communication works very well, M has real authority in a range
(

1
5
, 4

5

)
. In the

Laplace environment (α = 1), in which communication works very badly, this range

shrinks to
(

1
3
, 2

3

)
.22

5.2 Mostly private values and some common value

Suppose now that there is in addition uncertainty about the common value compo-

nent. Moreover, suppose for now that the common value uncertainty is relatively low.

In this environment, each party retains some real authority. The optimal switching

points λP , λS depend monotonically on the amount of common value information:

Theorem 2 Suppose that c > 0 and that 0 < λP < λS < 1. Then, λP and λS are

decreasing in c: common values shift authority from P to M and from M to S.

Intuitively, more common value information crowds out mechanisms that have a

comparative disadvantage at extracting this type of information. S is the one who

directly observes the common value signal. Therefore, S has a comparative advantage

relative to M and, as a result, delegation to S dominates consultative decision-making

more often. Similarly, the conflict between M and S is smaller than the conflict

between P and S so that consultative decision-making works relatively better than

delegation to P. As a result of these forces, M gains more authority relative to P but

loses ground relative to S, who observes the common value component directly.

22The private value case is focal in the existent literature. The trade-offs we just described are

those identified by Dessein (2002). For λ close to one, the interests of S and M, while for λ close

to zero, the interests of P and M get closely aligned. For a small bias, delegating real authority

to the informed party is preferred to communicating with the informed party: the loss of control

– associated with giving away decision rights – is smaller than the loss of information – associated

with communicating strategically with the informed party.
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5.3 Almost common values

If we increase the common value component c sufficiently, this becomes the most

important piece of information. As a consequence, the organizational performance

predominantly depends on how well common value information impacts decision-

making. We find that

lim
c→∞

(
∆πconM −∆πdelSM

)
= (1− λ)

(
− α

2− α
s+

2 (1− λ)− α (1− λ)

2− α (1− λ)
p

)
(6)

and

lim
c→∞

(
∆πconM −∆πdelPM

)
= λ

(
α

2− α
s+

2λ− α (1− λ)

2− α (1− λ)
p

)
. (7)

Any institution makes efficient use of common value information in the limit, since

in the limit as c gets large, the conflicts in any communication vanish. Since, at the

same time, the value of using this information grows large, by l’Hôpital’s rule, the rel-

ative performance of the institutions is driven by the difference in speed at which the

institutions approach efficient use of the information c. Delegating decision-making

to S evidently makes the best use of common-value information and beats consulta-

tive decision-making in speed by α
2−α (1− λ) s, in the limit. Likewise, consultative

decision-making makes a better use of common-value information than delegating

to P and beats the latter in speed by α
2−αλs, in the limit. We note that the dif-

ferences disappear when the objective of M coincides with the objectives of S or P.

Moreover, the differences are more pronounced in environments with less effective

communication – i.e., a high value of α amplifies the differences in performance.

The comparative advantage of delegating to S or P relative to consultative decision-

making is determined by the terms in brackets – a weighted difference of private

information of S and P. Delegating to S (P) becomes relatively more (less) attractive

compared to consultative decision-making if λ is higher. It is even possible that

institutions get completely crowded out.

Theorem 3 Consider the almost common value environment in which p, s > 0 and

c→∞.

i) For p ≤ α
2−αs, we have λS = 0.

23



ii) For α
2−αs < p ≤ s, we have λP = 0 and λS = 1

s
p

α2

(2−α)2
+1

(
1− s

p
α

2−α

)
> 0.

iii) For p > s, we have λS as in (ii) and λP = 1
s
p

α
2−α+α+2

α

(
1− s

p

)
> 0.

λS
0.2 0.4 0.6 0.8 1.0

λ

-2.0

-1.5

-1.0

-0.5

M's payoffs

regime i)

λSλP
0.2 0.4 0.6 0.8 1.0

λ

-2.0

-1.5

-1.0

-0.5

M's payoffs

regime ii)

λSλP
0.2 0.4 0.6 0.8 1.0

λ

-2.0

-1.5

-1.0

-0.5

M's payoffs

regime iii)

Figure 4: M’s payoffs under delegation to P (black, dashed), delegation to S (blue,

dash-dotted), and consultative decision-making (red, solid) for almost common values

with c = 1000, s = 1, and p = 0.5 (left panel), p = 1 (central panel), and p = 2 (right

panel); α = 0.75.

We depict the three regimes in Figure 4. Again, the relative endowment of S and

P with private value information determines the optimal allocation of real authority.

There are two effects. First, the relative endowment determines parameter bounds

beyond which some mechanisms get crowded out completely (extensive margins).

Second, the points of indifference between any two mechanisms are affected by the

relative endowment with information (intensive margins). Consider first the exten-

sive margins. As p increases relative to s, the optimum changes from regime i) – only

delegation to S – to regime ii) – including consultative decision-making – to regime

iii) – also including delegation to P. The extensive margins depend on α
2−α which in

turn is determined by the tail-risk in the distribution. In regime i), S is essentially

an informational monopolist and, therefore, S optimally has real authority for all λ.

Any attempt to temper with S’s authority results in a less efficient use of common

value information, and the resulting loss cannot be offset by gains from using P’s

information in decision-making. In regime ii), P has more substantial information to

contribute. Since the conflicts between S and P are too pronounced relative to the

informational gain, the only one who can step in to reach a compromise is M. Fi-
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nally, if P really has substantial information to contribute, in regime iii), it becomes

optimal to delegate to P for λ low enough.

Consider now the intensive margins. In regimes ii) and iii), there is an inte-

rior point of indifference between delegation to S and consultative decision-making.

Delegation to P is part of the picture only in regime iii). Gradually increasing p

redistributes real authority from S to M and from M to P. The first effect seems

more relevant: P’s authority never extends beyond the upper bound obtained in the

pure private value case, α
2+α

, which is strictly below one half. Hence, P is never in

charge for balanced surplus division rules.23

In sum, whether M finds it optimal to make decisions or to delegate to someone

else depends crucially on the informational environment and the payoff sharing rule.

Ultimately, the payoff sharing rule itself depends on the informational environment.

Therefore, we next address whether and in which environments M wants to acquire

ownership rights.

6 Endogenous ownership

When is it optimal for M to acquire ownership rights? Our analysis reveals two key

economic roles that ownership by M can play. First, by creating an integrated struc-

ture, M can make adaptation possible where it would otherwise not occur. Second, M

can improve efficiency by creating an integrated structure, where integration would

be possible already without M. Finally, our analysis also reveals when integration is

not feasible.

We impose two assumptions for the analysis, in this section. First, we assume

that P and S have the same bargaining power, which implies that their initial revenue

sharing arrangement is fifty-fifty. Any alternative assumption would imply that we

explain the power institution “ownership” by another notion of power. We believe

that this would merely shift the locus of ignorance but would not really explain more.

Second, for simplicity, we assume that the signals are perfect.

23Note that our findings are different from Aghion and Tirole (1997), where more information

increases the real authority of a party. Here, more information in the hands of P redistributes real

authority primarily from S to M.
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6.1 M makes integration possible

For σ2
C < σ2

S, S and P cannot get to terms without the involvment of M. For conve-

nience, we illustrate this insight in a pure private values environment, σ2
C = 0. Here,

the status quo option for S and P is non-integration. The reason is easy to see. The

initial agreement is optimal, based on ex ante known information. The information

that each of them receives later on concerns the own costs but – by the nature of

private value information – not the costs of the other one. Imagine that S (P) is

allowed to change the amount of production later on. From the perspective of P

(S), this makes the actual production choice more variable. Due to the concave loss

functions, this amounts to increased risk with no benefit to it, because the change in

production is unrelated to variation in P’s (S’s) costs.

Suppose that M makes a take-it-or-leave-it offer to S and P individually: M

acquires the right to make decisions and obtains profit shares of S and P. Suppose,

moreover, that S and P each have a veto right – they both have to accept for the

deal to go along.

Theorem 4 Consider a pure private-value environment σ2
C = 0, fully revealing sig-

nals σ2
εS

= σ2
εP

= 0, equal uncertainty σ2
S = σ2

P = σ2, and a fifty-fifty revenue

sharing arrangement between S and P, ωS = ωP . M optimally acquires the right to

make decisions with shares δS = δP = δ∗, where δ∗ satisfies

δ∗

1− δ∗
=

Π
1
2

2−α
2−α 1

2

σ2
,

where Π is firm profit with ex ante information.

The optimal surplus division rule, δ∗, implies that λ∗ = 1
2
, so that real authority is

transferred to M.

In the pure private value environment with symmetric uncertainty, the optimal

organizational structure is an integrated structure with M on top. Moreover, M’s

objective is endogenously balanced, λ∗ = 1
2
. M plays a vital role: M is the reason

why S and P can integrate. Bringing in M, serves as a commitment device for S and

P to adapt to changes in their costs to some extent. Crucially, the commitment is
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credible, because the equilibrium sharing arrangement makes M want to keep real

authority once endowed with formal authority.

Conceptually, it is easy to generalize this insight to environments with 0 < σ2
C <

σ2
S. The technical difficulty is that in such environments, one needs to verify whether

there exist acceptable deals for S and P and whether such deals indeed put M in

charge. This is a relatively complex task. Since the economic role of M is the same

as in the pure private value case – making integration possible – we abstain from a

detailed discussion.

6.2 Efficient Integration: with or without M

Suppose that σ2
C > σ2

S. In this case, S and M compete for the right to make decisions.

Both of them can offer a better deal than the status quo – no integration – to P. With

S in charge, P benefits from adapting to the common value shock, but is harmed by

adapting to S’s costs; since the common value component dominates, the positive

effect outweighs the negative effect. With M in charge, P gets a more favorable

deal, because production is adapted also to P’s cost shock. Without specifying a

precise game that determines the division of surplus, it is in general not clear what

the outcome is, because S clearly prefers to be in charge himself over having M in

charge. For the class of procedures that result in an efficient outcome, we have the

following result.

Theorem 5 Consider a mixed common- and private-value environment with fully

revealing signals, σ2
εC

= σ2
εS

= σ2
εP

= 0, and uncertainty satisfying σ2
C > σ2

S. Owner-

ship by M is efficient if and only if (σ2
C , σ

2
S, σ

2
P ) is such that λS ≥ 1

2
, or, equivalently,

(2− α)σ2
S − 2ασ2

C

(4− α)σ2
S + (4− 2α)σ2

C

σ2
S +

2− α
4− α

σ2
P ≥ 0.

Proof of Theorem 5. For σ2
C > σ2

S, some form of integration is efficient. The

question is whether S or M should be in charge of decision-making. For λ = 1
2
, M’s

objective at the stage of deciding who decides corresponds to social surplus. Hence,

ownership by M is efficient if and only if M finds it better to make the decision rather

than to delegate it to S at λ = 1
2
. Simplifying πdelSM ≤ πconM (see Lemma 1) for λ = 1

2
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yields the inequality in the statement that expresses this requirement algebraically.

2

6.3 When integration is not possible

Integration is not always the answer. If σ2
C < σ2

S, then the only possible way to

integrate is with the help of M. However, if S and P benefit from adaptation to very

different extents, integration is not feasible. It is easiest to illustrate this insight in

a pure private value environment. The point obviously does not depend on this.

We have demonstrated above that in the pure private value environment with

symmetric uncertainty, integration is always feasible and optimal. We now show the

converse.

Theorem 6 Consider a pure private-value environment with fully revealing signals,

σ2
εC

= σ2
εS

= σ2
εP

= 0, and a fifty-fifty revenue sharing arrangement between S and P,

ωS = ωP . Fix σ2
P > 0 (σ2

S > 0) . Integration is not feasible for σ2
S (σ2

P ) sufficiently

close to zero.

Intuitively, consider the extreme case in which S already knows his costs perfectly,

while P is uncertain about the own costs. If M comes in, M adapts the quantity to

some extent to P, which clearly benefits P. From the ex ante perspective of S, this

adaptation decision is unfavorable. Instead of a fixed and certain production choice,

S faces a lottery with an outcome that depends on the realization of P’s costs. Due

to the concavity of the loss function, S dislikes such an increase in risk. Hence, S will

veto and the resulting organizational form is stand-alone.

In sum, we observe that M acquires ownership rights only if M expects to make

use of them. While formal authority need not confer real authority, in our model,

the two occur together in equilibrium. Moreover, whenever some form of authority

arises, then the reason is to enable adaptation that would otherwise not occur.
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7 Extensions: endogenous choice of information

Information conveys authority – and thereby surplus – to the one who has it. Clearly,

the information will be chosen with a view to individual gains from the ensuing

decision-making process. We now consider this natural extension of our model. Imag-

ine that M has already acquired ownership rights – formally, take λ again as given

– but suppose that information still needs to be acquired. In particular, suppose

that M can decide what information to acquire.24 Since we are interested in the

consequences of information for authority, we abstract from costs of information ac-

quisition in what follows. It is easy to show that M does best by keeping authority

over information acquisition; if discretion over information acquisition is delegated to

S and P, then they acquire perfect information.25 Clearly, M can replicate this out-

come. However, M sometimes benefits from leaving some noise in the observations,

because this can reduce the conflicts in information transmission.

Consider now the information choices in detail. Common value information is

free of noise at the optimum, c∗ = σ2
C , regardless of which institution is chosen.

The reason is that everybody wishes to use the information ideally in the same way.

On top, more common value information reduces conflicts in communication with S.

Private value information needs to be analyzed for each institution separately. The

gain from delegating to S is maximized for s∗ = σ2
S for λ > 1

2
, resulting in an overall

gain of

∆πdelS,endoM = σ2
C + (2λ− 1)σ2

S. (8)

24In the communication subgames, we focus on equilibria with the most informative communica-

tion on and off path. This rules out threats not to listen or not to talk if the information provided

is not ideal from a player’s perspective. We believe that threats not to use available information

are particularly difficult to enforce within an organization.
25This is intuitive but not obvious. Choosing perfect private value information comes at the cost

of a large bias in communication. However, better information trumps the desire to eliminate the

bias in communication. This is a consequence of logconcavity of the density which corresponds

to α ∈
[
1
2 , 1
]
. The converse to this argument is given in Deimen and Szalay (2019). There, in

environments with fat tails (α > 1), the sender does not benefit from observing better information

from his perspective, because this introduces conflicts; any improvement in information is lost in

biased communication.
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For λ ≤ 1
2
, no private value information is provided to S conditional on delegating

to S, s∗ = 0, and moreover, delegating to S is dominated by delegating to P; the

maximum payoff from delegating to P is achieved for p∗ = σ2
P and equals

∆πdelP,endoM = σ2
C + (1− 2λ)σ2

P . (9)

To see this is true, observe that S can communicate truthfully to P if S does not

have information about S’s private value, s∗ = 0. Hence, P can make perfect use

of common value information too. It can be shown that the maximum gain from

delegating to S or P is given by the maximum over (8) and (9) , so delegating to P

is optimal for λ ≤ 1
2

and delegating to S is optimal for λ > 1
2
.26

Consultative decision-making achieves a gain of

∆πcon,endoM = max

σ2
C ,

(2− α)
σ2
C+λσ2

S

σ2
C+σ2

S

2− ασ
2
C+λσ2

S

σ2
C+σ2

S

(
σ2
C + λσ2

S

)+ (1− λ)2 2− α
2− α (1− λ)

σ2
P .

(10)

The gain from communicating with S is convex in S’s private value information, so

that only the extreme cases of s∗ = 0 or s∗ = σ2
S are candidates for an optimum.

M faces the trade-off of allowing S to observe private value information, at the cost

of receiving common value information garbled by private value observations. The

weight attached to S’s payoff needs to be sufficiently high to outweigh the loss from

strategic communication with S, to make it optimal to endow S with private value

information. No such trade-off arises with respect to P’s information, so this is

observed without noise.

26The reason is that delegating to P and giving information s = σ2
S to S is dominated by delegating

directly to S, for λ > 1
2 . This argument recognizes that conditional on delegating to S for λ > 1

2 ,

it is optimal to have p∗ = 0, s∗ = 0 for λ ∈
(

1
2 ,

1
2−α

)
, and s∗ = σ2

S for λ ≥ 1
2−α . Conditional on

delegating to P, if M assigns a high weight to S’s payoff, then it becomes optimal to endow S with

private value information too. The cost is that communication works less effectively, but this is the

only way to make sure, information about S’s costs finds its way into decision-making. However,

since a lot of information is lost this way, this way of delegating is dominated.
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7.1 Almost common values: shifting effective control from

S to M and from M to P

Endogenous information choice puts M back at the helm, even in situations that

would otherwise deprive M of real authority. To demonstrate this, we focus on the

case where M’s real authority relative to S is minimized: the case of almost common

value information. To solve for the optimal mode of decision-making, we, thus,

compare equations (8), (9), and (10), in the limit of σ2
C → ∞. For consultative

decision-making, by l’Hôpital’s rule, we find that the maximum in (10) is achieved

at s∗ = 0 for λ < λ∗ := 2
4−α , and at s∗ = σ2

S for λ ≥ λ∗.

Theorem 7 In the almost common value environment, the power to choose P’s and

S’s information shifts real authority from S to M and from M to P. We have λendoP =
α

2+α
and

λendoS =
1

σ2
S

σ2
P

α2

(2−α)2
+ 1

(
1− σ2

S

σ2
P

α

2− α

)
for

σ2
S

σ2
P

≤ 1

α

(2− α)3

α2 − 4α + 8
;

otherwise, λendoS solves (1− λ)2 2−α
2−α(1−λ)

σ2
P = (2λ− 1)σ2

S.

For λ ≤ 1
2
, delegation to P is better than delegation to S. Moreover, since λ∗ =

2
4−α > 1

2
, S has no private value information under consultative decision-making.

Hence, the trade-off that M faces between communicating with P or delegating to P

is exactly as in a pure private value setting in which P has private value information

and S is absent. Therefore, it is optimal to delegate to P for all λ ≤ α
2+α

.

Consider next the trade-off between delegating to S and consultative decision-

making. If
σ2
S

σ2
P

is relatively low, the switching point λS that we obtain for the analysis

of exogenous information structures remains valid. In contrast, if
σ2
S

σ2
P

is relatively

high, then M needs to compare the payoff from consultative decision-making when S

has no private value information and P does have private value information with the

payoff from delegating to S who does have private value information. The indifference

point, in this scenario, is the solution to the last equation in the theorem.

The power to withhold information from the units, in particular from S, shifts

authority from S to M: λS is lower if
σ2
S

σ2
P

is higher. However, even in the most
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extreme case in which the variation in S’s costs is much more pronounced than the

variation in P’s costs, λS is bounded below by 1
2
. Hence, the power to choose what

the organization learns, ensures that M has effective control over decisions for payoff

distributions around λ = 1
2
.

7.2 Endogenous information and risk

How does the allocation of real authority depend on the riskiness of the environment?

Intuitively, making mistakes is more costly in more risky environments. Hence, we

would expect that institutions dominate that make the best use of information and

thereby avoid making mistakes. In general, it is not obvious how to make this

insight formal. However, it turns out that our stochastic environment can reveal

some insights.

A priori, there are two ways in which one can think about riskiness, in our model.

Let σ2 = (σ2
C , σ

2
S, σ

2
P ) denote the vector of uncertainty, and let κ > 1 denote a scalar.

Evidently, an environment with uncertainty κσ2 is – in some sense – more risky than

an environment with uncertainty σ2. Another measure of riskiness is the parameter

α; a higher value of α reflects a higher tail risk in the environment. It turns out that

variance is irrelevant but that tail risk is exactly what matters.

Theorem 8 Let σ2
C , σ

2
S, σ

2
P > 0, κ > 0, and suppose an optimal information choice.

The optimal mode of decision-making is determined by 0 < λendoP (κσ2, α) < λendoS (κσ2, α) <

1. We find that, λendoP (κσ2, α) and λendoS (κσ2, α) are independent of κ. Moreover, a

higher tail risk crowds out consultative decision-making: λendoP (κσ2, α) is increasing

in α and λendoS (κσ2, α) is decreasing in α.

Proof. Equation (10) is equal to equation (9) for λ = 0, and equation (10) is equal

to equation (8) for λ = 1. Equation (10) is convex and takes a higher value for

λ = 1
2

than equations (9) and (8), since σ2
C + 1

4
2−α

2−α 1
2

σ2
P > σ2

C . This implies that

0 < λendoP (κσ2, α) < λendoS (κσ2, α) < 1.

The expressions ∆πdelS,endoM , ∆πdelP,endoM , and ∆πcon,endoM given in equations (8),

(9), and (10) are all homogenous of degree one in κ. Hence, the points of indifference

λendoS (κσ2, α) and λendoP (κσ2, α) are homogenous of degree zero in κ.
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Equation (10) is strictly decreasing in α, while equations (8) and (9) are inde-

pendent of α. 2

λSλP

0.2 0.4 0.6 0.8 1.0
λ

-2.0

-1.5

-1.0

-0.5

M's payoffs

Delegation to S

Delegation to P

Consultative α=1

Consultative α=0.5

(c,s,p)=(1,1,1)

Figure 5: Payoff comparison for different levels of tail risk; thick lines α = 0.5

(Uniform) and thin lines α = 1 (Laplace).

A uniform scaling of all variances – arguably a change in the riskiness of the

environment – has no effect at all on the relative merits of the institutions. The

reason is that only relative magnitudes matter for the quality of communication.

Evidently, this does not prove that risk has no effect. Rather, it demonstrates that

all the ingredients in our model are necessary to get the full picture. Risk matters if it

affects the tail risk of the distribution. The tail risk parameter α magnifies any losses

that arise from strategic communication (for more details, recall Figure 2 and the

text before). Through the optimal choice of information, the delegation modes rely

purely on nonstrategic communication and, hence, achieve perfect transmission of

common value information. In contrast, consultative decision-making always involves

losses from strategic communication. Even if M chooses to withhold private value

information from S – so that there is fully revealing communication with S – M still

needs to communicate with P, who has private value information exclusively. As a

result, consultative decision-making becomes relatively less attractive and M has real

authority only in a smaller set, if the environment is more risky.
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8 Conclusions

We propose a model to think about firm boundaries based on decision-making in-

side the firm. Ownership as an institution is explained through the formal authority

it confers. An integrated structure is one with an established authority structure:

someone has the right to make adaptation decisions on behalf of everyone. In con-

trast, a market based interaction involves decentralized trade at will.

The crucial insight in our theory is that acquiring formal authority through own-

ership rights is efficient only if the owner expects to obtain real authority this way:

the owner must find it optimal to make adaptation decisions by himself rather than

delegate them to someone else. Otherwise, a structure without the potential owner

is more desirable.

We explain the allocation of real authority as a function of the amount and

kind of information available to the firm, the distribution of surplus in the firm,

and the riskiness of the environment. For a given ownership structure, we find

that real authority resides at the top of the organization when information and

surplus are distributed evenly in the organization. By contrast, if one unit within

the organization holds an informational monopoly, then authority tends to gravitate

towards that unit. Likewise, if the gains from decision-making are distributed very

unevenly within the organization, then real authority tends to gravitate towards

that prime beneficiary of adaptation. Risk, as measured by the likelihood of extreme

events, magnifies these effects. Higher risk favors solutions that rely less on biased

communication.

Taking one step back, we analyze the implications for the acquisition of ownership

rights. Based on the nature and magnitudes of uncertainty, the model predicts when

an integrated and when a stand alone structure arises. The model can rationalize

the whole spectrum from stand alone decisions to integration between a producer

and a retailer and integration involving in addition an owner with financial interests

in both the producer and the retailer. This last structure is our main interest here

and shown to serve two economic roles. First, it can make integration possible that

could not occur without the involvement of a third party. Second, it can make

an integrated arrangement more efficient. In both cases, the third party enables
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adaptation decisions that the producer and the retailer cannot replicate on their

own.

We leave many extensions for future investigation. We have looked at the small-

est possible form of an integrated firm. An exciting generalization will be to study

multidivisional firms with a coordination motive. By studying a general model fea-

turing both common and private value information components, we provide a toolbox

that should be useful to study strategic information transmission more broadly. Fi-

nally, we identify a measure of riskiness that affects the performance of strategic

information transmission crucially.

A Appendix

Lemma A.1 Let Z follow an elliptically contoured symmetric distribution, or sim-

ply elliptical distribution. We write Z ∼ ECd(µ,Σ, φ), where we assume that d is the

dimension of Z, µ is the mean vector, Σ is the covariance matrix with rank(Σ) = k,

and φ is the characteristic generator. Further let

Z = (Z1,Z2) , µ = (µ1,µ2) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where the dimensions of Z1, µ1, and Σ11 are m, m, and m×m for m ≤ d, respec-

tively.

i) The distribution is symmetric about µ.

ii) The moments of the conditional distribution (Z1|Z2 = z2) are given by the

mean vector

E [Z1|Z2 = z2] = µ1 + (z2 − µ2) Σ−1
22Σ21

and the conditional covariance matrix satisfying

Σ∗ = Σ11 −Σ12Σ
−1
22Σ21.

iii) Let A be an d× l matrix and b be an l × 1 vector. Then

b+A′Z ∼ ECl (b+A′Z,A′ZA, φ) .
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Proof of Lemma A.1. i) by definition, ii) Fang et al. (1990) Theorem 2.18, iii)

Fang et al. (1990) Theorem 2.16. 2

Proof of Proposition 1. The following proof generalizes the proof of Proposition

1 in Deimen and Szalay (2019), which uses the functional form of the Laplace distri-

bution. The steps of the proof are exactly the same, except for the fact that we do

not use any functional form here, but rather assume the general class of logconcave

densities.

The proof of the proposition consists of three lemmas. Lemma A.2 proves unique-

ness of finite equilibria, Lemma A.3 proves existence, and Lemma A.4 the existence

of a limit equilibrium. 2

Lemma A.2 For any finite number N , if there exists an equilibrium with N distinct

actions, then the equilibrium is unique.

Proof of Lemma A.2. FixN . For notational simplicity we oppress the dependence

on N and write for example ai instead of aNi . Define a forward equation as follows.

Start with an arbitrary value a1 = t and compute the solution a2 (t) as the value of

a2 that satisfies

t− βE [θ| θ ≤ t] = βE [θ| θ ∈ [t, a2 (t)]]− t.

The right-hand side is increasing in a2, so if a solution exists, it is unique. Differen-

tiating totally, we find that

da2

dt
=

(
2− β ∂

∂t
E [θ| θ ≤ t]− β ∂

∂t
E [θ| θ ∈ [t, a2 (t)]]

)
β ∂
∂a2

E [θ| θ ∈ [t, a2 (t)]]
.

We have da2
dt
> 1 if and only if

2 > β
∂

∂t
E [θ| θ ≤ t] + β

∂

∂t
E [θ| θ ∈ [t, a2 (t)]] + β

∂

∂a2

E [θ| θ ∈ [t, a2 (t)]] . (11)

As shown in Szalay (2012), for a logconcave distribution

∂

∂a
E [θ| θ ∈ [a, a]] +

∂

∂a
E [θ| θ ∈ [a, a]] ≤ 1 for a < a.
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Hence, condition (11) is satisfied due to the fact that fθ (θ) is logconcave and β < 1.

Now consider

ai − βE [θ| θ ∈ [ai−1, ai]] = βE [θ| θ ∈ [ai, ai+1]]− ai,

and

dai+1

dai
=

(
2− β ∂

∂ai
E [θ| θ ∈ [ai−1, ai]]− β ∂

∂ai
E [θ| θ ∈ [ai, ai+1]]

)
− β ∂

∂ai−1
E [θ| θ ∈ [ai−1, ai]]

dai−1

dai

β ∂
∂ai+1

E [θ| θ ∈ [ai, ai+1]]
.

If dai
dai−1

> 1, then dai−1

dai
< 1. Moreover, dai+1

dai
> 1 if and only if

2 >β
∂

∂ai
E [θ| θ ∈ [ai−1, ai]] + β

∂

∂ai
E [θ| θ ∈ [ai, ai+1]] + β

∂

∂ai−1

E [θ| θ ∈ [ai−1, ai]]
dai−1

dai

+ β
∂

∂ai+1

E [θ| θ ∈ [ai, ai+1]] . (12)

Noting that β ∂
∂ai−1

E [θ| θ ∈ [ai−1, ai]]
dai−1

dai
≤ β ∂

∂ai−1
E [θ| θ ∈ [ai−1, ai]] , we observe

that the right-hand side of (12) is bounded above by 2β, so that inequality (12) is

satisfied and we have indeed dai+1

dai
> 1.

Take now a2 (t) , . . . , aN (t) as determined by the forward equations up to and

including aN (t) and consider the difference

∆ (t) ≡ 2aN (t)− βE [θ| θ ∈ [aN−1 (t) , aN (t)]]− βE [θ| θ ≥ aN (t)] .

By the now familiar reasoning, this difference is a strictly monotonic function of t,

as (
2− βE ∂

∂aN
[θ| θ ∈ [aN−1, aN ]]− β ∂

∂aN
E [θ| θ ≥ aN ]

)
daN

− β ∂

∂aN−1

E [θ| θ ∈ [aN−1, aN ]]
daN−1

daN
daN > 0.

Therefore, there is at most one value of t, say t̃N , such that the sequence {ã1, . . . , ãN}
with ã1 := t̃N and ãi := ai

(
t̃N
)

solves the system of indifference conditions. Hence,

the equilibrium is unique. 2
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Lemma A.3 For any n, there exists an equilibrium inducing N = 2 (n+ 1) actions

and there exists an equilibrium inducing N = (2n+ 1) actions.

Proof of Lemma A.3. Lemma A.2 shows uniqueness of equilibria that do exist. By

symmetry of payoffs and the density, the model has symmetric equilibria. Together

this implies that all finite equilibria must be symmetric around 0.

We, here, focus on the equilibria with an even number of induced actions. All

the results extend to the equilibria with an odd number of induced actions.

Consider the truncated distribution, where the truncation is at zero and to the

positive side. An equilibrium, if it exists, satisfies for i = 2, . . . , n− 1

a1 − βE [θ| θ ∈ [0, a1]] = βE [θ| θ ∈ [a1, a2]]− a1

ai − βE [θ| θ ∈ [ai−1, ai]] = βE [θ| θ ∈ [ai, ai+1]]− ai
an − βE [θ| θ ∈ [an−1, an]] = βE [θ| θ ≥ an]− an.

We construct an equilibrium as follows. We first consider the forward solution for

arbitrary a1 = t and show that for any n, the forward equation is guaranteed to

have solutions up to an as long as t ≤ t̃n. Then, we show that an equilibrium of the

communication game (which satisfies the forward equation and the closure condition)

exists for a value of t consistent with that condition.

The forward equation for a2 (t) is the value of a2 such that

t− βE [θ| θ ∈ [0, t]] = βE [θ| θ ∈ [t, a2]]− t. (13)

The difference between left and right side is

2t− βE [θ| θ ∈ [0, t]]− βE [θ| θ ∈ [t, a2]] .

In the limit as a2 → t, the difference is strictly positive as (2− β) t−βE [θ| θ ∈ [0, t]] >

0. The difference is decreasing in a2. In the limit as a2 →∞, we get

2t− βE [θ| θ ∈ [0, t]]− βE [θ| θ ≥ t] .

By logconcavity, E [θ| θ ∈ [0, t]] and E [θ| θ ≥ t] increase with t each at rate smaller

than or equal to one. Hence, there exists a finite solution a2 (t) if and only if t < t̃2,

where t̃2 is defined as the unique value of t that solves

2t̃2 − βE
[
θ| θ ∈

[
0, t̃2

]]
− βE

[
θ| θ ≥ t̃2

]
= 0. (14)
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For future reference, note that by logconcavity the forward equation satisfies

da2

dt
=

2− β ∂
∂t
E [θ| θ ∈ [0, t]]− β ∂

t
E [θ| θ ∈ [t, a2]]

β ∂
∂a2

E [θ| θ ∈ [t, a2]]
> 1. (15)

Moreover, for t→ 0 we have a2 (t)→ 0, and a2 (t)− t is increasing in t.

Consider next the forward solution for a3 (t) , which is the value of a3 that solves

2a2 (t)− βE [θ| θ ∈ [t, a2 (t)]]− βE [θ| θ ∈ [a2 (t) , a3]] = 0. (16)

For a3 → a2 (t) , the difference takes value

2a2 (t)− βE [θ| θ ∈ [t, a2 (t)]]− βa2 (t) > 0.

The difference is decreasing in a3. Hence, there exists a finite solution if and only if

2a2 (t)− βE [θ| θ ∈ [t, a2 (t)]]− βE [θ| θ ≥ a2 (t)] < 0.

Differentiating totally, we observe(
2− β ∂

∂a2

E [θ| θ ∈ [t, a2 (t)]]− β ∂

∂a2

E [θ| θ ≥ a2 (t)]

)
da2−β

∂

∂t
E [θ| θ ∈ [t, a2 (t)]] dt.

As dt
da2

< 1 by (15), the difference is increasing in t. Hence, there exists a unique

value t̃3 such that a finite solution a3 (t) exists for t < t̃3. The value t̃3 satisfies

2a2

(
t̃3
)
− βE

[
θ| θ ∈

[
t̃3, a2

(
t̃3
)]]
− βE

[
θ| θ ≥ a2

(
t̃3
)]

= 0. (17)

At t̃3, the forward equation for a2

(
t̃3
)
, equation (13) , implies that

2t̃3 − βE
[
θ| θ ∈

[
0, t̃3

]]
= βE

[
θ| θ ∈

[
t̃3, a2

(
t̃3
)]]

Substituting back into (17) gives

2a2

(
t̃3
)
− βE

[
θ| θ ≥ a2

(
t̃3
)]

= 2t̃3 − βE
[
θ| θ ∈

[
0, t̃3

]]
.

Subtracting βE
[
θ| θ ≥ t̃3

]
from each side, we get

2t̃3−βE
[
θ| θ ∈

[
0, t̃3

]]
−βE

[
θ| θ ≥ t̃3

]
= 2a2

(
t̃3
)
−βE

[
θ| θ ≥ a2

(
t̃3
)]
−βE

[
θ| θ ≥ t̃3

]
.

39



Since

2a2

(
t̃3
)
− βE

[
θ| θ ≥ a2

(
t̃3
)]

= βE
[
θ| θ ∈

[
t̃3, a2

(
t̃3
)]]

,

by (17) , the right side takes value

βE
[
θ| θ ∈

[
t̃3, a2

(
t̃3
)]]
− βE

[
θ| θ ≥ t̃3

]
< 0,

and hence

2t̃3 − βE
[
θ| θ ∈

[
0, t̃3

]]
− βE

[
θ| θ ≥ t̃3

]
< 0.

Now recall equation (14):

2t̃2 − βE
[
θ| θ ∈

[
0, t̃2

]]
− βE

[
θ| θ ≥ t̃2

]
= 0.

Since 2t− βE [θ| θ ∈ [0, t]]− βE [θ| θ ≥ t] is increasing in t by logconcavity, we have

shown that t̃3 < t̃2.

Totally differentiating (16) gives

da3

da2

=
2− β ∂

∂a2
E [θ| θ ∈ [t, a2 (t)]]− β ∂

∂a2
E [θ| θ ∈ [a2 (t) , a3]]− β ∂

∂t
E [θ| θ ∈ [t, a2 (t)]] dt

da2

β ∂
∂a3

E [θ| θ ∈ [a2 (t) , a3]]
.

Hence, da3
da2

> 1 given that da2
dt

> 1. It follows that a3 (t) − a2 (t) is increasing in t.

Likewise, it is obvious that a3 (t) goes to zero as t→ 0.

Suppose that the forward solutions exist up to an−1 (t) and all have the above

properties. Consider the forward solution for an (t) , defined as the value that satisfies

an−1 (t)− βE [θ| θ ∈ [an−2 (t) , an−1 (t)]] = βE [θ| θ ∈ [an−1 (t) , an]]− an−1 (t) . (18)

At an = an−1 (t) the right side is negative, while the left side is positive. The right

side is increasing in an, so there exists a unique finite solution if and only if

2an−1 (t)− βE [θ| θ ∈ [an−2 (t) , an−1 (t)]]− βE [θ| θ ≥ an−1 (t)] < 0.

Totally differentiating, we note that the difference is increasing in t by the fact that
dan−1

dan−2
> 1. Hence, there is a unique value t̃n such that a forward solution an (t) exists

for any t < t̃n, where t̃n is defined by the condition

2an−1

(
t̃n
)
− βE

[
θ| θ ∈

[
an−2

(
t̃n
)
, an−1

(
t̃n
)]]
− βE

[
θ| θ ≥ an−1

(
t̃n
)]

= 0.
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We now argue that t̃n < t̃n−1. Consider

2an−2

(
t̃n−1

)
− βE

[
θ| θ ∈

[
an−3

(
t̃n−1

)
, an−2

(
t̃n−1

)]]
− βE

[
θ| θ ≥ an−2

(
t̃n−1

)]
= 0.

(19)

At t̃n, the forward equation for an−1 (t) implies

2an−2

(
t̃n
)
− βE

[
θ| θ ∈

[
an−3

(
t̃n
)
, an−2

(
t̃n
)]]

= βE
[
θ| θ ∈

[
an−2

(
t̃n
)
, an−1

(
t̃n
)]]

.

Hence, at t̃n,

2an−2

(
t̃n
)
− βE

[
θ| θ ∈

[
an−3

(
t̃n
)
, an−2

(
t̃n
)]]
− βE

[
θ| θ ≥ an−2

(
t̃n
)]

= βE
[
θ| θ ∈

[
an−2

(
t̃n
)
, an−1

(
t̃n
)]]
− βE

[
θ| θ ≥ an−2

(
t̃n
)]

< 0.

Since the left side of (19) is increasing in t, it follows that t̃n−1 > t̃n is necessary to

restore equality with zero.

Consider now the closure condition. A sequence of thresholds t, a2 (t) , . . . , an (t)

forms an equilibrium if and only if the thresholds an−1 (t) and an (t) are such that

an (t)− βE [θ| θ ∈ [an−1 (t) , an (t)]] = βE [θ| θ ≥ an (t)]− an (t) .

Define the difference

∆n (t) ≡ 2an (t)− βE [θ| θ ∈ [an−1 (t) , an (t)]]− βE [θ| θ ≥ an (t)] .

By the now familiar argument, ∆n (t) is strictly increasing in t, so there is a unique

value of t, say t∗n, that solves the equation. We note that the value of t∗n is exactly

t̃n+1, the value such that the next forward solution just goes out of the support.

It follows that for any n, we can construct an equilibrium. Moreover, in such an

equilibrium, the value of the first threshold an1 is t̃n+1, a decreasing function of n. 2

Lemma A.4 There exists an infinite equilibrium.

Proof of Lemma A.4. We know from Lemma A.3 that the value of the first thresh-

old t̃n+1 is a monotone decreasing function of n. Since the sequence is bounded by
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zero it must converge. Likewise, an (t∗n) is bounded above: suppose for contradiction

that an (t) goes out of bounds as n goes out of bounds, and consider the closure

condition, Dn (t) = 0, with

Dn (t) = 2an (t)− βE [θ| θ ∈ [an−1 (t) , an (t)]]− βE [θ| θ ≥ an (t)] .

Note that

−βE [θ| θ ∈ [an−1 (t) , an (t)]] ≥ −βE [θ| θ ≥ an (t)]

and that a−βE [θ| θ ≥ a] is increasing in a for a logconcave distribution. This implies

a contradiction. Therefore, we must have limn→∞ an (t∗n) < ∞ and the sequence

an (t∗n) is bounded above.

Claim 1) The equilibrium features increasing intervals,

ani+1 − ani > ani − ani−1 ∀n and ∀i < n.

Proof: Consider the equilibrium indifference condition for a1,

a1 − βE [θ| θ ∈ [0, a1]] = βE [θ| θ ∈ [a1, a2]]− a1.

Logconcave densities are unimodal. By symmetry, the mode is at 0 and hence the

density truncated at zero is non-increasing. This implies that for an interval of given

length ∆,

E [θ| θ ∈ [a1, a1 + ∆]] ≤ a1 +
∆

2
.

Consider a1 = ∆ and a2 = 2∆. Then, ∆ − βE [θ| θ ∈ [0,∆]] ≥ ∆ − β∆
2

and

βE [θ| θ ∈ [∆, 2∆]] − ∆ ≤ β 3
2
∆ − ∆, where the inequalities are strict if the den-

sity is strictly decreasing. Since ∆− β∆
2
> β 3

2
∆−∆, a2 must increase to satisfy the

equilibrium condition.

Likewise, consider

ai − βE [θ| θ ∈ [ai−1, ai]] = βE [θ| θ ∈ [ai, ai+1]]− ai

and suppose ai−ai−1 = ∆ = ai+1−ai. Then βE [θ| θ ∈ [ai −∆, ai]] ≤ β
(
ai − ∆

2

)
and

βE [θ| θ ∈ [ai, ai + ∆]] ≤ β
(
ai + ∆

2

)
(with strict inequalities for a strictly decreasing

density) imply that ai−βE [θ| θ ∈ [ai−1, ai]] ≥ ai−β
(
ai − ∆

2

)
and βE [θ| θ ∈ [ai, ai+1]]−
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ai ≤ β
(
ai + ∆

2

)
−ai. Since ai−β

(
ai − ∆

2

)
> β

(
ai + ∆

2

)
−ai for all ai, we must again

have that ai+1 − ai > ai − ai−1 = ∆ to restore equilibrium. 2

Claim 2) The sequence (an1 )n is monotone decreasing, while the sequence (ann)n
is monotone increasing. Moreover, equilibrium thresholds are nested,

an+1
1 < an1 < an+1

2 < · · · an+1
n < ann < an+1

n+1 ∀n. (20)

Proof: Recall the notation an1 = t̃n = t∗n+1 and an+1
1 = t̃n+1 = t∗n+2 from Lemma

A.3. Since by Lemma A.3 the solution of the forward equation is monotonic in the

initial condition, t, we have that an+1
i < ani for i = 1, . . . , n. Hence, it suffices to

prove that ani < an+1
i+1 for i = 1, . . . , n.

We start with two preliminary observations. First, the “next” solution of the

forward equation, aki+1 (t) for i = 1, . . . , k − 1, and k = n, n + 1 is monotonic in

aki (t) , and the length of the previous interval, aki (t)−aki−1 (t) . To see this, note that

the forward equations for ak2, a
k
3, and aki+1, for i = 3, . . . , k − 1 and k = n, n + 1

satisfy:

t− βE [θ| θ ∈ [0, t]] = βE
[
θ| θ ∈

[
ak2, t

]]
− t,

ak2 (t)− βE
[
θ| θ ∈

[
t, ak2 (t)

]]
= βE

[
θ| θ ∈

[
ak2 (t) , ak3

]]
− ak2 (t) ,

and

aki (t)− βE
[
θ| θ ∈

[
aki−1 (t) , aki (t)

]]
= βE

[
θ| θ ∈

[
aki (t) , aki+1

]]
− aki (t) .

Let aki−1 (t) = aki (t)−∆ and substitute into the forward equation for aki+1 :

aki (t)− βE
[
θ| θ ∈

[
aki (t)−∆, aki (t)

]]
= βE

[
θ| θ ∈

[
aki (t) , aki+1

]]
− aki (t) .

Monotonicity follows from the fact that aki (t) decreases the value of the right-hand

side by logconcavity of the density and increases the value of the left-hand side again

by that property. Moreover, an increase in ∆ increases the left-hand side further,

implying that aki+1 (t) has to increase to restore the equality.

Second, it is impossible that an+1
n+1

(
t̃n+1

)
< ann

(
t̃n
)

and an+1
n+1

(
t̃n+1

)
−an+1

n

(
t̃n+1

)
<

ann
(
t̃n
)
−ann−1

(
t̃n
)
. If these conditions would hold, then one of the closure conditions,

0 = 2ann
(
t̃n
)
− βE

[
θ| θ ∈

[
ann−1

(
t̃n
)
, ann

(
t̃n
)]]
− βE

[
θ| θ ≥ ann

(
t̃n
)]
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and

0 = 2an+1
n+1

(
t̃n+1

)
− βE

[
θ| θ ∈

[
an+1
n

(
t̃n+1

)
, an+1

n+1

(
t̃n+1

)]]
− βE

[
θ| θ ≥ an+1

n+1

(
t̃n+1

)]
would necessarily be violated. To see this, take δ1, δ2 > 0 and suppose that an+1

n+1

(
t̃n+1

)
=

ann
(
t̃n
)
− δ1, ann

(
t̃n
)
− ann−1

(
t̃n
)

= ∆, and an+1
n+1

(
t̃n+1

)
− an+1

n

(
t̃n+1

)
= ∆− δ2. Now

consider the closure conditions

0 = 2ann
(
t̃n
)
− βE

[
θ| θ ∈

[
ann
(
t̃n
)
−∆, ann

(
t̃n
)]]
− βE

[
θ| θ ≥ ann

(
t̃n
)]

and

0 = 2
(
ann
(
t̃n
)
− δ1

)
−βE

[
θ| θ ∈

[
ann
(
t̃n
)
− δ1 − (∆− δ2) , ann

(
t̃n
)
− δ1

]]
−βE

[
θ| θ ≥ ann

(
t̃n
)
− δ1

]
.

By logconcavity, δ1 > 0 reduces the right-hand side of the second condition. More-

over, δ2 > 0 increases the lower bound ann
(
t̃n
)
−δ1−∆+δ2, so decreases the right-hand

side further. Hence, one of the closure conditions must necessarily be violated.

We now show that an+1
j+1 > anj for all j ≤ n. Suppose for contradiction that the

property is violated for the first time at j = l. Suppose an+1
j+1

(
t̃n+1

)
> anj

(
t̃n
)

for

all j = 1, . . . , l − 1 and an+1
l+1

(
t̃n+1

)
< anl

(
t̃n
)
. Taken together, these inequalities

immediately imply that an+1
l+1

(
t̃n+1

)
− an+1

l

(
t̃n+1

)
< anl

(
t̃n
)
− anl−1

(
t̃n
)
. In turn,

the monotonicity property of the next forward solution implies that an+1
l+2

(
t̃n+1

)
<

anl+1

(
t̃n
)
.

It also follows then that an+1
l+2

(
t̃n+1

)
−an+1

l+1

(
t̃n+1

)
< anl+1

(
t̃n
)
−anl

(
t̃n
)
. To see this,

suppose instead that an+1
l+2

(
t̃n+1

)
− an+1

l+1

(
t̃n+1

)
≥ anl+1

(
t̃n
)
− anl

(
t̃n
)

or equivalently

that an+1
l+2

(
t̃n+1

)
≥ anl+1

(
t̃n
)

+
(
an+1
l+1

(
t̃n+1

)
− anl

(
t̃n
))
. However, this is impossible

since both an+1
l+2

(
t̃n+1

)
< anl+1

(
t̃n
)

and an+1
l+1

(
t̃n+1

)
< anl

(
t̃n
)
. Hence, the claim fol-

lows.

However, if an+1
l+2

(
t̃n+1

)
< anl+1

(
t̃n
)

and an+1
l+2

(
t̃n+1

)
− an+1

l+1

(
t̃n+1

)
< anl+1

(
t̃n
)
−

anl
(
t̃n
)
, then an+1

l+3

(
t̃n+1

)
< anl+2

(
t̃n
)

and so forth. Hence, we would have an+1
j+1

(
t̃n+1

)
<

anj
(
t̃n
)

and an+1
j+1

(
t̃n+1

)
− an+1

j

(
t̃n+1

)
< anj

(
t̃n
)
− anj−1

(
t̃n
)

for all j ≥ l and in par-

ticular for j = n, leading to a violation of one of the closure conditions.

The same argument can be given for a Class II equilibrium. This is omitted. 2

Claim 3) The limit of the sequences of thresholds and actions is an equilibrium.
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Proof: The limit is an equilibrium if limn→∞ βµ
n
i ≤ limn→∞ a

n
i ≤ limn→∞ βµ

n
i+1.

Therefore, we have to show that equilibrium thresholds remain ordered in the limit,

limn→∞ a
n
i < limn→∞ a

n
i+1. For all finite n, thresholds are ordered in equilibrium,

ani < ani+1, since they are ordered for any forward equation. By Claim 2) equilibrium

thresholds converge. Denote the limits by ai = limn→∞ a
n
i for all i. By convergence,

for any ε there is N such that for all n > N : ani ≥ ai − ε
2

and ani+1 ≤ ai+1 + ε
2
.

Suppose for contradiction that ai ≥ ai+1 + δ for some δ > 0; this implies

ani ≥ ai −
ε

2
≥ ai+1 + δ − ε

2
≥ ani+1 −

ε

2
+ δ − ε

2
> ani+1,

for all ε < δ. Hence thresholds remain ordered in the limit and the limit is an

equilibrium. 2

2

Proof of Lemma 1. Consultative decision-making.

M’s optimal action is ∆ycon = βMS · µS + βMP · µP , with βMS = c+λs
c+s

and

βMP = 1− λ.
Note that E [µθµP ] = 0 = E [µP (XC +XS)], since these variables are uncorre-

lated. Moreover, we have E [µS (XC +XS)] = E [µ2
S] = var(µS) and E [µPXP ] =

E [µ2
P ] = var(µP ).

We can calculate S’s expected loss as

E [βMS · µS + βMP · µP − (XC +XS)]2

= (βMS)2 E
[
µ2
S

]
+ (βMP )2 E

[
µ2
P

]
+ σ2

C + σ2
S + 2βMSβMPE [µSµP ]

−2βMPE [µP (XC +XS)]− 2βMSE [µS (XC +XS)]

= βMS (βMS − 2) var(µS) + (βMP )2 var(µP ) + σ2
C + σ2

S. (21)

Similarly, we can calculate P’s expected loss as

E (βMS · µS + βMP · µP − (XC +XP ))2

= (βMS)2 E
[
µ2
S

]
+ (βMP )2 E

[
µ2
P

]
+ σ2

C + σ2
P − 2βMSE [µSXC ]− 2βMPE [µPXP ] .

To compute E [µSXC ] , observe that the joint distribution of µS and XC can be

computed from the joint distribution of ΘS and XC . For θS ∈ (θS,i−1, θS,i], let µS =
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µθS ,i, and let P denote the corresponding random variable with typical realization

Pi = (θS,i−1, θS,i].

E [µSXC ] = EP [E [µSXC ]|P = Pi] = EP [µSE [XC ]|P = Pi]

= EP [µSEΘS∈Pi [E [XC ]|ΘS = θS]] = EP
[
µSEΘS∈Pi

[
Cov (XC ,ΘS)

V ar (ΘS)
ΘS

]]
=

c

c+ s
E
[
µ2
S

]
= βPS var(µS).

Hence P’s expected loss can be written as

βMS (βMS − 2βPS) var(µS) + βMP (βMP − 2) var(µP ) + σ2
C + σ2

P . (22)

To calculate M’s payoff, we rewrite the variances according to equation (5). After

rearranging, M’s expected payoff can be written as

− λE
[
(∆ycon − (XC +XS))2]− (1− λ)E

[
(∆ycon − (XC +XP ))2]

=
(2− α) βMS

2− α · βMS

(c+ λs) + (1− λ)2 2− α
2− α (1− λ)

p− σ2
C − λσ2

S − (1− λ)σ2
P .

Delegated decision-making to P. The decision-rule of A is ∆ydelP = βPS ·
µS +

σ2
P

σ2
P+σ2

εP

· sP , with βPS = c
c+s

. As before, we can calculate S’s expected loss as

E
(
βPS · µS +

σ2
P

σ2
P + σ2

εP

· sP − (XC +XS)

)2

= βPS (βPS − 2) var(µS)+p+σ2
C+σ2

S.

Similarly, we can calculate P’s expected loss as

E
(
βPS · µS +

σ2
P

σ2
P + σ2

εP

· sP − (XC +XP )

)2

= − (βPS)2 var(µS)− p+ σ2
C + σ2

P .

To calculate M’s payoff, we rewrite the variances according to equation (5). After

rearranging, M’s expected payoff can be written as

− λE
[(

∆ydelP − (XC +XS)
)2
]
− (1− λ)E

[(
∆ydelP − (XC +XP )

)2
]

= (2λ+ (1− 2λ) βPS)
2− α

2− αβPS
c+ (1− 2λ) p− σ2

C − λσ2
S − (1− λ)σ2

P .
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Delegated decision-making to S. The decision-rule of S is ∆ydelS = θS =
σ2
C

σ2
C+σ2

εC

sC +
σ2
S

σ2
S+σ2

εS

sS. S’s expected loss is

E
(

σ2
C

σ2
C + σ2

εC

sC +
σ2
S

σ2
S + σ2

εS

sS − (XC +XS)

)2

= (
−σ2

C

σ2
C + σ2

εC

+ 1)σ2
C + (

−σ2
S

σ2
S + σ2

εS

+ 1)σ2
S.

Similarly, we can calculate P’s expected loss as

E
(

σ2
C

σ2
C + σ2

εC

sC +
σ2
S

σ2
S + σ2

εS

sS − (XC +XP )

)2

= s+ σ2
P + (

−σ2
C

σ2
C + σ2

εC

+ 1)σ2
C .(23)

Thus, M’s expected payoff can be written as

− λE
[(

∆ydelS − (XC +XS)
)2
]
− (1− λ)E

[(
∆ydelS − (XC +XP )

)2
]

=c+ (2λ− 1)s− σ2
C − λσ2

S − (1− λ)σ2
P .

2

Proof of Proposition 3. The proof of the proposition consists of two lemmas.

Lemma A.5 characterizes the winners of the pairwise comparisons of the three modes

of decision-making. In Lemma A.6, we construct the overall optimum of the pair-

wise winners identified in Lemma A.5. Verifying that the characterization in the

proposition fits the general characterization completes the proof. 2

Lemma A.5 There exists three unique cutoffs λ′, λ′′, λ′′′ ∈ [0, 1) with the following

properties:

M weakly prefers delegating to S over delegating to P if and only if λ ≥ λ′′′; M weakly

prefers consultative decision-making over delegating to P if and only if λ ≥ λ′; and M

weakly prefers delegating to S over consultative decision-making if and only if λ ≥ λ′′.

Proof of Lemma A.5. The values from delegation to P and S are linear functions

with the property that ∂
∂λ

(
∆πdelSM (λ)−∆πdelPM (λ)

)
≥ 0. Inserting the values from

Lemma 1, we have

λ′′′ = max

{
0,

1

2
− 1

2

csα

2s2 + 2ps+ (2− α) pc

}
.
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Note that if λ′′′ = 0, then the region where M prefers delegating to P is empty.

Consider next the values from consultative decision-making and delegating to

P. The gain ∆πconM (λ) is convex in λ, while ∆πdelPM (λ) is linear in λ. Moreover,

∆πconM (0) = ∆πdelPM (0) and ∆πconM (1) > ∆πdelPM (1) . Hence, there exists λ′ ∈ [0, 1)

defined as the largest solution of ∆πconM (λ) = ∆πdelPM (λ) .

Finally, the value from delegating to S is linear and satisfies ∆πconM (1) = ∆πdelSM (1)

and ∂
∂λ

(
∆πconM (λ)−∆πdelSM (λ)

)∣∣
λ=1

> 0. Hence, there exists λ ∈ [0, 1) such that

∆πconM (λ)−∆πdelSM (λ) = 0 if and only if ∆πconM (0) ≥ ∆πdelSM (0) . We define λ′′ as the

maximum of zero and the unique value λ < 1 satisfying ∆πconM (λ) − ∆πdelQM (λ) =

0. For λ′′ = 0, the region in which M prefers consultative decision-making over

delegation to S is empty. 2

Lemma A.6 A mode of decision-making is optimal if and only if it takes the fol-

lowing form.

i) For λ = 1, consultative decision-making or delegation to S are optimal.

ii) If λ′ = λ′′ = λ′′′ = 0, then delegation to S is optimal for all λ ∈ [0, 1].

iii) If λ′′′, λ′′ > 0, and

(a) λ′ ≤ λ′′′ ≤ λ′′, then delegation to S is optimal if and only if λ ∈ [λ′′, 1], con-

sultative decision-making is optimal if and only if λ ∈ [λ′, λ′′]∪{0, 1}, and delegation

to P is optimal if and only if λ ∈ [0, λ′],

(b) λ′ > λ′′′ > λ′′, then delegation to P is optimal if and only if λ ∈ [0, λ′′′],

delegation to S is optimal if and only if λ ∈ [λ′′′, 1], and consultative decision-making

is optimal if and only if λ ∈ {0, 1}.

Proof of Lemma A.6. i) Consultative decision-making and delegation to S

achieve the same value for λ = 1, and the achieved value is higher than the one from

delegating to P, ∆πdelSM

∣∣
λ=1

= ∆πconM |λ=1 = c+ s > c− p = ∆πdelPM

∣∣
λ=1

.

ii) By definition of λ′′.

iii) For λ = 0, we have βPS = βMS, and delegation to P and consultative decision-

making achieve the same value, ∆πdelPM

∣∣
λ=0

= βPS
2−α

2−αβPS
c+ p = βMS

2−α
2−αβMS

c+ p =

∆πconM |λ=0. By i), delegation to S and consultative decision-making achieve the same

value for λ = 1. The value from consultative decision-making is convex in λ; the

delegation values are linear in λ with ∂
∂λ

(
∆πdelSM (λ)−∆πdelPM (λ)

)
≥ 0. Thus, the
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upper envelope of the three functions is attained by consultative decision-making at

λ = λ′′′ if and only if λ′ ≤ λ′′′ ≤ λ′′. Otherwise the upper envelope is formed by the

delegation functions only. 2

Proof of Theorem 1. Consider, first, the difference between the gains from

delegating to S and consultative decision-making:(
∆πdelSM −∆πconM

)∣∣
c=0

= (1− λ)

(
(2 + α)λ− 2

2− αλ
s− (1− λ)

2− α
2− α (1− λ)

p

)
.

There are two points of indifference: λ = 1 and the unique value of λS setting the

term in brackets equal to zero. Uniqueness follows from monotonicity in λ. Existence

follows from continuity and the fact that the term in brackets is negative for λ = 0

and positive for λ = 1. By the implicit function theorem, λS is decreasing in s and

increasing in p. For p = 0, the solution is λS = 2
2+α

.

Likewise, consider the difference between the gains from delegating to P and

consultative decision-making:(
∆πdelPM −∆πconM

)∣∣
c=0

= λ

(
−λ 2− α

2− αλ
s+

α− (2 + α)λ

2− α (1− λ)

)
p.

There are two points of indifference: λ = 0 and the unique value of λP setting the

term in brackets equal to zero. Uniqueness follows from monotonicity in λ. Existence

follows from continuity and the fact that the term in brackets is negative for λ = 1

and positive for λ = 0. By the implicit function theorem, λP is decreasing in s and

increasing in p. For s = 0, we have λP = α
2+α

. 2

Proof of Theorem 2. Note that for 0 < λP < λS < 1, from the proof of

Proposition 3, λP is the highest value of λ such that ∆πconM (λ; c)−∆πdelPM (λ; c) = 0.

Likewise, λS is the smallest value of λ solving ∆πconM (λ; c)−∆πdelSM (λ; c) = 0.

For simplicity, we suppress everything that is kept constant. By the implicit

function theorem,

dλP
dc

= −
(
∂
∂C

∆πconM (λP ; c)− ∂
∂C

∆πdelPM (λP ; c)
)(

∂
∂λ

∆πconM (λP ; c)− ∂
∂λ

∆πdelPM (λP ; c)
) .
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Note that ∂
∂λ

∆πconM (λP ; c) > ∂
∂λ

∆πdelPM (λP ; c), because M’s payoff under consultative

decision-making crosses the payoff of delegation to P at λP from below. Thus the

denominator is positive. The derivative with respect to c of the numerator can be

signed as follows. Due to the fact that ∆πconM (0; c) = ∆πdelPM (0; c) , we can write

∆πconM (λ; c)−∆πdelPM (λ; c) =

λP∫
0

∂

∂z

(
∆πconM (z; c)−∆πdelPM (z; c)

)
dz,

so that

∂

∂c
∆πconM (λP ; c)− ∂

∂c
∆πdelPM (λP ; c) =

λP∫
0

∂2

∂z∂c

(
∆πconM (z; c)−∆πdelPM (z; c)

)
dz.

Using the specific functional form, we find

∂2

∂z∂c

(
∆πconM (z; c)−∆πdelPM (z; c)

)
=

8s2 (2− α) (1− λ) (c+ s)

(c (2− α) + s (2− λα))3 −
4s2 (2− α)

(2s+ c (2− α))2 .

Evaluated at λ = 0, the difference is positive. The first term is a concave function

of λ. Evaluated at λ = α
2+α

, the difference is positive if and only if

4

2 + α
(c+ s) ((2− α) c+ 2s)2 > ((2− α) c− sα)3 ,

which is easily verified to be true. Since λp is bounded above by α
2+α

, λP is decreasing

in the amount of common value information c.

Second, recall that λS is defined as the smallest value that solves ∆πconM (λ; c) −
∆πdelSM (λ; c) = 0. By the implicit function theorem

dλS
dc

= −
(
∂
∂c

∆πconM (λS; c)− ∂
∂c

∆πdelSM (λS; c)
)(

∂
∂λ

∆πconM (λS; c)− ∂
∂λ

∆πdelSM (λS; c)
) ,

where ∂
∂λ

∆πconM (λS; c)− ∂
∂λ

∆πdelSM (λS; c) < 0 because the value of consultative crosses

the value of delegation to S from above at λS. Straightforward differentiation shows

that

∂

∂c
∆πconM (λS; c)− ∂

∂c
∆πdelSM (λS; c) =

−4s2 (λS − 1)2

(c (2− α) + s (2− λSα))2 < 0.
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Hence, λS is decreasing in the common value c. 2

Proof of Theorem 3. i) Since ∆πconM (0) = ∆πdelPM (0), we have that λS > 0 if and

only if ∆πconM (0) > ∆πdelSM (0) . Given equation (6), for limc→∞, the comparison at

λ = 0 reduces to
α

2− α
s− p > 0.

ii) We have λP > 0 if and only if ∂
∂λ

(
∆πconM (λ)−∆πdelPM (λ)

)∣∣
λ=0

< 0. Given

equation (7), this is equivalent to

− α

2− α
(p− s) < 0.

Given equation (6), λS is the solution to α
2−αs = 2(1−λ)−α(1−λ)

2−α(1−λ)
p.

iii) We have that p > s implies p > α
2−αs, thus, for λS > 0 case ii) applies. Given

equation (7), λP is the solution to α
2−αs = −2λ−α(1−λ)

2−α(1−λ)
p, which is strictly positive

under the stated conditions. 2

Proof of Theorem 4. We need to show i) that S and P are willing to accept, ii)

that M benefits from proposing a deal that S and P accept, and iii) that such a deal

effectively puts M at the helm.

i) The participation constraint of S is

δS
1

2
(E [π∗S] + E [πS]− E [π∗S]) ≥ 1

2

(
E [π∗S]− σ2

S

)
,

while P participates if

δP
1

2
(E [π∗P ] + E [πP ]− E [π∗P ]) ≥ 1

2

(
E [π∗P ]− σ2

P

)
.

It is easy to verfiy that E [π∗S] = E [π∗P ] = Π+σ2, where Π =
(
a−kS−kP

2

)2
is firm profit

without uncertainty and σ2 = V ar (XP ) = V ar (XS) . Moreover, using the explicit

expressions in the proof of Lemma 1, equation (21), we get

δS
1

2

(
Π + λ (2− λ)

2− α
2− αλ

σ2
S − (1− λ)2 2− α

2− α (1− λ)
σ2
P

)
≥ 1

2
Π, (24)
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and using equation (22), we get

δP
1

2

(
Π + (1− λ) (2− (1− λ))

2− α
2− α (1− λ)

σ2
P − λ2 2− α

2− αλ
σ2
S

)
≥ 1

2
Π. (25)

With σ2
S = σ2

P = σ2, the terms in both brackets simplify for λ = 1
2

to

λ (2− λ)
2− α

2− αλ
σ2
S − (1− λ)2 2− α

2− α (1− λ)
σ2
P

= (1− λ) (2− (1− λ))
2− α

2− α (1− λ)
σ2
P − λ2 2− α

2− αλ
σ2
S

=
1

2

2− α
2− α 1

2

σ2.

Thus, the participation constraints reduce to

δi
1− δi

1

2

2− α
2− α 1

2

σ2 ≥ Π, for i = S, P.

Since the participation constraints of S and P are identical and δ
1−δ can take any non-

negative value, there exists some δ∗ that makes the contraints hold with equality.

ii) M receives a fraction of the profits, which were positive already at the outset.

Moreover, the surplus increases from adapting to the changes in costs. Hence, M

benefits from the deal.

iii) Finally, since δS = δP and ωS = ωP = 1
2
,

λ∗ =
(1− δS)ωS

(1− δS)ωS + (1− δP )ωP
=

1

2
,

implying that M prefers consultative decision-making over delegating to S or P. 2

Proof of Theorem 6. Recall the participations constraints of S (equation (24))

and P (equation (25)) from the proof of Theorem 4. The constraints have the same

structure. Without loss of generality, fix σ2
P and focus on S’s participation decision

δS
1

2

(
Π + λ (2− λ)

2− α
2− αλ

σ2
S − (1− λ)2 2− α

2− α (1− λ)
σ2
P

)
≥ 1

2
Π.
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Since ωS = ωP , we have

λ =
1− δS

1− δS + 1− δP
.

Note that for any δP < 1, λ is well defined for all δS < 1. For σ2
S = 0,

δS
1

2

(
Π− (1− λ)2 2− α

2− α (1− λ)
σ2
P

)
<

1

2
Π for all δS.

Moreover,

max
δS ,δP

δS
1

2

(
Π + λ (2− λ)

2− α
2− αλ

σ2
S − (1− λ)2 2− α

2− α (1− λ)
σ2
P

)
is increasing in σ2

S. Hence, for σ2
S close enough to zero, S’s participation constraint

is not met. 2

Proof of Theorem 7. Recall equation (10). Under consultative decision-making,

information about S’s private value is provided if and only if σ2
C ≤

(2−α)
σ2C+λσ2S
σ2
C

+σ2
S

2−α
σ2
C

+λσ2
S

σ2
C

+σ2
S

(σ2
C + λσ2

S),

which can be reduced to λ ≥ λ∗ =

√
(4−α)2+8(2−α)

σ2
S

σ2
C

−(4−α)

2(2−α)
σ2
S

σ2
C

, a decreasing function of

σ2
S

σ2
C
.

In the almost common value case, by L’Hospital’s rule, we obtain

lim
σ2
S

σ2
C

→0

√
(4− α)2 + 8(2− α)

σ2
S

σ2
C
− (4− α)

2 (2− α)
σ2
S

σ2
C

=
2

4− α
.

Note first that 2
4−α > 1

2
. Hence, for λ ≤ 1

2
, under consultative decision-making,

S has no private value information. Therefore, the point of indifference λP between

(9) and (10) is computed for s = 0. This implies λP = α
2+α

, the threshold for the

case where the only information to extract is private value information of P.

Consider now λS. Note that ∆πconM (λ) is continuous and convex in λ. Moreover,

∆πconM (1) = ∆πdelSM (1) and ∆πconM is steeper at λ = 1 than ∆πdelSM . This implies that
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if λ∗ ≥ λS, then consultative decision-making remains dominated by delegation to

S, even for λ ≥ λ∗Hence, there are two cases to consider:

i) λ∗ = 2
4−α ≤ λS (S has private value information under consultative decision-

making at the point of indifference). In this case, it is straightforward to see that

the comparison is as if information were exogenously given and perfect. Using the

explicit expression in the theorem, this arises if and only if
σ2
S

σ2
P
≤ 1

α
(2−α)3

α2−4α+8
.

ii) λ∗ = 2
4−α > λS (S has no private value information under consultative decision-

making at the point of indifference). Since σ2
C drops out of the comparison in this

case, the point of indifference is as indicated in the theorem. 2
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