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Abstract

This paper combines theories of communication with theories of expertise and teams. Facing a team
of experts, who must be given incentives to acquire information and to communicate it truthfully, how can
and how should the leader communicate with the team members? We characterize all the possibilities of
using the information generated efficiently, and provide a complete welfare ranking of all equilibria. The
welfare ranking is shown to depend one for one on the structure of the cost of information acquisition.
We discuss applications to task assignment, and to noisy and costly communication.
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1 Introduction

1.1 Motivation

Committees have become an integral part of political and corporate decision-making. To name but a few

examples, Parliament takes political decisions on behalf of society, the Federal Open Market Committee
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and the Governing Council of the European Central Bank, respectively, decides on monetary policy in the
US and Europe, respectively; jurors form a committee that decides on verdicts, and the board of directors
of a company is a committee that decides on aspects of the business policies of that company. Many of
the decisions taken in these examples are complex, and committee members have to invest time and effort
prior to meeting into their understanding of the issues. Once understood the individual opinions have to
be communicated and aggregated to enable the committee to reach a well informed decision. Given the
importance of committees, it is crucial to understand the nature of interaction among committee members
and the consequences of these interactions for the quality of the decisions reached by the committee. These
are the questions we address in this paper.

Our investigation is - at least in part - inspired by casual observations of committee decision-making
in Universities. All the members being professors, one could argue that they are to a first approximation
identical, at least in the ex ante sense. Why then is it that the discussions are often led so asymmetrically?
Some professors speak all the time, others are completely silent. Similarly, some members of parliament
speak much longer than others. Perhaps more importantly, their fellow members seem to listen more to
them than to others. At times, however, discussions end up more democratic, where all the members of the
committee speak about the same amount of time. Why?

We develop a simple model that explains when a discussion should be asymmetric and when symmetric.
We consider a committee that takes a continuous choice, e.g., the size of a budget. The committee members
all agree on the optimal size of the budget. But the problem is that the optimal budget depends on random
factors they are only imperfectly informed about and acquiring information about these factors comes at a
private cost. Moreover, the committee members cannot observe how much effort their fellow members have
spent on information acquisition, nor can they tell whether their statements are true or false. Assuming
quadratic loss functions for the payoffs and that prior and acquired information are Normal random variates,
the efficient size of the budget is simply an average of prior information and the information that the members
observe. Each member’s information should receive a weight corresponding to the relative precision of his
information. We suppose that the committee cannot commit to the decisions it will take in advance but

rather takes these decisions ex post. This assumption seems particularly appealing given there are no conflicts



of interests ex post. In the parliament example, e.g., it would be extremely difficult to take a decision that
is known to be inefficient by the public. The questions are then, which aggregation rules and information
acquisition decisions form an equilibrium and which equilibrium is the best one?

Clearly, our game has a plethora of equilibria as almost any game of cheap talk has. However, viewing
the committee as a team in the sense of team theory a la Marshak and Radner [18], it is natural to focus on
equilibria that are efficient in a certain sense. We study the class of equilibria that are efficient ex post in
the sense that all the information that has been acquired is also transmitted and used.

At first sight one might think that almost anything goes. If a member conjectures that others will listen
to him more than to others, then he should acquire more information than others. Vice versa if someone
is better informed than the others, then the others should pay relatively more attention to the arguments
of this particular member. Surprisingly though, all the equilibria have the same structure. They partition
all committee members into two classes, an influential and a negligible one. The negligible agents do not
acquire information and nobody pays attention to them. However, the equilibrium is necessarily symmetric
among the influential agents. Although information is potentially of a continuous quality, all the influential
agents acquire the same amount of information and their opinion has the same impact on the decision made.
The reason is essentially that information is a public good in the present model, so that the marginal value
of the information that is used in equilibrium is necessarily the same for all agents. As a result, the marginal
costs and the effort levels themselves must be equalized in equilibrium as well.

The number of influential committee members has two effects. First, it determines the equilibrium
incentives for information acquisition and second, it determines the distribution of costs of information
acquisition on the committee-members. If and only if the costs of information acquisition are convex then
the equilibria are better, in the sense of a higher joint utility of the team, the more influential members
there are. Adding another influential member reduces the fellow influential members’ equilibrium effort
for information acquisition. However, it also adds another source of information. Moreover, the costs of
information acquisition are distributed more evenly in the group. When the cost of information acquisition
is convex, then the beneficial effect of adding another source of information outweighs the detrimental effect

on members’ incentives. As a result, the quality of the decision improves. In addition, the allocation of the



cost moves towards a more efficient solution. Both the effect on the aggregate quality of information and
the distribution of costs are exactly reversed when there are concave costs of information acquisition.

So, according to our model, discussions should be asymmetric to the maximal extent when the problem
is such that there are increasing returns, and discussions should be democratic to the maximal extent when
there are decreasing returns in information acquisition.

We extend this simple model into three directions. First, we consider the case of a committee that is
formed to reach many decisions, e.g., as many as decisions as there are members. How should the committee
allocate the responsibility for the various decisions to its members? Should it have one member responsible
per task or should all of them share the responsibility for all the tasks? Specialized responsibility creates
better incentives for information acquisition, but it does not exploit the benefits of sharing the costs of
information acquisition efficiently. Surprisingly, however, these effects offset each other exactly, rendering
both allocations of responsibility welfare equivalent in our model.

Second, we investigate the case of limited communication capacities among members. At times there are
sharply decreasing returns to communication, say because communicating is time consuming and time is
scarce. How can and how should the president communicate with the members of the committee when she
faces a time-capacity limit? She could treat all the members symmetrically, communicating with a certain
probability with each one of them; or she could tell some members that she will not be able to talk to them
at all and others that they will receive her full attention. When there are decreasing returns to information
acquisition, we show that the latter option is preferable among all feasible, asymmetric possibilities. Experts
who know they influence the decision for sure have better incentives to acquire information than maybe
influential experts. As a result, creating maybe influential experts decreases the aggregate quality of infor-
mation and the decision worsens. Although the distribution of costs of information acquisition improves,
this advantage is insufficient to outweigh the loss of information effect.

Third and finally, we extend our analysis to the case of heterogeneous agents, who differ in their marginal
costs of information acquisition. In the interesting case of decreasing returns, the efficient equilibrium now
displays a hierarchy. The agent’s are, in equilibrium, the more important for the decision the smaller is

their marginal cost of information acquisition. When we introduce in addition the realistic feature that



communication is noisy, and information is aggregated by a president, we can endogenize the role of this
president. Making an agent the president guarantees that her information is used with its full precision,
others’ information is in part destroyed through the noisy communication channel. It is most efficient to
elect the agent with the smallest marginal cost to be the president. Since there is always too little information
acquired in equilibrium, the group’s objective is essentially to maximize the quality of the decision made.
As a result, it is of crucial importance to provide the efficient collectors of information with high incentives.

In this sense, our model explains why the best should become president.

1.2 Literature

We combine three lines of thought: communication, endogenous information, and teams. Crawford and Sobel
[7] analyze communication between a decision-maker and a single expert. They characterize all equilibrium
constellations of communication and show that complete transmission of all information is impossible unless
the expert and the decision-maker have identical preferences. The equilibrium with the greatest amount
of information transmission Pareto dominates all other equilibria. There are five essential differences with
respect to their work. First, all agents have a common ex post objective (that is, for given information)
rather than differing preferences. Second, there are multiple senders rather than one. Third, the senders of
information have noisy information. Fourth, information is endogenous and its acquisition is subject to a
problem of moral hazard. Fifth and finally, the receiver of information observes information on her own.
Szalay [23] studies a model where a decision-maker hires a single expert to acquire information and to
provide policy advice. While the advisor is unbiased ex post, he is biased ex ante in the sense that he dislikes
the fact that he has to spend costly effort to gather information. The paper characterizes the optimal form of
decision-making guaranteeing both an adequate quality of information and the truthful transmission thereof.
As in the present work, there are no conflicts of interest ex post, but the only conflicts are ex ante with
respect to the costly amount of information acquired. But unlike the present paper, Szalay [23] assumes that
the principal can commit in advance to the decisions she takes. Moreover, there are many rather than only

one expert in the present investigation.'
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Combining the two approaches of Crawford and Sobel [7] and Szalay [23] in the context of many experts
gives rise to a classical team problem in the sense of Marshak and Radner [18]. All the members of the team
have a common objective once the cost of information acquisition has been spent. However, the members
cannot observe the effort taken by their fellow members, which gives rise to problems of moral hazard.
Moreover, members cannot falsify what other members say. Applying the team perspective, we ask what
possibilities there are to aggregate the information efficiently and what implications the different forms of
information aggregation have on the members’ equilibrium incentives for information acquisition.

Various approaches in the literature contain elements of our story, but none of them has them all.
Communication with multiple senders has also been analyzed by Austen-Smith [3], Battaglini [4, 5], Krishna
and Morgan [15], Ottaviani and Sorensen [21], and Wolinsky [25]. These papers study the ability of the
receiver of information to elicit as much as possible information from multiple senders, focussing on the role
of the timing of communication, noise in information, or size and direction of senders biases. However, in
all these papers the information of the senders is given. In contrast, our paper endogenizes the information
acquisition decisions prior to communicating.

Persico [22] and Mukhopadhaya [20] study the role of committee size for incentives for information ac-
quisition. The crucial differences to the current approach are that information acquisition is a binary (rather
than a continuous) choice and that information is aggregated through voting (rather than communication).
Both Persico and Mukhopadhaya find that large committees face severe problems when it comes to providing
their members with incentives to spend the cost of information acquisition. The more members a committee
has, the less likely it is that any individual is pivotal. Therefore, smaller committees can make better deci-
sions than larger ones. Our analysis highlights the importance of the fixed costs of information acquisition
for these results. Assuming a convex cost of information acquisition where useless information is costless
both in total and at the margin, we show that larger committees always make better decisions. Although
the free-rider problem is aggravated in a larger committee, each member still acquires some information,
and the aggregate quality of information improves. Martinelli [19] shares this feature, although his result is

obtained in a model with information aggregation through majority voting.?
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A model of cheap talk with biased senders, noisy information and communication is studied by Cai
[6]. He shows that, surprisingly, preference heterogeneity can provide additional incentives for information
acquisition. In contrast to the present approach, he assumes that information acquisition is a binary choice.
Moreover, the bias in preferences forces him to consider a particular equilibrium rather than a class. Focussing
on the case of common ex post interests, we are able to characterize the complete class of ex post efficient
equilibria. Such a description has not been feasible in previous approaches featuring noisy information and
conflicts of interests (Battaglini [5] and Cai [6]).

A number of papers take mechanism design approaches to committee problems. Li [16] shows that
a committee may benefit from biasing its choice against its prior or preference in order to improve the
members’ incentives to acquire information. Gerardi and Yariv [13] analyze the complete set of mechanisms
available in a binary choice problem and characterize the properties of optimal mechanisms.* In contrast to
these approaches we do not rely on commitment to choice rules. In many situations with common interests,
members of a board have strong incentives to choose the actions that are ex post optimal. So, a commitment
to taking inefficient choices, as in Li [16] and Gerardi and Yariv [13] is sometimes hard to justify.

Communication is typically assumed costless in this literature. Exceptions, outside the committee lit-
erature are Dessein and Santos [10], who analyze the trade-off between centralized and delegated decision-
making when there are gains from costly communication due to a need to coordinate. Dewatripont and
Tirole [9] study communication when both the sending (or acquisition) and the receiving of information is
costly. Our extension to costly communication explores the consequences of these costs for the organization
of committees.

The remainder of the paper is structured as follows. In section two, we introduce the model, section
three contains an analysis of the communication game with complete information. In section four, we extend
our analysis to the case of incomplete information. In section five we characterize the welfare properties of

our equilibria. Section six discusses the extension to the case of multiple tasks, section seven the extension

3Scc also [17] for a modecl of cheap talk in committees with cxogenous information, showing that the optimal form of
communication can be implemented through voting.
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a modcl of cheap talk in committees, see Li et al. [17].
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[14]. In their approach, the number of experts influences the informational rents these experts obtain.



to constrained communication, and section eight analyzes noisy communication among heterogenous agents.

The final section concludes; longer proofs are relegated to the appendix.

2 The Model

A group of individuals ¢ = 1,..., N (the agents, henceforth) has to take a decision « € R. But the agents are
uncertain what decision is best for them. The utility of agent ¢ from taking a decision x depends also on an

unknown state of the world, y, according to the common function

2

ui (2,y) =u(z,y) = —(z—y)

The agents have a common prior that y is normally distributed with mean p and precision h (i.e. with
variance h~1). Before they take the decision z the individuals can gather information about y. All agents
have access to the same fact finding technology, where each agent observes a noisy signal s; that is informative
about the state of the world

Si =Y+ &

The noisy component ¢; is independent of y and follows a normal distribution with mean zero and precision
e;. ¢; is independent of ¢, for ¢ # j, so that the signals are conditionally independent, i.e., s;|y is independent
of sj|y for i # j.5 The cost of finding facts of precision e; is c(e;). We assume that useless information is
costless, i.e., that ¢ () satisfies ¢(0) = 0. Moreover, ¢ (-) is twice differentiable. Additional assumptions on
¢ () will be introduced when needed. Agents value taking a decision  and acquiring information of precision
e; according to

Ui (z,y,€e;) =u(x,y) —c(e;)-

The precision of agents’ information (e;) is not observable to other agents and the facts agents find (s;) are
not verifiable by other agents. Henceforth, we will use precision and effort interchangeably.

Prior to acquiring information, the agents elect a president who will collect the individual pieces of

?Independence is analytically convenient but not crucial for our results.



information and aggregate them into a collective choice. Since all agents are ex ante identical, the precise
form of information aggregation (that is, through a president) does not really matter, nor does the choice of
president itself. For convenience, we order agents the way that agent N is the president. Then, all agents
choose the precision of their information. They communicate with the president about what they have
found. Finally, the president decides on what decision x to take. Notice, that there are no transfers and the
president cannot commit to the actions she takes. This assumption captures the fact that a commitment to
inefficient actions is particularly difficult to sustain when all committee members have identical interests ex

post. Thus, communication is of the cheap talk form a la Crawford and Sobel (1982).

3 A Benchmark: Communication with Verifiable Information and

Observable Precisions

Before we analyze our problem in detail we provide its solution for the case where all the players have
symmetric information about the information that each agent has received and where the president can
observe the precisions of all agents’ signals. Let s denote the N-vector of signals, S =RY the set of all
realizations of s, and E; = R, U0 Vi the set of feasible precisions, and E = x| E;. The strategy of agent
i is an effort choice e; € E; for all . The president chooses in addition a choice rule z : S x E — R. The
precisions are chosen non-cooperatively, the choice rule is required to be subgame perfect. We solve our

game by backward induction.

3.1 Optimal Decisions

If the president knows the realizations of all N signals s; and all N effort choices e; she will choose the action

that solves
oo

max /u(x,y)f(y|5;e)dy

x
—00

where f (y|s;e) = f (y|s1,...,Sn; €1, ..., en ) is the posterior density of y given all information available. The
optimal action is

2" (s,e) = Ey|s; €]



The president’s expected conditional indirect utility from choosing z* (s, e) is
Eu(a*(s,e),y) = —E [ (y - Ely|sie])’|sie| = ~Var[yls;e

The optimal choice and the indirect expected utility correspond to the first and the second moment of the
posterior distribution, respectively. It is well known that the moments of the posterior are given by (see, for

example, deGroot [8])

N
h €;
Ely|sie] = ———— SR 1
[y|S,e} h—l—A(e)'qu;h—&-A(e)s ()
and
Varlyls;e] = - )
arly|s;e] =
YIS =1  Ae)

N

where A (e) = Z e; is the sum of all signal precisions. Observe that the conditional variance is independent
i=1

of s, a convenient property of normal distributions. Thus, the ex ante expected utility of agent i is

1

E[Ui (a?* (s’e) 7y,ei) ;e} = frA(e) *C(ei)~

3.2 Optimal Precisions

Agents choose the precision of their information non-cooperatively. The optimal choice of precision of agent

i, ef (e_;) " solves
el
max§ ——————— — C(¢€;
e; h+ A (e) !
We assume that the marginal cost of effort is either monotone increasing, monotone decreasing, or constant.

For ease of exposition, we discuss these cases in sequence.

6Troughout the paper we omit arguments of functions that are constant throughout the analysis and write ef (e—;) for
* .
ef (e_i, h).
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3.2.1 The Case of Strictly Convex Costs

In this case it is convenient to assume that useless information is also costless at the margin, i.e., ¢ (0) = 0.

As a result, the positive marginal value of information exceeds the zero marginal cost for the first unit of

*

information. Moreover, since this problem is strictly concave in e;, €]

* (e_;) exists and is unique for each e_;.

ef (e—;) satisfies the first-order condition

1
(h+ A (e—i e} (e—)))*

= (el (e_;)). (3)

At the optimum, the marginal value of information must match the marginal cost of increasing the precision
of information. Notice that the marginal value of information depends only on A(e). As a result, the
marginal costs of information acquisition must in equilibrium be equalized for all 7. Since the marginal cost
is monotonic in e the precision levels themselves must be equalized in equilibrium. It follows that any

equilibrium must satisfy the condition

1

i Ne)? =d (e"). (4)

Tt is easy to see that there exists exactly one solution of (4). So the unique subgame perfect equilibrium of
the game is e; = e* for all ¢ and the corresponding choice function z* (s, e*).
3.2.2 The Case of Concave Costs

Tt is possible to sustain the equilibrium defined by (4) also when costs are concave, under certain conditions.

We prove the following result in the appendix:

[S1l

Lemma 1 Let the cost function satisfy —2(c’ (€))2 — ¢’ (e) < 0 for all e and suppose in addition that
¢ (0) < h=2. Then, (4) has a unique solution for N = 1, say e. If ¢ (0) < (h +§)_2 then the game has
a unique subgame perfect equilibrium in which e; = e* for all i, where e* is the unique solution to (4). If

¢ (0) > (h +g)72 there are N equilibria. In any of these, exactly one agent exerts effort ef = e, and the

remaining agents exert e;‘ =0.
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Obviously, when the costs are very concave, only trivial equilibria arise. However, with mildly increasing
returns, the symmetric equilibrium still exists. To see the role of our assumptions, compute the second

derivative of agent 's payoff function with respect to e;

—2
(h+A(e_i e))?

— (i) ()

Suppose that the marginal cost of effort is “sufficiently” small (see the appendix for a precise statement) and

suppose there is a stationary point, say e} (e_;), that satisfies (3) . Evaluating (5) around e} (e_;) and using

the restriction on the degree of concavity, we get (h+A(e,,-,_§’f ) (e (e—)) = —2(¢ (ef (e,i)))% —

¢’ (ef (e_;)) < 0. Thus, given the assumption’, any stationary point must be a maximum. But then, there
is at most one such point. We prove the existence of the stationary point, defined by (4) in the appendix.
On the other hand, if the marginal cost of effort is high for small effort, then only one agent will acquire
information, and there are N possibilities how the agents can coordinate on who acquires the information.
These results carry over directly to the case of linear costs of information acquisition, where we can write
cle)=c (0)e.

In what follows we will maintain the assumptions on ¢ (+) introduced in this section. Moreover, we assume

that ¢’ (0) is sufficiently small to rule out the coordination equilibria mentioned in lemma 1, where only one

agent acquires information.

3.3 Inefficiency of the Equilibrium

For the purpose of welfare comparisons we need some possibility to exchange utility between agents. One
possibility to achieve this is to allow the agents to exchange transfers T; (-) and endow them with a utility
function of the form

Ui (z,y,e;,T;) =u(z,y) —cle;) +v(T;(+))

where v (-) displays infinite risk aversion, i.e., Ev (T;) is equal to the minimum transfer in the support of T;.

When transfers are feasible, then the president can use them ex ante to compensate the agents for costs of

TAn example that satisfies the assumption is c¢(e) =In (1 +e).
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information acquisition. However, it is not optimal to make the transfers contingent on the outcome. (For
other models using this approach, see Aghion and Tirole (1997) and Szalay (2005).) Using budget balance

for the transfers, the socially optimal precision levels are the solution of the problem

N N
s, {—m . Z”}

In case the cost is convex, the solution is symmetric among agents and satisfies the first-order condition

N

Ny c (") (6)

At the optimum, all agents marginal costs of acquiring information are equal to the social marginal value
of information. We observe that the Nash-equilibrium is inefficient, i.e., that e* < e**. The reason is that
agents neglect the fact that information has public value and choose a level of precision that does not reflect
the external effects on their fellow agents.

Similarly, in case the cost is concave and the marginal cost at zero effort is sufficiently small, the solution

involves only one agent acquiring information of a precision that satisfies

N
(h+e*)?

= (6**)

In this case the Nash-equilibrium may be inefficient for two reasons. First, because too many agents acquire
information, and second, because each one of them neglects the external effects of his information acquisition
on the utility of others. Finally, in case of linear costs, the allocation of information acquisition among
agents is irrelevant; only the aggregate precision is determined at the optimum, and the Nash-equilibrium is

inefficient in the sense that the aggregate precision of information is inefficiently low.

4 Communication with Non-observable Precisions

We now address our game when precisions are not observable to others and information is not verifiable

by others. Formally, we face a model of cheap talk. Such models generically have a plethora of equilibria

13



and ours is no exception in this respect. We will focus on a particular class of equilibria of our game
and investigate whether equilibria within this class exist and analyze their properties. In particular, we
investigate whether our model has equilibria where all the information that has been acquired is truthfully
transmitted. We term these equilibria fully informative. These equilibria are appealing because they Pareto
dominate all other equilibria ex post, so agents have strong interests to coordinate on playing the strategies
associated with these equilibria.

We begin by defining agents’ strategies in this enriched game of incomplete information and the notion

of a fully informative equilibrium.

4.1 Fully Informative Equilibria

To take account of non-verifiable information we allow agents to send messages to the president and let
the equilibrium behavior of agents and president determine the precise meaning of these messages. We let
M; = R denote the message space of member ¢ with generic element m;, and M = xfi‘llMi the product set
of the message spaces with generic element m, an N — 1-vector of messages. As before s and e denote the
vectors of signals and their precisions, s_; and e_; denote these vectors after removing s; and e;. S; = R is
the set of feasible signal realizations of agent i's signal, and E; denotes the feasible precisions of agent i’s
information. A strategy for agent ¢ = 1,..., N — 1 (all but the president) is a choice of precision e; € E; and
a reporting strategy m; : .S; X E; — R. The president’s strategy is an effort choice ey € E and a decision
rule z : Sy X Ey x M — R. Our equilibrium concept is Perfect Bayes-Nash equilibrium. So the agents’ and
the president’s beliefs are computed from Bayes law and the agents’ strategies.

Heuristically, a fully informative equilibrium is a situation where the president conjectures some constel-
lation of precisions for all agents, chooses an optimal level of precision herself, and takes all the messages
she receives at face value. So she believes that her posterior is the true posterior given all the information
available in the group and she takes a corresponding action which is optimal given that information. On
the other hand all agents find it optimal to acquire information of the conjectured precision and report their
findings truthfully to the president.

Formally, we define a fully informative equilibrium as a set of strategies and beliefs that satisfy the

14



following requirements:

1) The president takes every agent’s advice at face value and believes that m; = s; for all s; and all 4,
and she conjectures that agent ¢ acquires information of some precision e; for all 7. As a result, her posterior
belief of y given her signal realization and the messages she received is f (y|sy,m,e), the true posterior
density when §_y = m.

2) The president’s optimal choice of action, z* (m,sy, e) solves

o0

max $ [ ) (5] sm.e)dy ™)
The solution is the affine function
N N-1
v (mysy,e) = (1= af(e)u+ Y _ (af (e)my) +ay (e) sy (8)
i=1 i=1
where
o “__vi 9)

z(e):m

o

* (e) corresponds to the statistically optimal weight assigned to the information of agent ¢ in (1) for the

conjectured precision choices e.

3) In equilibrium, the president’s conjectured precisions for all agents must be the correct ones and indeed
all agents must send truthful messages. As a result, the decision taken by the principal corresponds to the
ex post efficient choice given all the available information, and her unconditional expected utility gross of
information acquisition costs is given by (2). Thus, her optimal effort choice e} (e_n) solves

max { — <h+ i e; +eN> —c(en) p - (10)

eN :
=1

4) The optimal reporting strategy of agent ¢ maximizes agent i’s expected utility taking account of
the president’s choice rule (8) and the president’s belief that the agent reports truthfully. Moreover, in a
fully informative equilibrium, agent i believes that all other agents send fully informative messages. So

agent ¢ identifies the random variables m_; with §_; x as well as their realizations in (8). Formally, let
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f (y,s_i| si,e) denote the conditional likelihood that § =y and §_; = s_; given §; = s; and given e. Then,
the optimal reporting strategy m} (s;,e_;, e;), solves®

max ///u(at* (s—iymi,e),y) f(y,s—i| si,e)dydsy ---dsn o . (11)

mi
— 00

5) Let f(y,s|e) denote the unconditional joint density of y and s. Then, agent i’s optimal precision

choice e (e_;) solves

max / //u(x* (s—s,mj (si,€,6:),€),y) f(y,s|e_i, &)dydsy---dsy —c(&) ;. (12)

Requirements 1) through 5) are consistent if and only if the solution to (12) satisfies e; = e} (e_;) for all ¢
and the solution to (11) satisfies m? (s;,e*) = s; for all s; and all 3.

Although the definition of equilibrium is somewhat involved, there is an intuitive way to solve the game.
We will split our analysis into two parts. First, we analyze the case where agents cannot lie, say because
their information is verifiable. Formally, we constrain agents to send messages m; = s; and characterize
the complete set of equilibria of this simplified game. In a second step we allow agents to choose any
reporting strategy, that is, we go back to the case of non-verifiable information. By definition, the set of
fully informative equilibria must be a subset of the set of equilibria of the game with verifiable information.
Formally, non-verifiability acts like a constraint on the equilibrium choices that ensures that truthtelling is

optimal on equilibrium path.

4.2 The Case of Verifiable Information

There is no need to distinguish messages and signals when information is verifiable, so for the analysis in
this section we have m; = s;. Moreover, for all agents ¢ = 1,..., N — 1 the strategy is reduced to a choice
of precision. The president’s strategy is unchanged, but her belief is identified with the true posterior
distribution given her choice of precision and a conjecture for the remaining precisions e_y.

We now proceed to characterize the best responses of agents and the president, vice versa, to the actions

88rictly speaking the formulation is truc for 4 # 1. For 4 = 1 the obvious changes apply.
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taken by the others. We already know the optimal way to weight the information provided by agents. By
(8), the optimal decision is an affine function of the signals, where the weight attached to each signal is given
by (9) . Viewed as a function of all precision levels, the president’s best response with respect to aggregating
information is to weight the information according to

€;

a; (e) = T A() (13)

Tt follows that, if there is an equilibrium, then the decision taken by the president will be a point on an affine
function. As a result, we can limit attention to agents’ best responses to linear aggregation rules. So let
a € AY denote a vector of weights. AN is the N-simplex and ayq is the weight attached to the prior. With a
slight abuse of notation, we let z (v, s, e ) denote the president’s decision function. Define the unconditional

expected utility as V (a,e) = E [u(z (e, s,en),y) ;€] . For a given e and o, we have

2

0o oo N
Via,e) = —/// u—y—&-Zaj(sj—u) f(s,y;e)dsy---dsydy
I —o0 =t

— | Var(y —I—Za Var (s; —&-22 Z ajarCouv (sj, si) QZCMJCOU 55,9

j=1k=j+1

where the second line follows from squaring and integrating out. Our informational setup implies that
Var (y) = Cov (sj,s;) = Cov (s;,y) =h L fori,j=1,..,N and i # j and Var (s;) = (k"1 +¢e;"). So, we

can write

V(aye)=— | bt +Za (R~ +e_1 +QZ Z ajoph” fQZajh_

j=1 k=j+1

The best reply of agent ¢ to the president’s aggregation rule and all fellow agents’ precision levels solves
max {V (o, e) —c(e;)}
€q

V (e, e) is concave in e; and satisfies lim,, .o a%iV (o, e) = 0(0) for a; > (=) 0. For a; = 0, the solution is
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ef (o;) = 0. For a; > 0, the solution must satisfy the first-order condition

Clearly, if ¢(+) is convex, then there is a unique solution to the first-order condition. In case ¢ (-) is concave,

we assume that it satisfies the condition —2¢’ (e) — ec” (e) < 0 for all e. By the now familiar argument,

this condition implies that the second order condition is satisfied around any stationary point, that is,
—20f " (ef (o)) = —2c'(ej (@)

= e ¢’ (ef (a;)) < 0. As a result, there exists a unique stationary point,

corresponding to the solution the agent’s problem.

o=

Define the function ¢ (e) = e(c'(e))? . Notice that ¢(0) = 0 because ¢ (0) < oo. Moreover, ¢’ (e) =
(¢ (e))% +de(d (e))fé ¢’ (e) > 0 by the assumption that —2¢’ (e) — ec” (e) < 0. Thus, the function b(-) =
g~ (+) exists. Using the first-order condition and the definition of b (), we can write the best reply of agent

i, viewed as a function of «;, as

e, = b(ai) . (14)

By our assumptions on ¢ (-), we have b(0) = 0.
If the president’s aggregation rule and the agents’ precision choices are in equilibrium then the decision
taken by the president is ex post efficient. For the case of convex costs, her optimal choice of precision

satisfies the first-order condition

— 5 — ¢ (ex(e—n)) =0.

h+ ey (e—n) + Z €;

j=1

N—1
For the case of concave costs, the first-order condition describes her optimal choice only for Z e; sufficiently
j=1
N—1
small, for Z e; large enough, she prefers to choose zero effort. Following lemma 1, it suffices to consider
j=1
the former case (because in equilibrium the effort of all other agents is sufficiently small), so we can define
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the president’s best reply function as the solution of the first-order condition viewed as a function of e_y

en :d(e,N) (15)

An equilibrium is a vector of weights and a vector of precisions, {a*,e*}, that satisfy (13), (14), and (15).

Proposition 1 Suppose signals are verifiable and their precisions are not observable. Then, there exist
281 fully informative equilibria. In each of these equilibria agents are partitioned into two groups. Group
one comprises the president and 0 < N < N — 1 agents, who all acquire information of the same precision,

e* (N) .e* (W) is uniquely determined by the condition

]‘ / * (AT
rremaany W)

The precision of the remaining N —1— N agents is zero. The president gives equal weight to the information
. (" e* (N) . . .
of the agents in the first group, a (N) = e () and attaches a weight of zero to the information

of agents in the second group.

Proof. From (14) and (15), the aggregation rule and agents’ i = 1,..., N — 1 effort choices are best

replies to each other for given ey iff

b(al)
Qi = N-1
h+en+ Zj:l b(ay)

fori=1,.,N—1 (16)

Notice that a; = 0 and b (a;) = 0 satisfies this condition. Suppose that «; > 0 for ¢ = j, k. Then, condition

(16) implies that

blay) ~ blag) a7)

But, by the first-order condition of the agent’s choice of precision and the definition of b(-) we have «; =

b(y) (¢ (b(ey)))? and oy = b (o) (¢! (b(ax)))* . It follows that whenever a; > 0 for i = j, k then

¢ (b(ay)) = ¢ (b(ar)). (18)
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Since all the cost functions are identical and the marginal costs monotonic (both when cost is either concave or
convex), it follows that the precision levels of all agents whose information has positive weight are equalized,
ie., ej = ex. Suppose N agents are given a positive weight, and let ex denote the common level of the

precision of their information. Combining (16) and the symmetry condition (18), we obtain

1

h+€N +N€N

(¢ (ex))?

Consider first the case of convex costs where in addition ¢’ (0) = 0. Then, the left-hand side of (19) is an
increasing function of ey that takes a value of zero at ey = 0. The right-hand side is a decreasing function of
ey that takes value (h + en) ' at ex = 0. So, for all N, h and ey, (19) has a unique solution, e = ex (en).
Viewed as a function of ey, the solution can be interpreted as a “best reply” of important agents to the
president’s precision of information.

The president’s best reply to N agents choosing precision ey, en = d(ey), is the solution to the first-

order condition

/ e — 1
¢ (en) (htew s W) (20)

By the arguments given above, (20) has a unique solution. Since the right-hand side of (20) is simply
the squared version of the right-hand side of (19), it follows once again that the precision levels must be

equalized, so ey = en. Using symmetry once more, we obtain the condition

¢ (e) = ! (21)

(b (N+1)e)

which has a unique solution by the arguments given above. Moreover, the solution corresponds to e* (W) as

defined in the proposition. The number of equilibria is computed from all combinations of members who do

N-1 N-1
or do not acquire information. There are E = 2N=1 such combinations.

i=0 | N-1-i

The proof of the case of concave costs follows directly from the proof of lemma 1 with N + 1 replacing
N. m

Any number of agents but the president not acquiring information is consistent with equilibrium. Suppose

20



the president neglects an agent’s opinion, that is, a; = 0 for some i. Then, agent i is strictly worse off acquiring
costly information rather than none, because his information will not affect the president’s decision. On the
other hand, if e; = 0 for some ¢ then the best reply of the president is clearly to not consider that agent’s
information in her decision-making. This reasoning applies for all agents but the president, because the
president knows how precise her information is. Therefore, an improvement in her information necessarily
improves the decision made, so the marginal value of additional information is always positive for the
president and she always acquires information of positive precision.

Not any conjecture about precision levels of the agents is consistent with equilibrium. On the contrary,
equilibrium constellations of strictly positive precisions are necessarily symmetric among all positive preci-
sions. In other words, whenever an agent’s information has an impact on the president’s decision then the
magnitude of this impact must be the same as the magnitude of the impact of any other agent’s information

who influences the decision of the president. More formally, if «;, oy > 0 for j and k, then the impact on

the decision made per unit of precision acquired must be the same for agents j and k, that is b&’;’) = b_(og,j

1
2

But by the definition of an agent’s best reply we have % = (' (b(ey)))?. It follows that the marginal
costs of acquiring information must be the same for agents j and k, so their equilibrium precisions must be
identical.

Finally, the president acquires the same amount of information as any of the other agents who acquire
information in equilibrium (if there are any such agents). In other words, the fact that the president knows
the precision of her information but only conjectures the precisions of the informations of other agents does

not alter her equilibrium precision. The reason is that the equilibrium marginal value of information is the

same for all agents, so the equilibrium marginal costs of information acquisition must be the same as well.

4.3 The Case of Non-verifiable Information

Proposition 1 provides us with a complete description of the entire set of equilibria of our game when
information is verifiable. That in itself would not be so interesting, if it were not exactly the same set of
constellations that also survive as fully informative equilibria in the original game where information is not

verifiable. Moreover, since the consistency of the aggregation rule and the precision choices is a necessary
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condition for equilibrium of our game, we know that no other constellation can ever be a fully informative

equilibrium. Formally, we have the following result.

Proposition 2 Any equilibrium of the game with verifiable information is also a fully informative equilib-

rium of the game with non-verifiable information.

The intuition for this results is as follows. We must rule out any deviation by any agent both with
respect to his choice of precision and with respect to his reporting strategy. Deviations in terms of the
reporting strategy alone are easy to rule out. Suppose the president conjectures that agent 7’s information is
of precision e* (N) , the equilibrium precision when a total of N + 1 agents acquires information of positive
precision. If the agent indeed has information of precision e* (N) and the president takes the advice of
this agent at face value then this agent wants to be truthful. Essentially, this insight corresponds to the
observation that cheap talk games have informative equilibria when there is no conflict.

But the agent’s strategy space is richer. A particularly appealing deviation for the agent is to choose
precision zero and always send the message m; = p. By sending this message all the time, the agent ensures
that his information enters decision-making the correct way. However, there is a second effect that the
agent does not correct this way. If the agent shirks his contribution to information acquisition, then the
information provided by those agents who stick to the equilibrium precisions should receive a larger weight,
because the precision of their information relative to the aggregate precision has increased. It turns out,
that any deviation the agent might consider, will result in a reduction of expected utility for that agent.

We briefly sketch our proof. The details of the argument can be found in the appendix.

Sketch of Proof. Reorder the agents such that i = 1,..., N + 1 are the relevant ones, that is those
who are supposed to have information of positive precision. (The last one is the president.) Let e* denote
a vector with N + 1 entries e* (N) and let e*; denote a vector with N entries e* (N). If the agent has

information of precision é;, then the report that maximizes his conditional expected utility is

mi(siaevei)—/iJVE(si:u)jZ# o

& N+1 ((a* ) (E [s; |sie*,6] — ,L)) (22)
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where o* = o* (e*) is the weight the president attaches to the agent’s information, and &; and é&_;, respec-
tively, are the statistically optimal weights of the information of agent ¢ and all other agents, respectively,
when the former has information of precision €; and the latter have information of precision e* = e* (W) I
the precision of agent i’s information is smaller (larger) than the president conjectures, then &; < (>) o™ and
é&_; > (<) a*. In words, the president overestimates the precision of agent ¢’s information and underestimates
the precisions of all other agents. The optimal report of agent i takes these biases into account and corrects

for them to some extent. Consider the first bias and suppose for concreteness that the agent’s precision is too

small. If the president would listen only to agent ¢, then agent ¢ would report m} (s;,ef,é;) = p+ % (si — ).

Since &4 < 1, this report is a compromise between the ex ante mean and the true signal realization. By mak-

a
ing the report more conservative than the signal, the agent achieves that the decision taken by the principal
is optimal given its true precision. Consider next the bias that arises from the presence of other agents that
acquire information. Agent i knows that the president attaches too little weight than to their information.
Moreover, he uses his signal s; to infer what signals they might have received. If s; > p then agent ¢ thinks
the other agents have also received a signal larger than u. Since their information receives too little weight,
agent ¢ revises his report upwards to ensure that the direction of their information receives more weight.
Which effect dominates depends on the magnitude of agent ¢’s deviation. For small deviations, the latter
effect dominates when N is sufficiently large. For large deviations, the former effect may dominate.

Taking account of this optimal reporting strategy, the agent’s ex ante expected utility can be computed

as

/ //u (x* (s_i,m;" (si,e*_i,éi) ,e*) ,y) f (y,s\ e*_i,éi) dydsy - --dsy — c(&;) (23)

N
- A 1 1 . - — . 1
= —N(«a —ai)Q(é'+h+—>—2(o¢ —a,i)QE (N+1—])é'+h

e*
Jj=2

1
a h+é; + Ne*

—c(&)

The optimal precision of information for agent ¢ maximizes (23) with respect to é;.
The first two expressions are equal to zero if and only if é; = e*. For é; # e*, both terms are strictly
negative. The last two terms correspond to the agent’s net payoff when information is used efficiently. We

know that é; = e* is the unique maximizer of these two terms in isolation. Putting both observations
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together shows that é; = e* corresponds to the unique optimum of the agent’s problem. So the unique
optimal strategy of the agent is to acquire information of precision e* and reveal his signal truthfully. m
Our result has an important interpretation in terms of preplay communication. Suppose we allow the
president to make announcements to individual agents. What announcements are credible in the sense that,
if believed by the agents, induce the president to behave in a way that rationalizes the announcement? By
propositions one and two, the president can tell individual agents that she will not listen to them or that
she will listen to each agent the same way. Nothing else can be rationalized this way. In other words,
the president can choose the number of experts and ignorants to have in a team. This observation leads

immediately to the question, how many experts a group should have.

5 Efficiency Properties of Informative Equilibria

Suppose the president tells some agents in advance that she will not take their opinions into account. For
convenience, suppose she announces to the first N agents that they will be experts. Let the president herself
be the N + 1th agent. Let V (N) = V (a*,e*) denote the expected utility (gross of costs of information

acquisition) of an agent when the size of the expert group is N 4+ 1 (N agents plus the president) and let

W) =NV (F) - 3 e(e (V) (21)

denote the expected utility of the entire group when the expert group has size N + 1.

Suppose the president neglects some agents, so N < N — 1. Could the group reach a higher utility if
the number of experts were increased by, say one agent? On the one hand, each agent will have different
incentives to acquire information, because his impact on the decision made is different. On the other hand,
the president will base her decision on a greater number of signals. Finally, the distribution of costs is
more equalized across the members. If the costs of information acquisition are convex, then adding one
member decreases the equilibrium incentives of each individual member but increases the aggregate quality
of information. In addition, the total cost of information acquisition is distributed more efficiently. As a

result, welfare increases. If the cost is concave, then adding another member worsens individual equilibrium
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incentives and decreases the aggregate quality of information. Moreover, it worsens the distribution of total
costs. We now make these arguments formal.
The equilibrium choice of precision as a function of the number of experts has the convenient represen-

tation
1
(h+ (N +147)e(7)’

=d(e(7)- (25)

For v = 0, equation (25) characterizes the equilibrium effort level for N + 1 agents, for v = 1, the solution
to the equation is the equilibrium effort level when N + 2 agents are active.’ Notice that (25) is well defined

for any v € [0,1]. So we can apply the implicit function theorem and differentiate (25) with respect to ~

—2e(y) _
de _ (h+(N+147)e(7))”
dy 2(N+1+7) Y '

(h+(N+147)e(1))” +e(e(v)

(26)

Consider first the case where ¢ (+) is convex. In that case, the denominator of (26) is strictly positive so that
adding another member clearly decreases individual incentives. Using the fact that e* (N + 1) —e* (N) =
fol j—f{d% we have shown that individual equilibrium incentives are lower with more experts. But then,
the equilibrium marginal cost of information acquisition on the right-hand side of (25) must decrease if
there is one more member. This in turn requires that the equilibrium aggregate precision of information,
(N +147)e(v), on the left-hand side of (25) must increase in 7. So adding one agent improves the quality
of decision making (gross of costs of information acquisition). Consider next the case where ¢(-) is concave.
By the assumptions introduced in section 3, the denominator of (26) still has a positive sign, so adding one
member has detrimental effects on individual equilibrium incentives. However, now the right-hand side of
(25) decreases when there is one more expert, which can only be the case if (N + 1+ 7)e(y) is decreasing
in 7. So, the quality of information worsens also in the aggregate.

In a similarly compact way of writing we can express (24) both in an equilibrium where N +1 and N + 2

Ye (7y) is short notation for e (mﬁ, h) . Since both h and N are fixed in what follows, we suppress the dependence on N and
h.

25



agents gather information as

N

W(N+7):_h+(ﬁ+1+v)e(v)_(Nﬂjw)dem) 7

The president should talk to one additional agent if and only if W (N +1) — W (N) > 0. We have the

following clear-cut result.

Proposition 3 Group welfare is increasing in the number of experts if and only if there are decreasing

returns to information acquisition. Formally, W (N +1)-W (N) z 0 if and only if ¢ (-) z 0.

Proof. Using condition (25), we can write

[N

W(N+9)=-N((e()® = (N+1+7)cle().

So the difference in welfare when one additional agent gathers information can be stated as

W
) (N - @ ey ee@)|
~ (N e - @149 ecm)|
- /(_%N(a(e(y)))%a’ (6(7))3—3— (N+1+7)¢ (e (@)j—j—c@ﬁ))) dy
0

where the second equality uses the fundamental theorem of integration. Substituting for 4 from (26) and

simplifying we can write

W (N +1) ]‘(Nc” +2(N+1—|—’y) (e(y))%

€ c’e —cl(e d
Ferene o +eem) <(”0 !

The fraction inside the brackets is larger (smaller) than one if and only if ¢’ (-) > 0 (¢’ () < 0). Moreover,
e(y)cd (e(v)) — c(e(y)) is positive (negative) if and only if ¢’/ () > 0 (¢’ (-) < 0). Taking the two facts

together we have W (N +1) — W (N) > 0 if and only if ¢ () > 0. So the integrand is bounded below
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pointwise by e (v) ¢ (e (v)) — c¢(e()), which is positive by convexity of ¢(-). m

Thus, for the case of convex costs, the free-rider effect is outweighed by the increased aggregate quality
of information and the improved distribution of costs of information acquisition. In case of concave costs of
information acquisition, the aggregate quality of information and the distribution of costs gets worse.

Since the group has identical ex post interests there are strong incentives to coordinate on the most
efficient outcome. For this reason it is interesting to know how the best equilibrium behaves as a function
of the group size. Two questions seem relevant. First, do agents who are already in the group benefit if an
additional agent joins the group? Second, does the incentive problem get worse or is it ameliorated if there

are more agents? We have the following results:

Proposition 4 Suppose that ¢ (-) is convex. Then, per capita utility is increasing in the number of agents
N. As N tends to infinity, per capita utility tends to its first-best value. If c(-) is concave, then per capita

utility is increasing in N but bounded away from its first-best value.

The proof of these statements is similar to the one of proposition three and therefore relegated to the
appendix. For the case of decreasing returns to scale, per capita utility is increasing in the number of agents
in the group. The reason is again that the aggregate precision of information is increased when one more
agent gathers information. In addition the cost of information acquisition per head is decreased since all
agents reduce the precision of their individual pieces of information. However, it is interesting to observe
that per capita utility increases less than one for one with group size. So group utility is actually decreasing
when an additional agent joins (and this is true both in the first- and in the second best). Finally, when
the group gets very large, the inefficiency of the equilibrium disappears, i.e., per capita utility goes to its
first-best value. In the limit as N goes out of bounds, each agent’s first-best precision of information is close
to zero. So the first-best and the equilibrium choices of precisions converge to each other.

In case costs are concave, welfare is maximized when only one agent acquires information. But then the
only effect of increasing the number of agents in the group is to exchange (ex ante) payments to spread the
monetary equivalent of the cost of effort among the members of the group. So, taking account of payments,
every member of the group bears approximately zero costs of information acquisition when N gets large.

However, the amount of information acquired by the expert is independent of the number of agents in the
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group and inefficiently low, so the first-best utility cannot be reached.

In the remainder of this article, we extend these basic results in various directions. Taking a team-theory
perspective (see Marshak and Radner [18]), we focus on the most efficient equilibrium in each application
that we consider. Since the case of decreasing returns to information acquisition is much richer in this

respect, we assume from now on that c(-) is convex.

6 Multiple Tasks

Suppose there are many decisions to take. More specifically, let there be | = 1,..., L decisions and the
information gathered about one decision be independent of information gathered about any other decision.
All prior means are identical, and the prior precisions are h' = h for [ = 1,..., L. Suppose L = N. Finally,
suppose that the agents’ costs of information acquisition just depends on the sum of an agent’s efforts for all
tasks. Is it better to assign each agent to one of the tasks or to share the responsibility for all tasks equally
among all agents?

If each agent is responsible for exactly one decision, then -in the efficient equilibrium - the agent, say

agent ¢, who is responsible for decision [ acquires information to the point where

1

ey C
il

Clearly, all agents exert the same effort level, so ef; = e* for all ¢ and . Let v denote the number of decisions
each individual is involved in. Let W () denote welfare as a function of the number of tasks assigned to

each agent. In case of single-tasking, v = 1, welfare is equal to

since there are L = N decisions to take.

In contrast, when all agents share the responsibility for all the tasks each agent acquires information for
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decision [ to the point where

1 /
=c eil
(h + E—i ejr + eil)z (; )

Such a condition must hold for all 4 = 1,..., N and all [ = 1, ..., L. Since the marginal cost depends only on
the sum of all efforts spent on all problems, it follows that the marginal values of additional information

must be equalized across decisions, so

1 1

(h+Yew)  (h+Ceum)

for all I and {”. By the now familiar argument, the effort levels of all individuals working on the same task
must be identical. Again, the reason for this result is that the marginal value of information concerning the
decision [ depends only on the sum of precisions of information gathered about problem [. As a result, there
is a unique equilibrium constellation, where all individuals gather information of identical precision for all

the [ decisions. So, the equilibrium precision of information satisfies the condition

1
5 = (Ne")
(h+ Ne*)
and welfare is equal to
W(N) = —N—2  _ Ne(NeY)
N h+ Ne* clive

We can now state the following result.

Proposition 5 Sharing responsibility on each task among all agents or having one agent responsible per

task are welfare equivalent.
Proof. To compare welfare across the two systems, observe again that the equilibrium precision of

information in both games has the common representation

1

m =c (ve" (7))

where v = 1 for the equilibrium where each agent is responsible for a single task and v = N where respon-
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sibility is shared equally among all agents. Similarly, welfare can be written as

W () = al S Ne(ye” (1)

N——
h+ye* (v

Differentiating and integrating up we find

N2 B , . de* N2e*(y
/ V| (FetE — N e () &+ wasty
1

I —N& (ver (7)) " (7)

- [ v (e @) |
/1 (h+ve* (7)) dy

W(N)-W(1) = dry

But, from the equilibrium condition for the precision levels we find that

der _ (W +" (yer (7))) () ey
Y (e )y !

so that 7‘3—@; +e* =0. It follows that W (N) —W (1) =0. m
If there is one and only one agent who is responsible for one task, then this agent acquires more precise
information for his task. But it turns out that this higher precision per individual is exactly compensated
by the reduction in the number of signals used per problem. Formally, the aggregate precision of new
information per task is equal under both forms of organizing expertise. As a result, both the cost of
acquiring the information and the expected utility from decision-making are identical in both situations. So,
there is no difference in terms of welfare between the two forms either.
Note that this result depends on the way the cost of information acquisition is modeled. Suppose we had
L
assumed that the total cost of an agent who works on all tasks is Zc (eqr) . In some sense the agent has
different mental accounts for each task. Obviously, the problem is sei):alrable in this case. We have replicated
the original problem L-times, but there is no interaction at all among these L different games played by the

agents. So, our original results carry over, so that a single expert on each task is optimal with increasing

returns, and all agents sharing responsibility for all the tasks is optimal with decreasing returns.
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7 Communication with Bounded Receiver Capacity

We now introduce constraints on the capability of the president to communicate with agents, or more
generally, to digest information she receives. Suppose the president can only use K < N signals, including
her own. (Nothing is lost if we would assume that the president can use her own information without making
use of scarce capacity. However, notation would be somewhat more cumbersome.) Obviously, this analysis is
interesting only in case there are decreasing returns to information acquisition at the individual level, which
we assume in this section.

Applying a standard decreasing returns assumption it is easy to see with whom the president will commu-
nicate. Suppose the president conjectures that the agents hold information of differing precisions. If there are
K agents, all of which have information that is more precise than possessed by the N — K remaining agents,
the president should talk to the former group only. If not, suppose there are k£ < K agents whose information
is more precise than the one possessed by the N — k other agents individually. Then, the president should
talk for sure to the first k£ agents. By definition, she will be indifferent whom to talk to within this group
of N — k agents, so we let her randomize with equal probability among these agents. Since there are N — k
agents left, the probability that she will talk to any individual agent in the latter group is % Vice versa,
all k£ agents with whom the president communicates with probability one face the same incentives, so their
equilibrium precision of information must be identical and equal to some € (k, K'). We will call agents in this
group the important agents. Likewise, the remaining N — k agents with whom the president communicates
with probability % all face identical incentives, so their equilibrium precision of information is identical
and equal to, say e (k, K). Agents in this group will be called unimportant.

Clearly, like the game without capacity constraints, this game has babbling equilibria. We focus on the
most informative equilibrium, as is standard in team theory. Consider first agents with whom the president
communicates with probability one. Their information always has an impact on the decision made. In
addition, they know that £ —1 other agents face the same incentives and K —k agents contribute information

of a differing precision, which is however, identical for all these agents. So, their optimal choice of precision
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satisfies the first-order condition

1
(h+ ke (k, K) + (K — k)

= (e (k, K)). (28)

I
—~
-
=
=
[\

Agents in the second group recognize that the decision taken will always make use of k signals of precision

e (k, K) and K —k signals of precision e (k, K) . However, their own information influences the decision made

only with probability % Thus, their optimal choice of precision satisfies the first-order condition

K-k 1 /
N_k(h+k5(k,K)+(K—k)§(k;7K))2:C(g(k7K))' (29)

From these two conditions it is immediate that the two precision levels satisfy 2=2¢’ (e (k, K)) = ¢ (2 (k, K)),

or in other words

e(k,K)=¢! (ﬁ — IZC’ (e (k, K))) : (30)

Equation (30) is an equilibrium relation between the effort levels of important and unimportant agents,
respectively. Since the right hand side of the equation is increasing in € (k, K), the relation is a function.

Substituting back into the first-order condition of important agents we have the equilibrium condition

1
(h—&—ké(k,K) + (K — k)¢t (%C’ (E(ka))))Q

= (e (k, K)). (31)

Tt is easy to see that there exists a unique solution to equation (31). The expression on the left-hand side
is decreasing in € (k, K) and takes a value of h~2 at € (k, K) = 0. On the other hand, the expression on the

right-hand side is increasing in € (k, K) and takes a value of zero at e (k, K) = 0.

7.1 Incentive Effects of Asymmetric Expertise

To develop an intuition of how k influences these effort levels, we begin by investigating how a change in k
affects the effort level of important and unimportant agents, respectively, when the effort level of the other

group is kept constant. An analytical convenient way to do this is again achieved by a convexification. Define
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k=k+~. Fory=0 k= k, the number of important agents in the base situation. For v =1, k=k+ 1, the
number of agents when there is none more important agent. Convexify the domain of definition of v to the
unit interval. We can then apply the implicit function theorem to see how an increase in k impacts on the
precision levels of important and unimportant agents, respectively. From (28), holding e (l;, K ) constant,

we get

<0

for € (k, K) — e > 0, which will be the case around the equilibrium, and

—2(K—k) .
_ (htke(k,K)+(K—k)e) <o.

2k —
e GrmmnsE—Rgr T €k K))

& &

If there are more important agents, then each one of them will have less of an incentive to work. Similarly,
if other agents (the unimportant ones) provide more effort, then important agents have less of an incentive
to work.

Similarly, the unimportant agents’ incentives change in the following way with a change in k. From (29),

holding € (k, K') constant, we have

e (O
dk Kk 2(K k
k (h+ke+ (K-

N
=
1o
—~
ka
=
S—
S—
o
+
Q
N
—~~
I
~/~
[
N—
N—

again for the relevant case where € — e (]AC, K ) > 0, and

_ K-k 2(K—k)
de N—Fk (h+ke+(K—k)e(k,K)) <0
T O K—k Q(K k) .
¢ VRO E—ReEmr T ¢ "(e(k, K))

So the unimportant agents’ incentives are reduced if there are more important agents. Similarly, if the group
of important agents provides information of higher quality, then the unimportant agents have less incentives

to generate high quality information.
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7.2 Welfare Analysis

We can now compare the welfare properties across the different equilibria induced by a different choice of k.
First, we compare the extremes k = 0 and k = K. Since these equilibria are essentially symmetric (in the
sense of symmetry among agents that are actually active), the first-order conditions in these two situations

have the common representation

1 o
Wm =c (e(7)) (32)

where v = 1 is the case where k = K and v = % represents the case where k = 0. Similarly, welfare can be

written as
——cle() (33)
We can state the following result.

Proposition 6 Welfare in the asymmetric equilibrium with K experts and N — K ignorants is higher than

in the symmetric equilibrium solution where the president communicates with all agents with probability %

Proof. Extend the domain of definition of v to the interval [%, 1] . Differentiating (33) with respect to

v, we obtain

oW (K,y) NK K, de | K
= (mKG T m)) Tt aee)

Applying the implicit function theorem to equation (32) we find that

1
de _ (htKe()’ 50

Y (aeE e EO)

it follows that

w-w (5) < [ - [ (k- et E - Eeeo) o

When the president treats everybody symmetrically, then all agents have weak incentives and the aggre-

gate quality of information is low. On the other hand, the cost of information acquisition is different in the
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two situations. However, since there are externalities and all agents neglect the public nature of information,
an increase in the aggregate quality of information is beneficial. Therefore, it is better to have K experts

rather than a symmetric treatment of individuals.

7.3 Hybrid Equilibria

Although the logic in the previous argument does not in any essential way rely on the symmetry of the

equilibria across active agents, symmetry is quite helpful analytically. In particular, a welfare comparison

across all equilibria is very messy in general. However, for a particular class of cost functions we can

completely order all the equilibria. Consider the two first-order conditions of important and unimportant
N—k

agents, respectively. For the case where c(e) = %], the equation =}c' (e (k, K)) = ¢’ (e (k, K)) takes the

form %—:ﬁg”fl =¢"7L. So, the equilibrium precision of unimportant agents’ information becomes linear in

the precision of important agents’ information:

K—k\77_
e~ (%) ®

This allows us to eliminate one precision level from the equilibrium condition. Then, a complete welfare

analysis of the entire equilibrium set is feasible, with the following conclusion:

Proposition 7 Welfare in the equilibrium with maximum asymmetry between important and unimportant

agents, i.e., when k = K, is higher than the welfare in any equilibrium induced by any k < K.

The proof of this statement is relegated to the appendix. The intuition is straightforward. Although
going into the direction of a more symmetric situation improves the distribution of costs in the group of
agents, it generates a certain waste. Since only K signals can be used, if there is one more less important
person, then one less signal of relatively high precision can be used in decision-making and is replaced with
a less precise one. So the aggregate precision of the information that is actually used in decision-making is

reduced. And this negative effect outweighs the positive cost-saving effect.
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8 Noisy Communication among Heterogeneous Agents

Suppose the agents differ in their ability to gather information. In particular, suppose we can order the
agents according to their marginal costs of acquiring information in the sense that c; (e) < ¢} (e) for all e
and ¢ > j. In words, agent NN is most efficient at acquiring information, agent 1 is least efficient. For reasons
of space we assume that information is verifiable in this section!’. Then, the following statement is a direct

corollary of proposition 1.

2N=1 equilibria, where agents are partitioned into a passive and an expert group.

Proposition 8 There exist
Within the expert group, agents with a higher index acquire more precise information and receive a higher

weight in equilibrium than agents with a lower indew.

The proof of this statement is obvious and therefore omitted. The point is that the equilibrium precisions

of agent’s ¢ and j satisfy
vy
(h+ A(e"))?

Since the marginal value of information must be the same for all active agents, so must the marginal costs be.
Given that these marginal costs can be ordered, we get a hierarchy of importance among agents. It should be
noted that exactly the same result could be obtained letting the agents have identical cost functions but let
them have differing intensities attached to their loss functions. What is important is that the marginal rates
of substitution of the agents between losses from risky decision-making and costs of information acquisition
can be ordered.

Introduce now noise into the communication. Suppose if an agents sends the message s; the president

J

understands 5; = s; + ¢, where £, ~ N (O, ! ) , independently of ¢; (all j) and y. For simplicity we take p;

T+x €

proportional to e; and let p; = Ae;. These assumptions imply that 5|y ~ N <0, %) . So, communicating

information of precision e; through the noisy channel is equivalent to communicating information of precision

Ao wi ~ _
Tox¢€; without noise. Let m =

2

> to simplify notation. If agent ¢ is the president, and we focus on the most

OWe conjecture that none of the results depend on verifiability. However, with nonverifiable information, we would have to
reprove proposition 2 for asymmetric constellations, from which we abstain.
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efficient equilibrium where all agents are active, the equilibrium precision of information satisfies

! (e*
htei+nyer| =dlen="2 () (34)
J#

The difference between the president (apart from differences in the cost of acquiring information) is that her

information is used as precise as it is. In contrast, the other agents take into account that their information

is discounted, because noise is added to it through communication. We can raise a simple, but important

question: who should be the president? To obtain a clear answer to this question, we assume that ¢; (e;) =
n

%ej for all j and consider the limiting case where h — 0. We find the following:

Proposition 9 [t is optimal to make the agent who is most efficient at acquiring information the president.

Controlling for differences in costs of acquiring information, the president has the strongest incentive
to acquire information, since none of his own information is lost. Welfare turns out to be proportional to
the precision of information in the hands of the president. And this measure is maximized when the most

efficient agent is the president. The proof of this statement is in the appendix.

9 Conclusion

We study a game of cheap talk with many agents, who gather costly information before communicating
with each other. We characterize all fully informative equilibria where all the information that is acquired is
also transmitted. Although information is of a continuous quality, in equilibrium, agents are partitioned into
exactly two classes, one being irrelevant and one important. The important agents all have the same influence
on the decision. We provide a complete welfare ranking of all equilibria as a function of the technology of
information acquisition.

Throughout our analysis we have assumed that there is no commitment to the rules of choosing actions.
This assumption can be relaxed without affecting the qualitative nature of our results within a class of
decision rules. Arean [2] studies the optimal design of linear aggregation rules with verifiable information

and convex costs of information acquisition, showing that the optimal solution is symmetric among agents.
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In this case, each agent’s information receives a weight that is greater than the statistically optimal weight
at the expense of a smaller weight given to prior information.'!

Our applications to task assignment, and to costly and noisy communication are only a few of the potential

ones of our model. We leave others to future work.

10 Appendix

Proof of Lemma 1. Consider agent i’s best reply to all other agents choosing e; = 0. If ¢’ (0) < h~2, then
agent ¢’'s payoff is increasing in e; around e; = 0. Since his payoff is continuous in e;, and his payoff cannot

increase without bounds, there must exist a stationary point to his payoff function, satisfying

1 /
Grer Y

Consider now any other agent j # . Taking e_; as given, agent j chooses e; (e_;) = 0 if ¢/ (0) > @
Since his payoff function is decreasing around e; = 0, his payoff is decreasing for all e;. To see this, suppose
the contra-positive were true. Then, his payoff must eventually increase. But to achieve this, there must be
a stationary point that corresponds to a minimum. But this contradicts the fact that any stationary point

must be a maximum.

If ¢ (0) < m then e; (e_;) must satisfy

1
(h+ej(e—;) +¢)

5 = (ej (e—y)) (35)

building on analogous arguments as above.
If both agent ¢ and j reply optimally to their effort choices, respectively, then they must both choose the

same effort level, because the left-hand side of (35) depends only on the sum of efforts. Thus, in a potential

11See also Li [16] for a similar result.
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equilibrium with two agents acquiring a positive amount of information, we should have

1
—— = ()
(h+ 2e)
We will now show that this cannot be an equilibrium, because the remaining agents do not play best replies.
More generally, let N > 1 and N + 1 denote numbers of agents that choose a symmetric candidate

equilibrium level of effort satisfying the condition

1
(h + (N + 7) e (7))2

=d (e() (36)

for v = 0 and v = 1, respectively. We now show that the left-hand side is increasing in the number of agents
that acquire information. To see this, convexify the domain of definition of + to the unit interval. Then, we

can treat e () as differentiable in v and apply the implicit function theorem to obtain

2e(y .
de _ (h+(N+7)e(m)”
dy 2(N+v)

ey ¢ et

(h+(N+v)e(y)

e

The denominator can we written as —2 (N + ) (¢ (e (v)))? — ¢” (e (7)), which is negative by assumption

for all v € [0,1]. By the fundamental theorem of calculus, we have e (W—&— 1) —e (N) = [ 4edy. But

'Y

\»—A

=)

then we have shown that e (N + 1) < e (N). By the fact that ¢’ (-) < 0, this implies that ¢’ (e (N + 1)) >

d (e (W)) . Using (36), this implies (h—l—(ﬁ—i-l;e(ﬁ—i-l))z > (h+ﬁi(ﬁ))2' But then, ¢ (0) < @ implies that
d(0) <

of information. =

WTI(N))Q for any N, so that in equilibrium all the agents must acquire the same, positive amount

Proof of Proposition 2. Pick a putative equilibrium where N < N — 1 agents plus the president are
supposed to exert effort level e* (N) . Since all agents are identical ex ante and supposed to behave identically
in the game, their labels are arbitrary. So reorder the agents as follows. Let i = 2, ..., N be the honest agents
who spend effort e* (N) and report truthfully. Let i = N + 1 denote the president, and let 4 = 1 denote the
agent who potentially shirks. Finally, in case N < N —1, 3= N +2, ..., N denotes agents that are supposed

to exert effort e = 0 in the putative equilibrium. Since these agents are irrelevant in decision-making, we
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neglect them in this proof. We let e* | denote the vector that has N entries e* (N) . With truthful strategies
for the first N agents, we can identify m; = s; for i = 2,..., N 4+ 1. Let s_; denote the N-vector of signals

excluding signal s1. Using (8), the decision function can be written

N+1 N+1
x(my,s_1,a") = (1— Z o+ aFmy + Z (a*si) (37)
i=1 =2
where a* = a* (e) = pan (N:f;]e*(ﬁ) Notice that the right-hand side of (37) coincides with the conditional

expectation of y given the signals and effort if and only if agent one exerts effort e; = e* (N) and sends
message m; = s1 for all s;. If agent 1 deviates and chooses an effort level é; # e* (N) then the true

conditional expectation is

N+1 N+1

E [y|s;e*_1,é1] (1—a1— Z Goq)p+ Gysy + Z (38)

where & = —&4— and &_1 =

(N .. . .
N (V) N oIk A deviation of agent 1 changes the statistically optimal

weight of all signals.
Let f (y, S_1 |31,e";1, él) denote agent 1’s posterior about y and s_; and let g (s_1 ’51, e, él) denote
the conditional density of s_1 given agent 1’s information. Notice that

f(y,s-isiery,én) =f(y

é1 ) g (s_1 ’sl, e*, él) . With a slight abuse of notation let z (a*, m1,8_1)

denote the president’s aggregation rule. Let

V(Oooc*,mheipél)
_//.../_Z(x(a*,ml,s1)—y)2f(

denote agent 1’s conditional expected utility given his information, and given his effort choice is €; and the

é1 ) g (571 }51, e’ él) dydss - - dsN-H

effort choice of all other relevant agents is e* (N) . Completing the square by F [y| s;e’ él] -F [y| s;e’ él]
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and observing that ffooo (E [y\ s;e’ él] — y) f (y ’s,e*_l, él) dy = 0 we can write

V(oz*,ml,e’il,él)

Oé , My, S la) y|s,e’i 7é1 )2
// / £l vé] Iy }S,e*ﬁ1,é1)g(sf1}81,ei17é1)dyd$2“'d$ﬁ+1

+(E[ylsiery,é1] —y)?

Notice that V' (a*, my, e’ |, él) is a strictly concave function of my. Thus, the first-order condition is necessary

. . . . . . OV(a*,mi,e’ ,é .
and sufficient for the unique optimal report. Thus, the report is optimal iff W =0, ie.

_// 20" (z (2, m1,s 1) — E [y|s;e,e1]) g (s-1]s1,€"1,61) dsy---dsy,, =0

Using (37) and (38), and integrating, the first-order condition becomes

N+1

o (m] — p) — & (51— p) + Z ((a" =) (E[si|si;e,e1] —p)) | =0

Using standard results, we note that E [s; [s1;e%,,é1] = F [sl]—&—%&s)ﬂ (51— Els1]) = ptriz (51— p) =
h
B+ h_j:éLl (81— p)-

Compute now the indirect utility arising from the optimal lie.

Esf1 |:($ (a*amlvsfl) - FE [y| s;eilaél])2’ 81,9:|

N+1 N+1 N+1 N+1 2
= Fs_, (1—204*)/14—@*771’{—1—2(04*51')— (1—aq — Za 1,u+a151+z G_18;) s1,€
i=1 i=2
r — 2
N+1
= EBo, | |a"(mi—m+ > (" —ac1)(si—p)—aa(s1—p) | [s1,€5,é
=2
ro_ 2
+1
= FEg, (a*—&_l)(si—E[si|sl;ei1,é1]) s1,€% 4,61
i=2
N+1 ] N N+1
= Z( 2var [sl ’sl,e 1,61 JrQZ Z 2Cov [s“sJ ’sl,e 1,61]
=2 1=2 j=i+1
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1 J—
It is easy to show that Var [s; [s;;e_1,61] = ++21 — 2 foralli = 2,..., N+1and Cov s, s; [s1;e_1,é1
o nT ey

for all i,5 = 2,..., N + 1 where i # j. Using this result, we have

1

1
1_ _ 7

1 1
b g+e

14 (a*,ml,e’il, él)

N+1
Z (o — 64,1)2 Var [si }sl;eil,él]
- N N+1 =
+2Z Z (o — &,1)2 Cov [si, s; }sl;eil,él] +Var [y |31;e’il,é1]
i=2 j=i+1
* ~ 2 1 1 * ~ 2 N 7 . 1 1
_ —N(Oé _a—l) m+e* —2(04 _a_l) Z(N“rl_z)

= é1+h_h+é1+ﬁe*

Observe now that the first two terms are non-positive and strictly negative whenever e; # e*. On the other

hand, e* is precisely defined by

. 1
e = argma. —— — (€
& elx{ h+e; + Ne* ( 1)}

This completes the proof. m

Proof of Proposition 4. We prove here only the case of convex costs, where the best equilibrium

has every agent acquire the same amount of information. The case of concave costs is trivial and therefore
omitted.

When costs, are convex and every agent acquires the same amount of information, group utility can be
written as

W (N+6—1)= (N +0) <h+(N<1HS)e(6) c(e(5))>

where 6 =0, 1, and e (0) is defined by
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Per capita utility is defined as

W(N+6-1) 1
N+o) <_h+(N+5)e(5) _0(6(5))>

Differentiating condition (39) we obtain

—2e(6
de _ A (N 10)e(0))° (40)
2(N+6
B e+ (e 0)

Differentiating per capita-welfare with respect to §, we obtain

o (M) V0 ) e ()
96 (h+ (N +8)e(6))

Substituting from (40) and using condition (39) we obtain

W(N+35—1) 2e(5
(M) N1 0) gy e (9)
90 T ¢ (e (9) (h+ (N +68)e(5))
_ e(0) < 2 (e(8))+ (h+ (N +6)e(0)) " (e(9)) > -0
(h+ (N +38)e(8)* \2(N+0)c (e(8) + (h+ (N + ) e (d)) ¢’ (e(9)) '
The first-best value of per capita utility is increasing as well, with derivative o Ne-qu)e( 57

Consider now the limiting case as IV tends to infinity. First, we show that equilibrium per capita utility
goes to zero as N goes out of bounds. The reason is that limy_,o e (N) = 0 and limy_.o Ne (N) = oo,
so that the aggregate precision of information goes out of bounds while the individual precision levels (and
thus the cost of acquiring these precisions) goes to zero. To see this, observe that Ne (N) cannot converge
to a finite number as N — oco. The first-order condition for any given N reads

1 /
wrver

limy_oo Ne (N) < oo. Then, since the left-hand side attains a finite value as N goes out of bounds, the

right-hand side must attain the same value. So e (N) would be bounded below by a positive constant. But
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then, limy_.o, Ne (N) = co contradicting the initial hypotheses. Hence,

N—O0

lim <_h+N;e(N) (e (N))) —0

Second, we show that first-best per capita utility goes to zero as N tends to infinity. The precision level

in the first-best satisfies
e w)
(h+ Ne* (N))

Clearly again, limy_.o, Ne* (N) = co. If the limit was bounded then e* (N) would grow in N, contradicting

that Ne* (N) attained a fixed value. Multiply both sides by e* (N) and rearrange the equation to obtain

Ner (N) 1 o N o (e
Bt Ner (V) ht Ner(v) ¢ e e ()

Since %*E(NL) < 1, the left hand side goes to zero as N goes out of bounds. So the right-hand side
must do the same. Since ec’ (e) is monotonic in e and equal to zero if and only if e = 0, this implies that

limy_o0 €* (V) = 0. So, we have shown that

lim
N—oo

(~7er et ) =o.

Thus, per capita utility tends to its first-best value as N tends to infinity. m

Proof of Proposition 7. Recall that k = k +~. We can write (28) as

: — ¢ (@) (a1)

(h+ (1%+ (k- #) (ﬁ—Z)_>g>2

E

Notice that we can express the cost of acquiring information for the unimportant agents as

c ((ﬁ—i)ﬁ% = (%) e,
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So we can express welfare as follows:

w(KE) = N —— —he(e) — (N ) (K—k) @

_h+<l%+<K—l%) (ﬁ—z)ﬁ>€ "
) _h+ <k+(KJZ) (K——'%)ﬁ)@_ (IAH(K_];) (%) )C(E)

N—k

8W§§,k> . (1;+(K1;) <I;—§>ﬁ)w1)c’(a)%

+(Ned (@) fc(E))% (12:+ (K—fc) <%) - )

1 3 4
From (41) , noting that (h + <1Ac + (K — f{;) (g_:llz) nl> g) = (' (€))%, we find

aWA(l%) v -neEe— 2(k+<Kk)_N_:k) ) 3 3(’6+(Kk:)<ﬂ)_>
ok 2(k;+(Kk)(N—:I’z) ) (@) e
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Using the fact that c(e) = %Q, we obtain

nggf) - ;; 1%+(K—l%)<%—:—§)”1 ' (€) x

Simplifying, the change in welfare can be written as

W oo (5]
ok ok o
ec/(e)( _%)2<IA€+(K—]A€) (IJ\(z__II:z)U_]>+<N—%)ﬁ)§)%

. S . . - . oW (K k) . . .
Since the expression in the second line is unambiguously positive, the sign of 4815—2 is given by the sign of

% </2: + (K — l;:) (ﬁ—:z) ' l) . It suffices to show that this expression is positive for all k. Straightforward

differentiation and some manipulations give

2 (i (o) (KE) ™) - () A

The expression is positive iff

or equivalently, iff

L ~
- 1 K—k\""' K-k
n—1\N—-k TN R

To see that this condition is always satisfied, let 7 = £

N:k Observe that 0 < 7 < 1 for all IAf,N and all
K < N. Rearrange the inequality as

n=1>77T ()
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Observe that for 7 = 1, the the right-hand side takes value n — 1. Moreover, T (n —7) is an increasing

function of 7, since

B t0-0) o () - (1)

So, we have shown that welfare is monotone increasing in the number of experts. m

Proof of Proposition 9. Using the equilibrium condition for the precisions, (34) and the specific cost

1
1 Zi \ 7!
e; =mn—t | — e;
Zj

Using this result, we can compute the effective aggregate precision of information as

functions we find that

1
, N\ 71
eiJrﬂ'E e; =ée; 14 7= E (ﬁ)7 (42)
Zj

J#i J#i
Substituting into the president’s first-order condition we obtain

-2
1
7 Z: n—1
1 i = el ? 4
e + 7 jééi (zj> ziey (43)

We can solve this condition for the president’s equilibrium precision of information

1 n+1

Thus, (42) can be written as

1 =T
—_L 7 zi 1
el +7 E e =z [ 14 mn=T E <—)

J# g# N

47



On the other hand, the cost of information acquisition is

_n_ 1

1 & Zi oam 1 (T a1 . Z "
—sz— = —e+ —szﬂv*l (—) el ==ze"[1+mm Z <—)
0 0 nt % " 7 N
1 72:717l+‘1 1 ;17_1711-
- T e (2)T) S e ()
n K2 n Z;

J# J#

Let W (i) denote welfare as a function of the identity of the president. Using the developments above, we

have

1
1 1 . ANEE
W (i) = — {”5] 1+w*2<3> |

j#i N

Noting that W (¢) is maximal if z; = min; z; completes the proof of the proposition. m
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