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Abstract

I study covert information acquisition and reporting in a principal agent problem allowing for general
technologies of information acquisition. When posteriors satisfy two dimensional versions of the stan-
dard First Order Stochastic Dominance and Concavity/Convexity of the Distribution Function conditions,
a first-order approach is justified. Under the same conditions, informativeness and riskiness of reports
are equivalent. High powered contracts, that make the agent’s informational rents more risky, are used
to increase incentives for information acquisition, insensitive contracts are used to reduce incentives for
information gathering. The value of information to the agent is always positive. The value of information
to the principal is ambiguous.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A vast literature on contracting and mechanism design has investigated the consequences of
asymmetric information on the efficiency and distributive properties of allocations. In most of
this literature the model’s primitive is an information structure. However, in some economic
problems it is reasonable to assume that economic agents do only possess information because
they expect to make use of it. Moreover, their effort to gather information is often unobservable
to others. Thus, an information acquisition technology rather than the information structure itself
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should be taken as the model’s primitive, and contracts serve the double role of motivating the
acquisition of information and ensuring its truthful revelation. How does this second role affect
the nature of optimal screening contracts?

Since Demski and Sappington (1987) have raised this question, many investigations have
followed. Notably, a prominent literature has investigated how optimal supply arrangements in
procurement should be changed to account for costs of acquiring information about cost-of-
production conditions (see, e.g., Crémer and Khalil, 1992; Crémer et al., 1998a, 1998b; Lewis
and Sappington, 1997; Sobel, 1993; and Laffont and Martimort, 2002, for a survey of these
models). More recently, I myself (Szalay, 2005) have analyzed how decision-making in an
advisor–advisee relationship should be structured to guarantee high quality advice.

The findings of this literature are as follows. If the buyer in the procurement context wants to
make sure the seller is well informed, then he should offer “high powered” incentive contracts.
Compared to a supply arrangement with a seller who is already well informed about his costs, the
seller will benefit from an unusually high order if his marginal costs are lower than expected, but
he will also receive an exceptionally low order if his costs are higher than ex ante expected. As
a result, the quantity supplied is discontinuous and drops sharply when the seller’s cost is higher
than ex ante expected. If the buyer does not want the seller to become informed, then the supply
arrangement should be rigid and should make little use of the seller’s information. Both cases can
occur, depending on the cost of information acquisition and the timing of events.1 The structure
of decision-making in Szalay’s (2005) model of advice displays an exaggeration property that
is akin to a high powered incentive contract. If the advisor recommends an action that is higher
than the ex ante expected action then the advisee takes an action that is even higher than the
recommended one; if the advisor’s proposed action is lower than the ex ante expected one, then
the advisee takes an even lower action. Similar to the procurement case, the decision schedule is
discontinuous and increases sharply at the prior mean.

Information acquisition in all these papers is of an all-or-nothing nature, where the person who
acquires information is in equilibrium either completely informed or does not receive additional
information at all. I raise a simple question: how do the insights of this literature depend on this
simplification?

I find that super powered incentive contracts and exaggeration are general features of contracts
with endogenous information, discontinuities are not. To demonstrate these findings, I develop
a general but still tractable model of information acquisition. Since the techniques I use can be
applied to a wide class of problems with endogenous information, the model is of interest well
beyond the context of procurement and the specific question I raise.

I study the procurement problem that Crémer et al. (1998a) have analyzed. A buyer wishes
to obtain parts from a seller. Neither the seller nor the buyer knows ex ante how costly it is to
produce these parts, say because they both engage in this particular kind of activity for the first
time. The buyer begins by offering a menu of contracts to the seller. Before the seller has to accept
or reject offers he can acquire information about his costs. In contrast to Crémer et al. (1998a),
the seller can exert a continuous choice of effort and receive a continuum of noisy signals. An
increase in the seller’s effort improves the quality of the signal he receives stochastically. Both
the seller’s choice of effort and the signal he receives are known only to him but not to the buyer.

1 This result depends on the absence of competition. Compte and Jehiel (2002) reinvestigate the case studied by Crémer
et al. (1998b) allowing many agents to compete. While Crémer et al. (1998b) showed that information acquisition is
socially wasteful, Compte and Jehiel (2002) show that it may become desirable again when agents compete.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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After the seller has observed a signal he either accepts one of the contracts or walks away without
further sanction. The seller learns the true cost of production only when he produces.

Allowing for a continuous quality of noisy information introduces considerable technical
difficulties, and one of the contributions of this paper is to demonstrate an elegant way over
these hurdles. A rich model of information acquisition leads naturally into a problem of multi-
dimensional screening. Ex post, when the seller has acquired a noisy signal, his entire posterior,
a multi-dimensional object, may be relevant for contracting. Thus, the buyer faces a problem
of multi-dimensional screening, which is potentially quite nasty to solve.2 However, when the
seller’s utility is linear in his information variable (e.g., his constant marginal costs), then the
seller’s preference over contracts depends effectively only on the mean calculated from the pos-
terior distribution. Since this is a one dimensional statistic, the problem at the reporting stage
is reduced to the well known one-dimensional screening problem. To understand the seller’s ex
ante problem of how much effort to invest in information acquisition, one has to study the de-
pendence of the ex ante distribution of the conditional expectation on effort. One can resort to
standard differentiability methods to describe the optimal amount of effort spent on information
acquisition only if the seller’s effort influences the ex ante distribution of the conditional mean in
a particular way. The seller’s optimal choice of information acquisition is adequately described
by a first-order condition for any contract that ensures truthful communication of information, if
the seller’s effort increases the riskiness of the ex ante distribution of the posterior expectation at
a decreasing rate, where riskiness is understood in the sense of Rothschild and Stiglitz (1970).3

The second contribution of this paper is to provide statistical foundations for increasing risk
at a decreasing rate in the distribution of conditional expectation in terms of the primitives of
the experiment structures. I obtain an influence of the desired sort when I impose the following
assumptions. First, the marginal distributions of signals and true costs are given and the sellers
effort influences only the joint distribution of these two variables.4 Second, for signals below the
prior expected signal value, an increase in effort increases the posterior in the sense of First Order
Stochastic Dominance (FOSD), and the posterior is concave in signal and effort. For signals
above the prior expected signal value, an increase in effort decreases the posterior in the sense of
FOSD and the posterior is convex in signal and effort.

It is interesting to contrast these conditions with those used to justify the traditional “first-order
approach” in problems of pure moral hazard (Rogerson, 1985 and Jewitt, 1988). My conditions
are two dimensional versions of the standard FOSD and Convexity/Concavity of the Distribu-
tion Function condition (CDFC). Moreover, the qualitative impact of effort on the posterior is
reversed as the signal is increased above its expected value. For this reason I term my condi-
tions mean reversing FOSD and CDFC, respectively. The rationale for having mean reversing
rather than standard FOSD and CDFC is that the latter imply changing means (Milgrom, 1981),

2 See McAfee and McMillan (1988) for a screening problem where types have more dimensions than the principal has
screening instruments available. See also Armstrong and Rochet (1999) and Rochet and Stole (2003) for overviews of
multidimensional screening problems.

3 Note that this notion of riskiness is somewhat different from Blackwell’s, which states that one information structure
is Blackwell-better than another if it gives rise to a more risky distribution of the posterior. Riskiness of the posterior
expectation is a less restricting condition. Heuristically, while Blackwell requires the distribution of all moments to be
more risky, the present concept requires only that the distribution of the first moment is more risky. The difference arises
because I impose restrictions on the seller’s utility function, while Blackwell’s criterion orders information structures
for all decision makers whose utility function belongs to a class. For more recent approaches that order information
structures, see Karlin and Rubin (1956), Lehmann (1988), and Athey and Levin (2001).

4 A statistical structure of essentially this type is called a copula (see, e.g. Nelsen, 2006).
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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which is a rather undesirable feature of a model of information acquisition; the law of iterated
expectations requires that the means be independent of the amount of information acquisition.
My conditions are less restrictive than the ones used to justify the traditional first-order approach.
In problems of pure moral hazard one has to ensure the monotonicity of contracts by imposing
in addition the Monotone Likelihood Ratio Property (MLRP), which makes the specification
overall rather restrictive. In contrast, there is no need to ensure the monotonicity of contracts
when there is adverse selection, because monotonicity of contracts is a necessary condition for
implementability (Guesnerie and Laffont, 1984). Therefore, it is fair to say that the first-order
approach goes through more easily than in a problem of pure moral hazard.

A second statistical model that delivers the same reduced form is a stochastic experiment
structure that is similar in nature to the spanning condition studied in Grossman and Hart (1983).
In that specification, an experiment is the realization of two independent random variables; a
signal which follows a given marginal distribution and an informativeness parameter whose
distribution depends on the agent’s effort. The posterior satisfies a mean reversing version of
MLRP; for signals above the mean, a posterior arising from a relatively more informative exper-
iment places relatively more weight on the high realization of costs, for signals below the mean,
it places relatively more weight on the low realizations of costs. Finally, an increase in effort
makes it more likely to observe a more informative experiment in the sense of FOSD, and the
distribution of informativeness satisfies a CDFC condition.

The main insight arising from this analysis is that informativeness and risk are equivalent in
any tractable model. It is in fact this equivalence result that explains the findings of the litera-
ture on the value of information and the structure of optimal contracts. The value of information
depends on the seller’s and the buyer’s attitudes towards risk, that is, the shape of their indirect
utility functions. It is well known that only convex indirect utility profiles of the seller are imple-
mentable (see Rochet, 1985). Thus, incentive compatibility makes the seller a quasi-risk lover so
that he always likes to have more information. In contrast, the shape of the buyer’s indirect utility
function is a more complex issue. It depends both on his direct utility function and the distribu-
tion of types. More information can either be a blessing or a curse to the buyer,5 and I provide
sufficient conditions for both cases. Similarly, the structure of the optimal supply arrangement is
more risky than its exogenous information counterpart when the buyer provides the seller with
extra incentives for information acquisition, and is less risky when the buyer reduces the seller’s
incentives to acquire information. In the former case, when the seller’s expected cost is surpris-
ingly low he is rewarded by an extra increase in production that increases his informational rent
at the margin, and punished if his expected cost is surprisingly high. These results confirm and
generalize those of Crémer et al. (1998a) and eliminate the undesirable discontinuity in their
supply arrangement due to the all-or-nothing nature of information acquisition. But the analysis
is of use beyond that context and can be applied to any model that relies on a linear environment.

Ordering better information by riskiness in the distribution of conditional expectations is an
extremely useful concept. In contemporaneous work, Dai et al. (2006) have studied a model of
sequential screening with two possible levels of precision of information that obey this ordering.
They show that experts with differentially precise information can be screened by the extent of
decision authority embodied in contracts. As in the present paper, the value of information to
the principal is ambiguous. However, they show that this ambiguity can be overcome by varying
the timing structure of the interaction between the principal and the expert. Dai et al. (2006)

5 This confirms results of Green and Stokey (1981), who, however, do not relate their results to risk.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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and the present paper complement each other. While their aim is to develop a model that is
easily tractable, the current paper provides general statistical foundations for the reduced form
they employ and thereby confirms the generality of their findings. Moreover, the justification
of the first-order approach in terms of the primitives of the experiment structure is a novelty of
my model. More recently, Shi (2006) has studied information acquisition in optimal auctions
showing how the optimal reserve price is affected by the fact that information is endogenous.
Shi studies information structures that are “rotation ordered,” a concept that Johnson and Myatt
(2006) have used to study general transformations of demand. The information structures used
in this paper satisfy the rotation order. In contrast to Shi (2006), this paper derives more general
statistical foundations in terms of experiment structures that induce the desired ordering in the
ex ante distribution of conditional expectations.

Closest related to the present paper in terms of its aim to uncover the general principles of
information acquisition are Gromb and Martimort (2004) and Malcomson (2004). Gromb and
Martimort (2004) establish the Principle of Incentives for Expertise, according to which an agent
should be rewarded when his advice is confirmed either by the facts or by the advice of other
agents. There are two main differences to the present paper. First, their setup is simpler on the
informational side but richer on the organizational side, in that they allow for multiple agents.
Second, they allow for contracting contingent on advice and ex post realizations whereas I focus
on the case where the agent’s information is not verifiable ex post. Malcomson (2004) analyzes
the standard principal agent problem, where the agent not only exerts some effort but also makes
a decision. The main difference to the present paper is the role of communication. I allow for
communication while Malcomson considers the case where the principal commits to a single
contract in advance. Moreover, Malcomson’s main interest is in characterizing conditions under
which the addition of the agent acquiring a signal makes the problem and its solution any different
from the standard principal agent problem, and its solution, respectively. In contrast, the present
approach allows for a complete characterization of the optimal mechanism.

Bergemann and Välimäki (2002) analyze incentives for information acquisition in ex post
efficient mechanisms. They show that incentives for information acquisition in a private value
environment are related to supermodularity in the agents’ payoff functions.6 In contrast to the
present paper contracts are only proposed after information has been acquired. As a result, infor-
mation acquisition may be either excessive or insufficient although the seller’s payoff function in
the present model is submodular in the state and the contracting variable.

The information structures used in the present paper connect the contracting literature to a
literature on the value of information in decision problems, a line of research that has been
initiated by Blackwell (1951), and Karlin and Rubin (1956), and further pursued by Lehmann
(1988), and most recently by Athey and Levin (2001). The combination of these two literatures
delivers a powerful approach, that should prove useful to study further applications, because
the predictions of the model are robust within a large class of information gathering technolo-
gies. One such application, already pursued by Shi (2006), is the study of optimal auctions
with endogenous information (see Myerson, 1981 for the case of exogenous information). His
approach nicely complements the literature on auctions with endogenous information that has re-
stricted attention to a class of mechanisms, e.g., first versus second price auctions (see Tan, 1992;
Hausch and Li, 1993; Stegemann, 1996; and more recently Persico, 2000, on this).7

6 They note that efficient mechanisms in the linear environment can be based on conditional expectations.
7 Persico’s result that the auction format with the higher risk sensitivity induces more information acquisition corre-

sponds to the result that the marginal value of information for the agent is positive.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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The paper is organized as follows. In Section 2 I spell out the main model. Section 3 contains
the main result on the validity of the first-order approach. Section 4 derives the statistical foun-
dation of the second order stochastic dominance relation in the distribution of the conditional
expectation. Sections 5 and 6 contain the main implications of the theory. Section 5 derives some
results on the value of information, Section 6 discusses the form of optimal contracts. Section 7
derives two alternative formulations of experiments. In the first variation, I allow for moving
supports, and show that the first-order approach is typically not valid in this framework but
would deliver—if valid—essentially the same structural predictions except for distortions at the
top. The second variation provides a particularly useful simplification of the main model which
I term stochastic experiment structure. Section 8 concludes. All proofs are in the appendix.

2. The model

The model is a variant of the Baron and Myerson (1982) model where I allow for general,
endogenous information structures. A buyer (henceforth the principal) contracts with a seller
(henceforth the agent) for the production of a good. The good is divisible, so output can be
produced in any quantity, q . q is observable and contractible. The agent receives a monetary
transfer t from the principal and has costs of producing the quantity q equal to βq . Both parties
are risk neutral with respect to transfers. The principal derives gross surplus V (q) from con-
sumption, where V (q) is defined on [0,∞) and satisfies the conditions8 Vq(q) > 0, Vqq(q) < 0,
limq→0 Vq(q) = ∞, limq→∞ Vq(q) = 0. Thus the principal’s net utility is

V (q) − t.

The agent’s payoff from receiving the transfer t and producing the amount q is given as

t − βq.

Ex ante the principal and the agent do not know the precise value of β , but share a common
prior about it, which is supported on [β,β] with cdf P(β), where β > 0. Once the principal has
committed himself to the terms of the contract but before production takes place, the agent may
acquire additional information about β . Information acquisition is modeled as a costly choice of
effort e, that influences the informativeness of certain experiments.

An experiment is a joint distribution of β and a random variable Σ . This distribution depends
on the agent’s effort. The marginal distributions of β and Σ are both independent of e, so effort
influences only the joint distribution of the two variables (so roughly speaking the correlation
between the two variables) but not their marginal distributions.9 The random variable Σ has
typical realization σ ∈ [σ,σ ], and follows a distribution with an arbitrary density k(σ ) > 0 ∀σ

and cdf K(σ). Since the distribution of Σ has full support, K(σ), contains the same information
as σ does itself, but is much more convenient to work with. So, I denote the random variable
S = K(Σ) as the signal. As is well known, S is distributed on a support [s, s] = [0,1] and
follows a uniform distribution, regardless of the function K(·).10

8 Throughout the paper subscripts will denote derivatives of functions with respect to their argument.
9 The assumption that the marginal of Σ is independent of e will be important for the results in Sections 4 through 6,

but is not needed for the results in Section 3. Since the changes to incorporate the case where the marginal of Σ depends
on e are minor, I leave it to the reader to explore this extension.
10 This approach to model dependence among random variables is closely related to the notion of a copula, defined
as the distribution function C(P (β),K(σ); ·) on [0,1]2. The marginal distributions of P and K are uniform on [0,1],
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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I let H(β | s, e) denote the resulting posterior cdf and let h(β | s, e) denote the density of the
posterior distribution, and assume that this density is differentiable in s and e to the order needed.
Experiments can be ordered in the sense that high values of s indicate high costs in the sense of
First Order Stochastic Dominance; for β ∈ (β,β) the posterior distribution satisfies

−∞ < Hs(β | s, e) < 0 ∀s, e. (1)

For β ∈ {β,β}, Hs(β | s, e) = 0 for ∀s, e. (1) implies that
∫ β

β
β dH(β | s, e) is increasing in s

with a bounded rate of change. Below I will also introduce a precise sense in which higher effort
corresponds to more informative experiments. For the time being this is not important and the
only restriction I impose on the influence of effort on H(β | s, e) is

He(β | s, e) = He(β | s, e) = 0 ∀β, e. (2)

(1) and (2) imply that there is a lowest and a highest estimate of costs conditional on the agen-
t’s information and these bounds are both independent of the level of effort the agent exerts.

Formally,
∫ β

β
β dHe(β | s, e) = ∫ β

β
β dHe(β | s, e) = 0. This property is convenient because the

relevant contracting variable will have a fixed support.
The cost of effort is g(e), a strictly convex function, that satisfies ge(e) > 0 for e > 0,

gee(e) > 0 for all e, ge(0) = 0, and lime→e ge(e) = ∞, where e is an upper bound on e that
can be taken as infinite most of the time, except for some specific examples.

The game has the following time structure:

−−−+−−−
P offers

a menu of

contracts

−−−+−−−−+−−−−
A exerts

effort e

S is realized

and observed

by A

−−+−−−−
A accepts

a contract

or refuses

to participate

−−−+−−−−−
A produces

and delivers

and learns the

true costs β

only when producing

First, the principal offers a menu of contracts. Then the agent chooses an effort level, e, that
determines the informativeness of the experiment. The experiment is realized and observed by
the agent. Given this information he decides whether or not to participate, and, contingent on
participating, also which contract to accept. If the agent refuses to participate the game ends. If
the agent agreed to participate, production and transfers take place according to the contract the
agent has chosen. Notice that the agent learns the true cost only at the time when he produces, not
before. In particular, he does not know the true cost when he selects any of the offered contracts
or his outside option. I assume that the agent’s choice of effort is not observable to the principal
and that the value of the signal is the agent’s private knowledge.

regardless of the functions P(·) and K(·) themselves. The function C(·) embodies the correlation structure between
the random variables. In the present context, it is more convenient to specify the joint distribution over β and K(σ).
Otherwise the structure is the same.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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3. Justifying a first order approach

As is customary, I will characterize solutions to the contracting problem taking as given that
the principal wishes to implement a given level of effort, and will say very little about the optimal
choice of effort to implement.11

I think of contracting in terms of mechanism design. A mechanism is a tuple {q(·), t (·)} which
specifies quantities of production and transfers to the agent as a function of a (vector valued)
message m, the agent sends to the principal. Invoking the Revelation Principle I can restrict
attention to direct, incentive compatible mechanisms, {q(·), t (·)} that depend only on a reported
tuple of signal realization and value of effort (ŝ, ê). Hence, one can write the principal’s problem
as follows:

max
q(·,·),t (·,·)

s∫
s

(
V

(
q(s, e)

) − t (s, e)
)

ds (3)

s.t.

∀s, e:
β∫

β

(
t (s, e) − βq(s, e)

)
dH(β | s, e) �

β∫
β

(
t (ŝ, ê) − βq(ŝ, ê)

)
dH(β | s, e) ∀ŝ, ê,

(4)
β∫

β

(
t (s, e) − βq(s, e)

)
dH(β | s, e) � 0 ∀s, e, (5)

e ∈ arg max
e

{ s∫
s

( β∫
β

(
t (s, e) − βq(s, e)

)
dH(β | s, e)

)
ds − g(e)

}
. (6)

(4) requires that the agent finds it optimal to report the true signal value and the true signal infor-
mativeness. (5) ensures that the agent finds it optimal to participate for all possible realizations
of signal and informativeness. (6) imposes that the agent’s choice of how much effort to acquire
is optimal given the contract the principal offers. Observe that the agent’s ex ante expected utility
net of costs of information acquisition is always nonnegative. Notice that I impose (5) for all
values of s and e, not only the equilibrium choice of effort. This involves no loss of generality
under the non-moving support assumption. Extensions to the case of moving supports will be
studied below.

The screening problem is multi-dimensional, and therefore potentially extremely complicated.
However, due to the fact that the agent’s utility is linear in β , and linearity is preserved un-
der expectations, the agent’s utility depends effectively only on the one-dimensional statistic

11 As is well known from Grossman and Hart’s (1983) analysis of the problem of pure moral hazard, the principal’s
problem can be broken into two subproblems: a first problem which consists of finding the least costly way to implement
a given effort choice, and a second one, building on the solution of the first, to select the optimal effort level for the
agent. While the first problem provides rich insights into the structure of optimal contracts, the second one has very little
structure; in particular, the principal’s optimization problem with respect to the agent’s effort is not generally concave in
the choice variable. Due to this lack of regularity structure, the literature generally confines attention to the first part of
the problem, and I follow this tradition here.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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∫ β

β
β dH(β | s, e) (and the agent’s reported type). For this reason, similar to Biais et al. (2000) in

a different context, I can observe that non-stochastic mechanisms can only make use of this one
dimensional statistic of the type instead of the two-dimensional type itself.12 Since the agent’s
conditional expectation is the relevant contracting variable it is important to understand the prop-
erties of this variable. Denote the function

π(s, e) =
β∫

β

β dH(β | s, e).

Suppose that π(s, e) = θ for some real number θ . Given that π(s, e) is increasing in s, the func-
tion is invertible and the signal that generated a value of the conditional expectation equal to θ

satisfies s = π−1(θ, e). Ex ante, i.e., before s is realized, the value of the conditional expectation
is a random variable itself, Θ say. Using the fact that the distribution of s is uniform, the cdf of
θ for given e is

F(θ, e) =
{0 for θ < π( s, e),

π−1(θ, e) for π( s, e) � θ � π(s, e),

1 θ > π(s, e).

(7)

Due to condition (2), the support of θ is the interval [θ, θ ], independent of effort. Formally, I have
θ = π(s, e) for all e and θ = π(s, e) for all e. Together with the law of iterated expectations, the
non-moving support property places some restrictions on the influence of e on F(θ, e). Define
EX as the expectation operator when the expectation is taken with respect to X. The law of
iterated expectations requires that ES[Eβ [β | s; e]] = Eβ [β]. Changing variables and integrating
by parts, I can write

ES

[
Eβ [β | s; e]] = θ −

θ∫
θ

F (θ, e)dθ.

This property must hold for any e. Since Eβ [β] is independent of e, it follows that

θ∫
θ

Fe(θ, e)dθ = 0. (8)

(8) is a condition that any model with fixed supports must fulfill. If (8) fails to hold, then an
increase in effort changes the ex ante mean of the distribution, which implies that effort is not
purely a measure of informativeness but also of something else. It is obvious that the same
conditions imply also that

θ∫
θ

Fee(θ, e)dθ = 0. (9)

12 Bergemann and Välimäki (2002) have noted that this is also the relevant contracting variable in ex post efficient
mechanisms in the linear environment, since efficient mechanisms are non-stochastic.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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Finally, notice that condition (1) implies that the distribution of θ has a density f (θ, e) which
is strictly positive on [θ, θ ]. To see this, differentiate (7), with respect to θ , using the inverse
function theorem, to get

f (θ, e) =
{

1
πs(π−1(θ,e),e)

> 0 for θ ∈ [θ, θ ],
0 otherwise.

(10)

I now use this change of variables to state (3) s.t. (4), (5) and (6), equivalently as a message game
with messages θ̂ ∈ [θ, θ] about “perceived costs.” In this formulation, the principal’s problem is

max
q(θ),t (θ)

θ̄∫
θ

(
V

(
q(θ)

) − t (θ)
)
f (θ, e)dθ

s.t.

t (θ) − θq(θ) � t
(
θ̂
) − θq

(
θ̂
) ∀θ, θ̂ ,

t (θ) − θq(θ) � 0 ∀θ,

e ∈ arg max
e

{ θ̄∫
θ

(t (θ) − θq(θ))f (θ, e)dθ − g(e)

}
.

In order to solve this problem I need to be able to replace the final constraint by a first-order
condition.

Proposition 1. The principal’s problem (3) s.t. (4), (5) and (6) is equivalent to the following
problem

max
q(θ)

θ̄∫
θ

(
V

(
q(θ)

) −
(

θ + F(θ, e)

f (θ, e)

)
q(θ)

)
f (θ, e)dθ (11)

+ μ

( θ̄∫
θ

Fe(θ, e)q(θ)dθ − ge(e)

)

s.t. q(θ) non-increasing

for some Lagrange multiplier μ if an increase in e induces a mean preserving spread in the sense
of Rothschild and Stiglitz (1970), at a decreasing rate, in the sense that

y∫
θ

Fe(θ, e)dθ � 0 ∀y (12)

and (8), and

y∫
Fee(θ, e)dθ � 0 ∀y (13)
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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and (9), and in addition either q(θ) is continuously differentiable for all θ or the influence of the
agent’s effort on the density of θ is bounded below by the uniform density on [θ, θ̄ ]

fe(θ, e) � − 1

θ̄ − θ
∀θ. (14)

It is well known13 that the set of implementable contracts satisfies t (θ) = θq(θ) + ∫ θ

θ
q(τ )dτ

and q(θ) non-increasing in θ . Substituting out transfers and integrating by parts one obtains
the principal’s objective function: the principal maximizes expected surplus net of the agent’s
virtual surplus (Myerson, 1981). Substituting the same expression for transfers into the agent’s
objective function, the agent’s expected utility, gross of costs of information acquisition, becomes∫ θ̄

θ

∫ θ

θ
q(τ )dτfe(θ, e)dθ . It is easy to see that the function

∫ θ

θ
q(τ )dτ is decreasing and (weakly)

convex. In other words, the agent is a quasi-risk lover because his indirect utility under any
implementable contract is a convex function of θ (Rochet, 1985). Therefore he likes increases
in risk in the distribution of types in the sense of Rothschild and Stiglitz (1970),14 so given (12)

and (8),
∫ θ̄

θ

∫ θ

θ
q(τ )dτfe(θ, e)dθ > 0 for all e. In the appendix, I demonstrate that—provided

the technical condition (14) is satisfied—the Rothschild and Stiglitz (1970) result implies also

that the agent’s expected utility is concave in effort, so
∫ θ̄

θ

∫ θ

θ
q(τ )dτfee(θ, e)dθ < 0 for all e.

The technical restriction is needed to deal with issues of non-differentiability in q(θ), which may
arise from bunching. However, to capture the intuition for the result, suppose these problems are

absent and that
∫ θ

θ
q(τ )dτ is twice continuously differentiable so that I can integrate by parts

twice. Proceeding like this, I can express the agent’s first-order condition as

−
θ̄∫

θ

θ∫
θ

Fe(τ, e)dτqθ (θ)dθ − ge(e) = 0. (15)

From (15) it is easy to see that (12) renders the agent’s expected gross utility (gross of costs of
information acquisition) non-decreasing in e for any non-increasing quantity schedule; (13) ren-
ders the agent’s expected gross utility concave in e. The complete proof, which does not rely on
the absence of bunching, is in the appendix.

The upshot of Proposition 1 is that one can complement the Mirrlees approach to report-
ing by a first-order approach to information acquisition, which yields a fairly easily tractable
problem. Before I proceed to apply the approach to the specific context of procurement, I charac-
terize sufficient conditions on the Bayesian updating process that induce Second Order Stochastic
Dominance shifts in the distribution of Θ .

4. On the informativeness of experiments

In this section I study the properties of the distribution of the conditional expectation. I obtain
sufficient conditions on the conditional distribution of β given s and e such that the distributions
of the conditional expectation for different levels of e can be ordered by Second Order Stochastic

13 For convenience of the reader the derivation is reproduced in the appendix. A more detailed treatment is found in
Fudenberg and Tirole (1991, Chapter 7).
14 See also Dai et al. (2006), who have observed this independently in a two experiment model.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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Dominance, that the shift in the distribution due to an increase in effort satisfies the decreasing
returns condition, and that the distribution has an increasing inverse hazard rate.

Recall that a high signal indicates a high β in the sense of (1). This sort of dependence arises
naturally if, e.g., β and s are affiliated. Consider now the dependence on e. Let s̃ ≡ ESS denote
the expected value of the signal s. To obtain my first result, I impose a mean reversing FOSD
condition, that I shall denote MRFOSD henceforth. For all e and all β ∈ (β,β) :

He(β | s, e) > 0 for s ∈ (s, s̃) and He(β | s, e) < 0 for s ∈ (s̃, s). (16)

The posterior distributions for different levels of e and for a given realization of s are ordered
by First Order Stochastic Dominance. However, the direction into which higher effort shifts
the posterior distribution depends on whether the signal realization is above or below its mean.
More precisely, the sign of the influence of an increase in e on the posterior is reversed as s is
increased above its mean value. The reason I impose this condition in a mean reversing rather
than the usual global sense is because a global version of (16) would imply that for each s an
increase in e increases the posterior. But since the distribution of the signal is fixed, this would
imply an increase in the ex ante mean, which is inconsistent with the law of iterated expectations.

Let θ̃ ≡ π(s̃, e), the conditional mean induced by the expected signal. Experiments that satisfy
condition (16) induce the desired ordering in the distribution of the conditional expectation:

Proposition 2. Assume that experiments satisfy (1), (2), and (16). Then, F(θ, e) satisfies

Fe(θ, e) = Fe

(
θ̃ , e

) = Fe

(
θ, e

) = 0,

Fe(θ, e) > 0 for θ ∈ (
θ, θ̃

)
, and

Fe(θ, e) < 0 for θ ∈ (
θ̃ , θ

)
and thus condition (12).

We know from (7) that the properties of the distribution function F(θ, e) simply correspond
to the properties of the inverse of the conditional expectation function. Relative to θ̃ the agent
revises his posterior expectation upwards if he receives a signal higher than ex ante expected, and
downwards if he receives a downward surprise. If he receives the expected signal, the conditional
expectation is equal to θ̃ . The upward (downward) revision for surprisingly high (low) signals is
the larger the higher is e. As a consequence the conditional expectation functions for different e

all cross three times, at θ = π(s, e), at θ = π(s, e), and at θ̃ , and the ex ante distributions of Θ

satisfy a triple crossing property. It s natural to think of θ̃ as being equal to EΘΘ . This property
necessarily holds if the signal contains no information for e = 0, because this affords that the
distribution of Θ converges to a mass point around the prior mean when e goes to zero. I will
assume this property holds henceforth, thus EΘΘ = θ̃ .

Before I illustrate these results with an example, I give an alternative sufficient condition
on the posteriors that justify condition (12) in Proposition 1. Although more restrictive, this
condition may prove useful in other applications, because it implies more structure. In particular,
one may impose a mean reversing version of the Monotone Likelihood Ratio Property:

∂

∂β

(
he(β | s, e)
h(β | s, e)

)
< 0 for s ∈ (s, s̃) and

∂

∂β

(
he(β | s, e)
h(β | s, e)

)
> 0 for s ∈ (s̃, s). (17)

If the conditional distribution satisfies condition (17) and the agent receives a signal which is
higher (lower) than ex ante expected, then it is relatively more likely that indeed the state is
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012
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high (low) for a higher level of e. In this sense the signal is more informative when effort is
higher. Non-moving supports and differentiability in s then require then that ∂

∂β
(
he(β|s,e)
h(β|s,e) ) = 0

for s ∈ {s, s̃, s}. Building on the proofs of Milgrom (1981) it is straightforward to show that this
mean reversing version of the MLRP condition implies (16). Moreover, one can also show that
under these assumptions the distribution of θ inherits the Mean Reversing Monotone Likelihood
Ratio Property, i.e., one has ∂

∂θ
(
fe(θ,e)
f (θ,e)

) � 0 for θ � θ̃ .15 However, as is well known (Jewitt,
1988), joint conditions on the likelihood ratios and the convexity properties of the distribution
function—which I will introduce shortly—are rather restrictive. Therefore, I use the weaker
condition (16).

The following simple example illustrates the properties.

Example 1. Let the marginal cost be β = B + 
β for some B > 1 and let the marginal of

β be uniform on [−1,1], the marginal of s be uniform on [0,1], and the posterior density be
h(
β | s, e) = 1+
βy(s,e)

2 for 
β ∈ [−1,1] and zero otherwise. The function y(s, e) is given by
y(s, e) = s − 1

2 + k(s(s − 1
2 )(1 − s) + leαs2(s − 1

2 )3(1 − s)2), where α ∈ (0,1), and k, l, and e

(the upper bound on effort) are positive and sufficiently small. Then, h(
β | s, e) > 0 for all 
β ,∫ 1
−1 h(
β | s, e)d
β = 1, and the posterior expectation, π(s, e) = B + y(s,e)

3 , satisfies the law of
iterated expectations.

With a slight departure from my notation, I take 
β instead of β as the underlying ran-
dom variable. The posterior cdf and its derivative with respect to effort can be computed as

H(
β | s, e) = 
β+1
2 + (
β)2−1

4 y(s, e) and He(
β | s, e) = (
β)2−1
4 ye(s, e), respectively. The

function ye(s, e) embodies the important assumptions I have made so far. ye(s, e) takes a value of
zero for s ∈ {0, 1

2 ,1}, a negative value for s ∈ (0, 1
2 ) and a positive value for s ∈ ( 1

2 ,1). Therefore,
an increase in e increases the posterior cdf (and therefore decreases the conditional expectation)
for low signal values and decreases the posterior cdf for high values, precisely as required in
(16). In fact, the example also satisfies (17) as ∂

∂
β
(
he(
β|s,e)
h(
β|s,e) ) = ye(s,e)

(1+
βy(s,e))2 .
To obtain the second result, I impose a mean reversing concavity/convexity condition of the

distribution function, that I shall denote MRCDFC henceforth. For all β ∈ (β,β):

H(β | s, e) is concave in (s, e) for s ∈ (s, s̃) and convex in (s, e) for s ∈ (s̃, s). (18)

The reason to impose a mean reversing rather than a global concavity/convexity assumption is the
same as for condition (16). The assumption that supports are non-moving, (2 ), directly implies
that Hee(β | s, e) = Hee(β | s, e) = 0. Therefore, I have to assume that the distribution changes
from concave to convex in effort as we increase the signal value above the prior expected value.
Since a function is convex in two variables jointly only if it is convex in each of the variables
alone, I cannot assume global convexity or concavity, but rather impose a mean reversing con-
vexity condition.

Proposition 3. Suppose experiments satisfy (1), (2), and (18). Then, F(θ, e) satisfies

Fee(θ, e) = Fee

(
θ̃ , e

) = Fee

(
θ, e

) = 0,

Fee(θ, e) � 0 for θ ∈ (
θ, θ̃

)
, and

15 This last statement follows directly from Milgrom’s (1981) Proposition 3.
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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Fee(θ, e) � 0 for θ ∈ (
θ̃ , θ

)
and thus condition (13).

Example 1 satisfies (18) if all the parameters sufficiently small. For all β ∈ (β,β), I have
Hss(β | s, e),Hee(β | s, e) < (>)0 for s ∈ (s, s̃) (for s ∈ (s̃, s)). Since H(β | s, e) is twice contin-
uously differentiable H(β | s, e) is concave (convex) if and only its Hessian is negative semidef-
inite (positive semidefinite), which amounts to Hss(β | s, e)Hee(β | s, e) − (Hes(β | s, e))2 � 0
for all s /∈ {s, s̃, s}. One can verify that this is the case.16

In addition to these conditions that ensure the regularity properties of my problem with respect
to the agent’s choice of effort,17 it will also be convenient to have conditions that guarantee
that the monotonicity constraint in problem (11) is non binding at the optimum. Without such
regularity conditions, one may encounter problems of bunching that are well known and do not
add much to the present discussion.

Proposition 4. The distribution of θ satisfies ∂
∂θ

F (θ,e)
f (θ,e)

� 0 if and only if

sπss(s, e)

πs(s, e)
� −1 ∀s. (19)

In terms of the conditional distribution, (19) is equivalent to d
ds

[s ∫ β

β
Hs(β | s, e)dβ] � 0, but

that is hardly more informative than condition (19), which says that the distribution of θ has a
non-decreasing inverse hazard rate if and only if the conditional expectation function is not too
concave in the sense of a standard curvature measure. In terms of the distribution in Example 1,
condition (19) is met if k is sufficiently small.

In the remainder of this paper I apply the first-order approach to study the specific problem of
procurement. The first step is to sign the multiplier μ. The second is to characterize the structure
of optimal contracts.

5. The value of information

In this section I establish two results. First, I show that it is optimal to implement a strictly
positive amount of information acquisition, that is, that the optimal level of effort is strictly
positive. I conclude from this result that the value of information to the principal is positive.
Second, I show that the level of effort can be either too small or too large relative to the amount
of effort that maximizes the expected surplus. In particular I will show that whether there is too
much or too little information acquisition depends on the principal’s quasi-attitudes towards risk,
that is, on the shape of his indirect utility function.

Consider first the value of information to the principal, which I define as the difference in
expected utility when he implements a positive amount of effort and zero effort. Implementing
e = 0 requires that information has no value to the agent, neither for his decision what type to

16 Results are available from the author upon request.
17 One can find similar conditions on the conditional expectation function to guarantee the condition fe(θ, e) > − 1

θ−θ
.

However, whenever I make use of the agent’s first-order condition with respect to e below, the quantity schedule q(θ)

will be strictly monotonic. Given the remaining regularity conditions, this implies that q(θ) is continuously differentiable,
which renders the boundedness assumption on fe(θ, e) redundant.
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report conditional on participating, nor on his decision whether or not to participate. Building
on Proposition 1 and the discussion that follows that Proposition, the first part of this statement

implies that the interim expected utility function,
∫ θ

θ
q(τ )dτ , cannot be strictly convex in θ , but

must be linear. This means that production must be independent of the agent’s announced type,
so q(θ) = q for all θ . The participation constraint of the least efficient type, θ , is satisfied with
equality (and by implication all types are willing to participate) if the principal pays the transfer
t = θq + (θ − θ)q = θq to all types. This is very expensive from the principal’s perspective. To
show this is suboptimal, I have to show that there exist contracts that give the principal a higher
utility. It is hard to show this directly, because the level of the principal’s utility depends on the
shadow cost of implementing effort at the optimal level of effort. Therefore I establish my result
in an indirect way, showing that there exist (possibly suboptimal) contracts that implement a
positive level of effort at a zero shadow cost and that give the principal a higher utility than any
contract that implements e = 0. Since the principal will be able to do even better if he is allowed
to implement any level of effort, this argument shows that implementing e = 0 can’t be optimal,
or in other words, that information has a strictly positive value to the principal.

To make this argument I denote q(θ; e) an optimal quantity schedule contingent on the effort
level e. Suppose the principal offers a contract that implements a level of effort e at zero shadow
cost; that is the value of the multiplier μ, associated to the problem of implementing effort e is
zero. Then, we know from Baron and Myerson (1982) that the optimal quantity schedule satisfies
the condition

Vq

(
qBM(θ; e)) = θ + F(θ, e)

f (θ, e)
. (20)

To see this, maximize (11) point-wise with respect to q for μ = 0. Conversely, consistency with
μ = 0 requires that the agent be willing to choose the effort level e that the quantity schedule
qBM(θ; e) is conditioned on. Let ê denote the level of effort that the agent finds optimal to exert
when he is offered a contract with associated quantity schedule qBM(θ; e). ê satisfies the first-
order condition

θ̄∫
θ

Fe(θ, ê)qBM(θ; e)dθ − ge(ê) = 0. (21)

The solution of (21), when viewed as a function of e, defines a best reply for the agent, ê =
r(qBM(θ, e)). Contract offer and effort choice are in simultaneous equilibrium if

e = r
(
qBM(θ, e)

)
. (22)

Let e denote the (possibly empty) set of solutions to (22). If e is non-empty, then the principal
can implement any effort level in e by offering the associated Baron–Myerson quantity schedule
defined by (20). Offering such a contract, the principal extracts some rent, and therefore he does
better than under the contract where the agent is always paid as if he had costs equal to θ .

Proposition 5. It is optimal to implement a positive level of effort. Formally, the set e, defined by
(20), (21), and (22), is non-empty.

To ease notation again in what follows I will drop the dependence of the optimal quantity
schedule on e where this can be done without creating confusion. Consider a locally optimal
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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choice of effort to implement, and denote such a locally optimal value of e by e∗, and the asso-
ciated multiplier by μ∗. Such a choice satisfies the first-order condition

θ̄∫
θ

((
V

(
q(θ)

) − θq(θ)
)
fe

(
θ, e∗) − Fe

(
θ, e∗)q(θ)

)
dθ

+ μ∗
( θ̄∫

θ

Fee

(
θ, e∗)q(θ)dθ − gee

(
e∗)) = 0,

where I have used the envelope theorem to conclude that all indirect effects through e and μ on
q(θ; e) are zero around an optimum. Rearranging the first-order condition, and substituting from
the first-order condition with respect to the agent’s effort choice, I can write

μ∗ =
∫ θ̄

θ
(V (q(θ)) − θq(θ)fe(θ, e∗))dθ − ge(e

∗)

−(
∫ θ̄

θ
Fee(θ, e∗)q(θ)dθ − gee(e∗))

.

The term inside the brackets of the denominator is the second-order condition of the agent’s
effort choice. Hence, the sign of μ∗ is equal to the sign of the numerator. If the increase in the
social surplus due to an increase in e exceeds the marginal cost of acquiring information, then μ∗
is positive; if the two terms are just equal then μ∗ is zero; otherwise the multiplier is negative at
the optimum. I will now argue that μ∗ can be of either sign at a stationary point of the principal’s
problem, and will give sufficient conditions for each case to occur.

I use the following chain of reasoning. Let ẽ denote an element of e, defined by (22), and
let ẽ denote the smallest element in e and let ẽ denote the largest element in e. By definition
μ(ẽ) = μ(ẽ) = 0. Since an increase in μ makes contracts more risky and the agent is a quasi-risk
lover—because incentive compatible indirect utility profiles are convex—we must have μ < 0 for
any e < ẽ and μ > 0 for any e > ẽ. To establish my result, it suffices to give sufficient conditions
that render the principal’s utility (i) locally decreasing around e = ẽ and (ii) locally increasing
around e = ẽ. By implication the principal’s utility will be locally decreasing around ẽ in the
former case and will be locally increasing around ẽ in the latter case, which implies the desired
result.

An increase in the agent’s effort increases the likelihood of more extreme cost perceptions.
The principal benefits ex post if the agent’s signal is better than expected but is harmed if the
agent perceives his cost as being higher. Whether the principal likes to consume such a lottery
depends on the shape of his indirect utility function. In turn the shape of the indirect utility
function depends on the curvature of the direct utility function and on properties of the family of
distributions {F(θ, e)}e�0. Define

ρ(q) = −V ′′(q)

V ′(q)
.

ρ(q) is the Arrow–Pratt measure of absolute risk aversion with respect to production shocks in
the function V (q). I will make my point by means of the example, where the posterior density is
given by h(
β | s, e) = 1+
βy(s,e)

2 for 
β ∈ [−1,1] and zero otherwise and y(s, e) is equal to
s − 1

2 plus k times a function of s and e. In the limit as k tends to zero, the conditional expectation

function tends to π(s, e) = B + s− 1
2

3 , a linear function of s. Hence, in the limit as k tends to zero,
the distribution of θ tends to a uniform distribution on [B − 1 ,B + 1 ].
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Proposition 6. Consider the posterior as in Example 1 as a function of k. In the limit as k tends
to zero, ρq(q) < (>) 0 for all q implies that there exists a stationary point to the principal’s
problem of choosing e where μ > (<) 0.

If V (q) features decreasing absolute risk aversion and the distribution of θ tends to the uni-
form, then the principal benefits from a marginal increase in effort. These conditions render the
principal’s indirect utility function convex in θ , so he behaves as a quasi-risk-lover. If V (q)

features increasing absolute risk aversion, then the converse result obtains in the limit as the
distribution of θ tends to the uniform.

These arguments show the existence of local maximizers with the property that μ is positive
or negative, respectively; of course, these results do not say anything about the optimal level of
effort to implement, but as I have explained above (see footnote 11), this was not to be expected.
Since both constellations with μ positive and μ negative are possible, I will now proceed to
characterize optimal contracts for both constellations where the shadow cost of effort is positive
or negative.

6. The structure of contracts

Let {q∗(θ), t∗(θ)} ∀θ denote a menu of contracts that optimally implements a given amount
of effort in a truth-telling equilibrium. I shall characterize such contracts, taking their existence
for granted.18 The main obstacle to this analysis is that the value of the multiplier μ is unknown.
A global treatment necessitates the use of dynamic optimization and delivers little additional
insights. Therefore it is useful to characterize the solution for effort levels that are easy to imple-
ment in the following sense. Define, for any e, the statistics

κ(e) ≡
√

Var(θ + F(θ,e)
f (θ,e)

| θ � θ̃ )√
Var(Fe(θ,e)

f (θ,e)
| θ � θ̃ )

+ EΘ [θ + F(θ,e)
f (θ,e)

| θ � θ̃ ]
EΘ [Fe(θ,e)

f (θ,e)
| θ � θ̃ ] and

κ(e) ≡
√

Var(θ + F(θ,e)
f (θ,e)

| θ � θ̃ )√
Var(Fe(θ,e)

f (θ,e)
| θ � θ̃ )

.

Heuristically, the smaller is κ(e), the “easier” is the inference about the unobserved effort from
observing θ relative the variation of the agent’s virtual surplus when values of θ below the mean
are observed. κ(e) is a similar ratio when only the subinterval of θ above the mean is considered.

Lemma 1. Suppose that for a given e

∂

∂θ

(
θ + F(θ, e)

f (θ, e)
− κ(e)

Fe(θ, e)

f (θ, e)

)
� 0 and

∂

∂θ

(
θ + F(θ, e)

f (θ, e)
+ κ(e)

Fe(θ, e)

f (θ, e)

)
� 0 for all θ. (23)

Then, the multiplier satisfies −κ(e) � μ(e) � κ(e).

18 Conditions for existence of solutions for exogenous type distributions can be found in Guesnerie and Laffont (1984).
With a suitable adjustment for the endogeneity of information their results could be carried over.
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|μ| measures the utility loss due to the need to give extra (less) incentives for information
gathering when marginal costs of information gathering, evaluated at a given effort level, in-
crease by a small amount. One way to place a bound on this loss is to find a simple contract
that continues to implement a given level of effort when marginal cost of effort increase (de-
crease) by a small amount. One difficulty is again to avoid the need to invoke control theory to
make this point. The monotonicity conditions in the statement of the lemma are imposed to this
end. Then, starting from a strictly monotonic contract, the principal can shock the amount of
production by adding ε

Fe(θ,e)
f (θ,e)

to the original quantity schedule for θ below θ̃ . Since Fe(θ, e) is
non-negative for these values of θ , the agent has higher incentives to acquire information. The ε

that is needed to compensate for a given increase in marginal costs of effort is inversely propor-
tional to EΘ [(Fe(θ,e)

f (θ,e)
)2 | θ � θ̃ ]. On the other hand, the expected cost in terms of higher payments

to the agent is proportional to EΘ [(θ + F(θ,e)
f (θ,e)

)
Fe(θ,e)
f (θ,e)

| θ � θ̃ ]. κ(e) is an upper bound on the ratio
of these two expectations. κ(e) is derived from an analogous procedure when the principal shocks
production by an amount ε

Fe(θ,e)
f (θ,e)

for θ � θ̃ and ε < 0, which reduces the agent’s incentive to
acquire information.

The posterior in Example 1 meets the conditions in Lemma 1 if both k and e are sufficiently
small. If e is small, then the expectation and the variance of θ + F(θ,e)

f (θ,e)
are largely exogenous,

whereas the expectation and the variance of Fe(θ,e)
f (θ,e)

= π−1
e (θ; e)πs(π

−1(θ; e); e) become larger
as e becomes smaller. The smaller is e, the larger is the marginal effect of an increase in e on the
conditional expectation for given s, so |πe(s; e)| is higher for all s /∈ {0, 1

2 ,1}. Hence |π−1
e (θ; e)|

is higher for all θ /∈ {θ, θ̃ , θ}. Hence, the given variation in s induces a larger variation in Fe(θ,e)
f (θ,e)

the smaller is e. As a result κ(e) and κ(e) tend to be small. Changing variables from θ to s,
condition (23) can be written as 2+ sπss (s,e)

πs(s,e)
+κ(e)

πes (s,e)
πs(s,e)

� 0 and 2+ sπss (s,e)
πs(s,e)

−κ(e)
πes (s,e)
πs(s,e)

� 0,
which is met for k small.

I abstain from a discussion of the case where these conditions are violated, because the ad-
vantage of bounding the absolute value of the multiplier is that one can characterize the solution
to the contracting problem without recourse to control techniques:

Proposition 7. Suppose that F(θ, e) satisfies condition (23) for a given level of e.Then the opti-
mal quantity schedule that implements e is characterized by

Vq

(
q∗(θ)

) = θ + F(θ, e)

f (θ, e)
− μ

Fe(θ, e)

f (θ, e)
. (24)

The formal proof of this proposition is omitted, since it follows straightforwardly from the
previous results. The production schedule coincides with the Baron–Myerson schedule at the top,
at the prior mean, and at the bottom. Otherwise, there is an additional distortion. The direction
of the extra distortion depends on whether the principal wants to give the agent more or less of
an incentive to acquire information relative to the Baron Myerson contract. In the former case
production is increased for surprisingly low cost perceptions and decreased for surprisingly bad
cost assessments. The sensitivity of the production scheme with respect to the agent’s information
is increased to provide extra incentives for information acquisition. In the latter case, the reverse
happens and production is more equalized in order to dampen the agent’s interest in additional
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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information. The size of the additional distortion depends on how informative a given message
is about the agent’s unobserved effort choice.19

In the remainder of this article I study how these results are affected by changes in the under-
lying structure of experiments.

7. Alternative experiment structures

7.1. Moving supports and distortions at the top

So far, I have characterized solutions to the contracting problem when the support of the
agent’s conditional expectation is fixed. This is analytically very convenient, but moving supports
may easily arise. To see this, modify Example 120 to the case where y(e, s) = e(s − 1

2 ), so that

the posterior density becomes h(
β | s, e) = 1+
βe(s− 1
2 )

2 for 
β ∈ [−1,1] and zero otherwise.
For an upper bound of e equal to e = 2 I have h(
β | s, e) � 0 for all 
β , s and all e � e. Again

this posterior satisfies (16) and (17).21 One verifies that π(s, e) = B + e(s− 1
2 )

3 . The bounds of the
support are π(s, e) = B − e

6 and π(s, e) = B + e
6 . Observe that the support of θ is a subset of the

support of β and the upper bound is increasing in e and the lower bound is decreasing in e. For
all values of e, the distribution of θ is uniform. Thus it is natural to wonder how the analysis is
affected by the possibility of moving supports.

I will show in this section that there are some problems with the first-order approach; it is not
possible to justify such an approach in general. However, whenever such an approach is valid,
then the main qualitative features of contracts remain unchanged. One notable exception is that
there is now a distortion at the top.

There are some essential differences in the agent’s problem. I will stick to the following no-
tation in this section. I let θ(e) and θ(e) denote the upper and the lower bound of the support
of the conditional mean, respectively. I assume that the upper bound is increasing in e and that
the lower bound is decreasing in e. In addition, I let θ and θ denote the bounds of the sup-
port associated to the effort level that the principal wishes to implement. Notice that these are
independent of the agent’s actual actions. Obviously the principal’s contract offer satisfies the
participation constraint of type θ with equality. Suppose the agent chooses an effort level that is
higher than the one the principal wishes to implement. If the agent receives a high signal, then his
participation constraint is violated for all θ ∈ (θ, θ(e)]. So, the agent refuses to participate and
obtains zero rent in this case.22 Suppose after choosing an effort level that is too high, the agent
receives a very low signal. In that case, for θ ∈ [θ(e), θ ] the agent will be treated the same way

19 The term Fe(θ,e)
f (θ,e)

has an interpretation in terms of hypothesis testing. Write Fe(θ,e)
F (θ,e)

/
f (θ,e)
F (θ,e)

. Fe(θ,e)
F (θ,e)

is the derivative
of the log-likelihood if the statistician observes only if the values in a sample are smaller than θ and wants to compute
the optimal value of e. This statistic is important in the contract because the production at θ changes the rent of all types

who are at least as efficient as θ . Division by f (θ,e)
F (θ,e)

normalizes by the conditional density.
20 This specification of the example is adapted from Ottaviani and Sorensen (2001).
21 The example does not satisfy (18), but this is inessential for the point I am making here. As an example that satisfies

all three conditions, take h(
β | s, e) = 1+
βy(s,e)
2 for 
β ∈ [−1,1] and zero otherwise, where y(s, e) = s − 1

2 +
k(s(s − 1

2 )(1 − s) + leα(s − 1
2 )3).

22 Of course, contracts that are declined can be represented by null-contracts which are always acceptable to the agent.
I discuss the relationship between these two notions of contracts in the proof of Result 1 in the appendix.
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as an agent with expected marginal costs equal to θ .23 Suppose on the other hand, that the agent
chooses an effort level which is too low. In that case we have θ(e) < θ , which implies that type

θ(e) receives a strictly positive rent equal to
∫ θ

θ(e)
q(τ )dτ . It follows from these considerations

that I can always write the agent’s indirect utility, u(θ), for any given effort choice and any effort
(and support) that the principal wishes to implement as

u(θ) = max

{
0,

θ∫
θ

q(τ )dτ

}
. (25)

Finally, consider the probability distribution. It has the properties that F(θ(e), e) = 0 and
F(θ(e), e) = 1. Moreover, it satisfies

dF(θ, e)

dθ
=

{0 for θ < θ(e),

f (θ, e) > 0 for θ ∈ [θ(e), θ(e)]
0 θ > θ(e).

(26)

I can now derive the agent’s ex ante expected utility from (25) and (26). This is somewhat tedious
but straightforward, so I relegate the derivation of the following result to the appendix.

Result 1. With moving supports the agent’s ex ante expected indirect utility satisfies

EΘ

[
u(θ)

] = q(θ)

θ∫
θ(e)

F (θ, e)dθ +
θ∫

θ

q(θ)F (θ, e)dθ.

Notice that the equilibrium expected utility boils down to EΘ [u(θ)] = ∫ θ

θ
q(θ)F (θ, e)dθ . But

there is a crucial difference at the ex ante stage when the agent chooses the level of effort. An
incentive compatible choice of effort must satisfy the condition

e = arg max
ê

{
q(θ)

θ∫
θ(e)

F (θ, ê)dθ +
θ∫

θ

q(θ)F (θ, ê)dθ − g(ê)

}
. (27)

Even if at the optimum one obviously has θ(e) = θ , (27) cannot simply be replaced by the first-
order condition

θ∫
θ

q(θ)Fe(θ, e)dθ − ge(e) = 0

for any arbitrary, incentive compatible quantity schedule q(θ). Even if I impose the same condi-
tions as before, namely that the law of iterated expectations holds, and that an increase in effort
induces a mean reversing first order stochastic dominance shift, and that the distribution satis-
fies the mean reversing concavity/convexity conditions, it is no longer true that the agent always

23 See the proof of Result 1 in the appendix for details.
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prefers to have more information (at the same cost). To see this, assume for simplicity that q(θ)

is continuously differentiable for θ ∈ [θ, θ],24 and integrate by parts to obtain

θ∫
θ

q(θ)Fe(θ, e)dθ = q(θ)Fe(θ, e) − q(θ)Fe(θ, e) −
θ∫

θ

qθ (θ)

θ∫
θ

Fe(τ, e)dτ dθ.

Under my assumptions q(θ)Fe(θ, e) − q(θ)Fe(θ, e) � 0, and this inequality is strict for the case
where θ < θ(e) and θ > θ(e). Hence, one can find monotonic quantity schedules where the agent
does not value additional information. It is also no longer true that the agent’s expected indirect
utility (gross of effort costs) is concave in effort, since

θ∫
θ

q(θ)Fee(θ, e)dθ = q
(
θ
)
Fee

(
θ, e

) − q(θ)Fee(θ, e) −
θ∫

θ

qθ (θ)

θ∫
θ

Fee(τ, e)dτ dθ

and q(θ)Fee(θ, e) − q(θ)Fee(θ, e) � 0 with a strict inequality when θ < θ(e) and θ > θ(e).
Hence, the same caveat applies here. However, whenever the first-order condition adequately
describes the solution to the agent’s problem, I have the following result.

Proposition 8. If the first-order approach is valid, and condition (23) holds, then an optimal
quantity schedule satisfies the condition

Vq

(
q∗(θ)

) = θ + F(θ, e)

f (θ, e)
− μ

Fe(θ, e)

f (θ, e)
.

For the case where μ > 0 (μ < 0) the level of production at the top is higher (smaller) than the
Baron Myerson quantity at θ = θ ; the level of production at θ = θ is lower (higher) than the
Baron Myerson quantity.

The rationale for this result is simple. With moving supports, an increase of the agent’s effort
does have an impact on the mass at the bounds of the support that the principal wishes to im-
plement; at the lower bound the agent’s effort increases the value of the distribution function at
the margin, at the upper bound of the support his effort decreases the mass at the margin. Hence,
there are additional distortions to consider relative to the case with a fixed distribution of types.

7.2. Stochastic experiments

I end this article with a discussion of a class of updating processes that gives rise to a par-
ticularly tractable model. Suppose effort does not influence the posterior distribution directly,
but rather influences only the likelihood of obtaining different posteriors that are independent of
effort. I show in this section that the first-order approach is rather easy to justify in that case. In
addition, all the qualitative insights developed for the more general model are still valid.

Suppose an experiment is the realization of two random variables, S and I , and a resulting
posterior with cdf H(β | s, i). The variable S is still the signal, I is an informativeness parameter.
Typical realizations of these variables are s ∈ [s, s] = [0,1] and i ∈ [0,1], respectively. The

24 As I have demonstrated in the proof of Proposition 1, the argument can be generalized to the case where q(θ) is only
piecewise differentiable.
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marginal distributions of s and i are independent of each other and fully supported with densities
k(s) = 1 for s ∈ [0,1] (and zero otherwise) and l(i, e), respectively. Let L(i, e) denote the cdf
of the random variable i. Assume that l(i, e) > 0 for all i and all e. Denote the conditional

expectation function as π(s, i) = ∫ β

β
β dH(β | s, i). The interpretation of the random variable θ

is unchanged. Provided that π(s, i) is strictly increasing in s for all i, the function is invertible
and we can write s = π−1(θ, i) for the value of s that generates the conditional expected value θ .
The cdf of θ conditional on i is

F i(θ, i) =
{0 for θ < π(s, i)

π−1(θ, i) for π(s, i) � θ � π(s, i),

1 θ > π(s, i).

Let F(θ, e) denote the unconditional cdf of θ . I have

F(θ, e) =
1∫

0

F i(θ, i)dL(i, e). (28)

By construction, θ is independent of effort and its distribution is fully supported on an interval
[θ, θ ], independent of effort where θ = mini π(s, i) and θ = maxi π(s, i).

To order experiments, I assume that the posterior density satisfies the mean reversing
monotone likelihood ratio property, formally, I assume that

∂

∂β

(
hi(β | s, i)
h(β | s, i)

)
< 0 for s ∈ (s, s̃) and

∂

∂β

(
hi(β | s, i)
h(β | s, i)

)
> 0 for s ∈ (s̃, s) (29)

and

∂

∂β

(
hi(β | s, i)
h(β | s, i)

)
= 0 for s ∈ {s, s̃, s}. (30)

As I have explained in Section 4, (29) implies that higher values of i correspond to more infor-
mative experiments. In particular, this implies again that conditional on a signal above (below)
the mean, the posterior distribution conditional on a given informativeness i is the higher (lower)
in the sense of FOSD the higher is i. In addition let

Le(i, e) � 0 and Lee(i, e) � 0. (31)

Then, an increase in effort makes it more likely to perform a more informative experiment; and
the marginal impact of effort on the distribution of experiments is decreasing in e. Within this
structure, I have the following result:

Proposition 9. Given conditions (29), (30), and (31), the distribution F(θ, e) satisfies conditions
(8), (9), (12), and (13), and hence the first-order approach is valid. Under the monotonicity
condition (23), the optimal quantity schedule satisfies the condition

Vq

(
q∗(θ)

) = θ + F(θ, e)

f (θ, e)
− μ

Fe(θ, e)

f (θ, e)
.

Thus, it is easy to justify a first-order approach if we think of the agent’s effort as of “span-
ning” the possible posteriors. Moreover, this model is appealing because it comprises much of the
existing literature and therefore generalizes the findings of this literature. All-or-nothing informa-
tion acquisition corresponds to the case where there are just two distributions of the conditional
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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expectation conditional on i, F 0(θ,0) and F 1(θ,1); the distribution F 0(θ,0) has mass one at
EΘΘ = Eββ and the distribution F 1(θ,1) corresponds to the distribution P(β). In the current
setup I assume that the distribution F 0(θ,0) has no atoms, but of course it can be close to a
mass-point at Eββ . This assumption eliminates the discontinuities found in the earlier literature.
Moreover, I allow for a continuum of levels of informativeness, i, that are (heuristically) ordered
the way that the distributions F i(θ, i) are the closer to P(β) the higher is i.25 Since this model
is particularly easy to handle, it should prove useful in further applications.

8. Conclusion

The main result of the paper is that information and risk are equivalent in a wide class of re-
porting games with endogenous information. It is justified to describe the amount of information
acquisition by the solution of a first-order condition for any incentive compatible contract, if the
agent’s information gathering increases risk in the ex ante distribution of the conditional expecta-
tion in the sense of Rothschild and Stiglitz (1970). Sufficient conditions on experiment structures
are provided that generate such an ordering. The robust results that follow from the approach are
that contracts that provide the agent with extra incentives for information acquisition are more
sensitive to the agent’s information relative to their fixed information counterparts. The reverse
is true when incentives for information acquisition are reduced. Results beyond these depend on
the specific information structure and are therefore not robust.

The paper has derived a tractable modeling of information acquisition and a reduced form
which is relatively easy to handle. It can be used to address any problem of mechanism design in
the single agent case and extends easily to multi-agent mechanism design problems in the linear,
private values environment.
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Appendix A

Proof of Proposition 1. Truth-telling: For convenience I summarize the known features of the
contract. For a more extensive treatment, see Fudenberg and Tirole (1991) or Laffont and Tirole
(1993). Consider first monotonicity of q(θ). From incentive compatibility of reports, we know
that type θ must not have any incentive to mimic type θ̂ , and vice-versa; formally

t (θ) − θq(θ) � t
(
θ̂
) − θq

(
θ̂
)
, and

t
(
θ̂
) − θ̂q

(
θ̂
)
� t (θ) − θ̂q(θ).

Adding these inequalities, I obtain(
θ − θ̂

)(
q
(
θ̂
) − q(θ)

)
� 0.

25 I thank an anonymous referee for suggesting this interpretation.
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Hence, the pair of schedules (t (θ), q(θ)) is incentive compatible only if q(θ) is non-increasing
in θ . Moreover, since q(θ) is non-increasing in θ , it is differentiable almost everywhere. Hence,
q(θ) satisfies almost everywhere qθ (θ) � 0. Let

u(θ) ≡ max
θ̂

{
t
(
θ̂
) − θq

(
θ̂
)}

. (32)

By the envelope theorem, uθ (θ) = −q(θ) a.e. Moreover, the least efficient type θ , is indifferent

between participating and not, u(θ) = 0. Hence u(θ) = − ∫ θ

θ
uθ (τ )dτ = ∫ θ

θ
q(τ )dτ . Since q(θ)

is non-increasing u(θ) is convex. Finally, monotonicity makes the local first-order condition
with respect to θ̂ sufficient for a global optimum in truth-telling. Substituting t (θ) = θq(θ) +∫ θ

θ
q(τ )dτ into the objective one has

θ̄∫
θ

(
V

(
q(θ)

) −
(

θq(θ) +
θ∫

θ

q(τ )dτ

))
f (θ, e)dθ. (33)

Integration by parts delivers the representation in terms of expected surplus net of the agent’s

expected virtual surplus (Myerson, 1981),
∫ θ̄

θ
(V (q(θ)) − (θ + F(θ,e)

f (θ,e)
)q(θ))f (θ, e)dθ .

The effort constraint: The effort constraint can be written as

e ∈ arg max
e

{ θ̄∫
θ

u(θ)f (θ, e)dθ − g(e)

}
,

where u(θ) = ∫ θ

θ
q(τ )dτ is the convex function defined in (32). Consider the integral∫ θ̄

θ
u(θ)f (θ, e)dθ . By conditions (8) and (12), an increase in e induces a mean preserving spread

in the distribution of θ . Since u(θ) is convex, the equivalence results of Rothschild and Stiglitz

(1970) imply that
∫ θ̄

θ
u(θ)f (θ, e′′)dθ �

∫ θ̄

θ
u(θ)f (θ, e′)dθ for any e′′ > e′, so

∫ θ̄

θ
u(θ)f (θ, e)dθ

is non-decreasing in e. Consider now the derivative of
∫ θ̄

θ
u(θ)f (θ, e)dθ with respect to e,∫ θ̄

θ
u(θ)fe(θ, e)dθ . Obviously, I can write

θ̄∫
θ

u(θ)fe(θ, e)dθ = −
θ̄∫

θ

u(θ)
1

θ̄ − θ
dθ +

θ̄∫
θ

u(θ)

[
fe(θ, e) + 1

θ̄ − θ

]
dθ.

Notice that fe(θ, e) + 1
θ̄−θ

is a density. To see this, observe that fe(θ, e) + 1
θ̄−θ

� 0 ∀θ by

assumption and

θ̄∫
θ

[
fe(θ, e) + 1

θ̄ − θ

]
dθ = 1,

because f (θ, e) being a density for all e requires that
∫ θ̄

θ
fe(θ, e)dθ = 0, and

∫ θ̄

θ
1

θ̄−θ
dθ = 1,

1
¯ is the density of the uniform distribution on [θ, θ̄ ]. Then, we can apply again the Rothschild
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and Stiglitz (1970) equivalence result, but this time to the density f̂ (θ, e) ≡ fe(θ, e) + 1
θ̄−θ

. Let

F̂ (θ, e) ≡ ∫ θ

θ
f̂ (τ, e)dτ denote the cdf of the new distribution. We have,

F̂ (θ, e) = Fe(θ, e) + θ − θ

θ̄ − θ

and hence
θ∫

θ

F̂e(τ, e)dτ =
θ∫

θ

Fee(τ, e)dτ.

It follows from conditions (9) and (13) that a reduction in e induces a mean preserving spread
in the distribution of θ under F̂ (θ, e). So, by the equivalence result of Rothschild and Stiglitz
(1970) a decision-maker with a convex utility function dislikes an increase in e, which implies
that for any e′′ > e′

θ̄∫
θ

u(θ)f̂e

(
θ, e′′)dθ �

θ̄∫
θ

u(θ)f̂
(
θ, e′)dθ.

Adding − ∫ θ̄

θ
u(θ) 1

θ̄−θ
dθ on both sides and eliminating the redundant terms, I have shown that∫ θ̄

θ
u(θ)fe(θ, e)dθ is non-increasing in e. Hence,

∫ θ̄

θ
u(θ)f (θ, e)dθ is non-decreasing and con-

cave in e, which implies that the first-order condition,

θ̄∫
θ

u(θ)fe(θ, e)dθ − ge(e) = 0,

is necessary and sufficient for an optimal level of e. Substituting for u(θ) = ∫ θ

θ
q(τ )dτ , integrat-

ing by parts, and using the assumption of non-moving supports, I can write

θ̄∫
θ

θ∫
θ

q(τ )dτfe(θ, e)dθ =
θ̄∫

θ

q(θ)Fe(θ, e)dθ.

Hence, the agent’s optimal choice of effort is the solution to the first-order condition

θ̄∫
θ

q(θ)Fe(θ, e)dθ − ge(e) = 0. �

Proof of Proposition 2. Differentiating (7) with respect to e, I have

Fe(θ, e) = π−1
e (θ; e).

The proof is given in two parts. In the first part I establish the properties of the conditional ex-
pectation function that follow from the assumptions; in the second part I use these characteristics
to establish the properties of the distribution of the conditional expectation.
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Part I. After an integration by parts, I can write the conditional expectation as

π(s, e) = β −
β∫

β

H(β | s, e)dβ.

Differentiating with respect to s, I have

πs(s, e) = −
β∫

β

Hs(β | s, e)dβ;

due to assumption (1), I have πs(s, e) > 0 for all s.
Differentiating with respect to e I have

πe(s, e) = −
β∫

β

He(β | s, e)dβ;

due to assumption (16), I have πe(s, e) < 0 for s ∈ (s, s̃), πe(s, e) > 0 for s ∈ (s̃, s), and
πe(s, e) = 0 for s ∈ {s, s̃, s}.

Part II. Differentiating the conditional expectation function totally, I obtain

dθ = πs(s, e)ds + πe(s, e)de.

For a constant θ , I have

ds

de
= −πe(s, e)

πs(s, e)
,

where s = π−1(θ, e). Note that the inverse is well defined due to the property that πs(s, e) > 0.
Substituting for s and ds, I have

π−1
e (θ, e) = dπ−1(θ, e)

de
= −πe(π

−1(θ, e), e)

πs(π−1(θ, e), e)
. (34)

Since θ ∈ {θ, θ̃ , θ} iff s ∈ {s, s̃, s}, θ ∈ (θ, θ̃ ) iff s ∈ (s, s̃), and θ ∈ (θ̃ , θ) iff s ∈ (s̃, s), it follows
that

Fe(θ, e) = 0 for θ ∈ {θ, θ̃ , θ} and Fe(θ, e) ≷ 0 for θ ≶ θ̃ . �
Proof of Proposition 3. Differentiating (7) another time with respect to e, I have

Fee(θ, e) = π−1
ee (θ, e).

Differentiating (34) once more with respect to e, I obtain

π−1
ee (θ, e) = −πee(·, e)πs(·, e) + πes(π

−1(θ, e), e) ds
de

πs(·, e) − (πss(·, e) ds
de

+ πse(·, e))πe(·, e)
(πs(·, e))2

= −1
(

πee(·, e) + 2
πes(·, e) ds πss(·, e)(ds

)2)
,
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where I have used (34), to obtain the second equality. Define

Π(θ, e) ≡ πee(·, e) + 2
πes(·, e)
πs(·, e)

ds

de
+ πss(·, e)

πs(·, e)
(

ds

de

)2

.

The conditions in the proposition are satisfied iff

π−1
ee (θ, e) � 0 for θ � θ̃ .

Since −1
πs(·,e) < 0, this is equivalent to

Π(θ, e) ≡ πee(·, e) + 2
πes(·, e)
πs(·, e)

ds

de
+ πss(·, e)

πs(·, e)
(

ds

de

)2

� (�)0 for θ � (�) θ̃ . (35)

I now prove that condition (18) implies that the function π(s, e) satisfies condition (35). To show

this, I will treat ds
de

as a free variable despite the fact that ds
de

= −πe(π
−1(θ,e),e)

πs (π−1(θ,e),e)
is determined by the

function π . Letting—with a slight abuse of notation—Π( ds
de

, θ, e) denote the function Π(θ, e)

when ds
de

is a free variable, I choose ds
de

to minimize Π( ds
de

, θ, e) for θ � θ̃ and choose ds
de

to
maximize Π( ds

de
, θ, e) for θ � θ̃ . Since the procedures are identical in both cases, I treat only the

first case.
For the case θ � θ̃ , let ds

de

∗
denote a minimizer of Π( ds

de
, θ, e). By definition, Π(θ, e) �

Π( ds
de

∗
, θ, e). Hence, if Π( ds

de

∗
, θ, e) � 0 for all θ � θ̃ , then Π(θ, e) � 0 for all θ � θ̃ and the

proof is complete.
First, I show that Π( ds

de
, θ, e) is convex in ds

de
for θ � θ̃ . To see this, note that since H(β | s, e)

is concave in (s, e) for s ∈ (s, s̃), −H(β | s, e) is convex in (s, e) for s ∈ (s, s̃). Moreover, con-

vexity is preserved under summation and integration. Hence, π(s, e) = β − ∫ β

β
H(β | s, e)dβ is

convex in (s, e) for s ∈ (s, s̃). Hence, I have πss(s, e) > 0, πee(s, e) > 0, and πss(s, e)πee(s, e)−
(πse(s, e))

2 � 0 for all e and s ∈ (s, s̃). Differentiating Π( ds
de

, θ, e) twice with respect to ds
de

I get

∂2Π( ds
de

, θ, e)

∂( ds
de

)2
= 2

πss(·, e)
πs(·, e) > 0 for θ ∈ (

θ, θ̃
)
.

Hence, Π( ds
de

, θ, e) has a unique minimizer, which satisfies the first-order condition

ds

de

∗
= −πes(·, e)

πss(·, e) ,
and the minimum satisfies

Π

(
ds

de

∗
, θ, e

)
= πee(·, e) − (πes(·, e))2

πs(·, e)πss(·, e) .

Convexity of π(s, e) implies that Π( ds
de

∗
, θ, e) � 0. Since Π(θ, e) � Π( ds

de

∗
, θ, e) by definition,

I have shown that Π(θ, e) � 0.
The proof for s ∈ (s̃, s) is analogous and therefore omitted. It follows that Fee(θ, e) =

π−1
ee (θ, e) � 0 for θ � θ̃ . �

Proof of Proposition 4. Using (7) and (10), the inverse hazard rate is

F(θ, e) = π−1(θ; e)πs

(
π−1(θ; e), e).
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Differentiating with respect to θ I obtain

∂

∂θ

F (θ, e)

f (θ, e)
= πs(π

−1(θ; e), e)
πs(π−1(θ; e), e) + π−1(θ; e)πss(π

−1(θ; e), e)
πs(π−1(θ; e), e)

= 1 + π−1(θ; e)πss(π
−1(θ; e), e)

πs(π−1(θ; e), e) .

Thus,

∂

∂θ

F (θ, e)

f (θ, e)
� 0 ⇔ 1 + sπss(s, e)

πs(s, e)
� 0. �

Proof of Proposition 5. e = 0 is optimal for the agent if and only if q(θ) = q for all θ and
t − θq � 0 for all θ . The best such contract from the principal’s perspective solves

max
q,t

θ∫
θ

(
V (q) − t

)
dF(θ, e)

s.t. t − θq � 0.

The optimal contract in this class satisfies

Vq(q)|q=q̂ = θ

and t̂ = θq̂ . This contract is very costly to the principal, because he pays the agent always as if
this one had the highest possible cost. Suppose instead the principal offers the contract

qBM(θ, e) = V −1
q

(
θ + F(θ, e)

f (θ, e)

)
. (36)

This contract corresponds to the case where the principal neglects his influence on the agent’s
effort choice but offers a contract which elicits information truthfully. Notice that due to condition
(19) in Proposition 4, qBM(θ, e) is strictly monotonic in θ . Since the principal extracts some
rents offering quantity schedule qBM(θ, e) with the associated transfer schedule to the agent, this
contract dominates the contract {t̂ , q̂}.

I now prove that there exist effort levels such that the principal’s contract offer is a best reply
to the agent’s choice of effort and the agent’s choice of effort is consistent with the contract
offered; that is, in addition to (36), it must also be true that

θ̄∫
θ

Fe(θ, ê)qBM(θ, e)dθ − ge(ê)

∣∣∣
ê=e

= 0. (37)

Consider the agent’s utility as a function of ê and e :
θ̄∫

θ

F (θ, ê)qBM(θ, e)dθ − g(ê).

Under our assumptions, qBM(θ, e) is differentiable in e. Hence, the agent’s utility is continuous
in e and ê and strictly concave in ê. By the theorem of the maximum, the maximizer correspon-
dence of the agent’s utility function with respect to ê is upper hemicontinuous. By strict concavity
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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in ê, the maximizer correspondence is in fact a function. Since a single valued correspondence
is upper hemicontinuous if and only if it is continuous as a function, it follows that the maxi-
mizer of the agent’s utility function is a continuous function of the principal’s conjectured effort
level. Let ê = r(qBM(θ, e)) denote the agent’s optimal choice of effort when the principal offers
contract qBM(θ, e). Define

Γ (e) ≡
θ∫

θ

Fe

(
θ, r

(
qBM(θ, e)

))
V −1

q

(
θ + F(θ, e)

f (θ, e)

)
dθ − ge

(
r
(
qBM(θ, e)

))
. (38)

An equilibrium effort (that satisfies both (36) and (37)) is then defined as a solution to the equa-
tion Γ (e) = 0, or, equivalently, as fixed point satisfying e = r(qBM(θ, e)).

Such a fixed point must exist, because I have r(qBM(θ, e))|e=0 > 0 and r(qBM(θ, e))|e=e < e.
To see the first point, notice that the family of distributions has a monotone hazard rate for
all e. Therefore, qBM(θ,0) is a strictly monotonic contract, and the agent has a strictly positive
incentive to acquire information. To see the second point, notice that the marginal cost of effort
goes to infinity as e approaches e. Since r(qBM(θ, e)) is a continuous function, it must have a
fixed point by Brouwer’s fixed point theorem. �
Proof of Proposition 6. The proof is split into two parts. In the first part, I show that the multi-
plier μ is negative for e < ẽ and that μ is positive for e > ẽ. In the second part, I give sufficient
conditions for a small increase in the effort level to be beneficial to the principal around μ = 0.

Part (i) If e < ẽ then μ < 0; if e > ẽ then μ > 0.
By the definition of the smallest fixed point, we know that r(qBM(θ, e)) > e for e < ẽ. To

make sure that the agent indeed chooses e, the principal must reduce the agent’s incentive to
acquire information. This is achieved by reducing production for θ � θ̃ and increasing production
for θ � θ̃ . From the condition of optimality,

Vq

(
q(θ)

) = θ + F(θ, e)

f (θ, e)
− μ

Fe(θ, e)

f (θ, e)

we conclude that μ < 0 since Fe(θ, e) � 0 for θ � θ̃ and Fe(θ, e) � 0 for θ > θ̃ . The proof for
e > ẽ is analogous and therefore omitted.

Part (ii) The marginal effect of a small increase in e around a point where μ = 0:
Let

W(e) ≡ max
q(θ)

⎧⎨
⎩

∫ θ̄

θ
(V (q(θ)) − (θ + F(θ,e)

f (θ,e)
)q(θ))f (θ, e)dθ

+ μ(
∫ θ̄

θ
Fe(θ, e)q(θ)dθ − ge(e))

⎫⎬
⎭ .

Invoking the envelope theorem I have around a point where μ = 0

We(e) =
θ̄∫

θ

(
V

(
q(θ)

) −
(

θq(θ) +
θ∫

θ

q(τ )dτ

))
fe(θ, e)dθ.

Integrating by parts, and noting that Fe(θ, e) = Fe(θ̄ , e) = 0, I can write

We(e) = −
θ̄∫ (

Vq

(
q(θ)

) − θ
)
qθ (θ)Fe(θ, e)dθ.
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Substituting for qθ (θ) =
∂
∂θ

(θ+ F(θ,e)
f (θ,e)

)

Vqq (q(θ))
, for F(θ,e)

f (θ,e)
= Vq(q(θ))−θ , and multiplying by Vq(q(θ))

θ+ F(θ,e)
f (θ,e)

= 1,

I obtain

We(e) = −
θ̄∫

θ

F (θ,e)
f (θ,e)

Vqq(q(θ))

Vq(q(θ))

θ + F(θ,e)
f (θ,e)

∂

∂θ

(
θ + F(θ, e)

f (θ, e)

)
Fe(θ, e)dθ.

Recall that ρ(q) = −Vqq(q)

Vq(q)
and let φ(q) ≡ Vq(q(θ))

Vqq (q(θ))
= − 1

ρ(q)
. Then, recollecting terms, I can

write

We(e) = −
θ̄∫

θ

(
φ
(
q(θ)

) F(θ,e)
f (θ,e)

θ + F(θ,e)
f (θ,e)

∂

∂θ

(
θ + F(θ, e)

f (θ, e)

))
Fe(θ, e)dθ.

After another integration by parts, using the fact that
∫ θ

θ
Fe(τ, e)dτ = 0 for θ = θ and for θ = θ̄ ,

I have

We(e) =
θ̄∫

θ

( θ∫
θ

Fe(τ, e)dτ
∂

∂θ

[
φ
(
q(θ)

) F(θ,e)
f (θ,e)

θ + F(θ,e)
f (θ,e)

∂

∂θ

(
θ + F(θ, e)

f (θ, e)

)])
dθ.

Notice that
∫ θ

θ
Fe(τ, e)dτ � 0 by Proposition 2. Thus, to prove the result, it suffices to sign the

expression ∂
∂θ

[·]. Define

X(θ) ≡ φ
(
q(θ)

) F(θ,e)
f (θ,e)

θ + F(θ,e)
f (θ,e)

∂

∂θ

(
θ + F(θ, e)

f (θ, e)

)
.

Performing the differentiation, I have

Xθ(θ) = φq

(
q(θ)

)
qθ (θ)

F(θ,e)
f (θ,e)

θ + F(θ,e)
f (θ,e)

∂

∂θ

(
θ + F(θ, e)

f (θ, e)

)

+ φ
(
q(θ)

)θ ∂
∂θ

F (θ,e)
f (θ,e)

− F(θ,e)
f (θ,e)(

θ + F(θ,e)
f (θ,e)

)2

∂

∂θ

(
θ + F(θ, e)

f (θ, e)

)

+ φ
(
q(θ)

) F(θ,e)
f (θ,e)

θ + F(θ,e)
f (θ,e)

∂2

∂θ2

(
θ + F(θ, e)

f (θ, e)

)
.

To sign, these expressions, notice that θ ∂
∂θ

F (θ,e)
f (θ,e)

− F(θ,e)
f (θ,e)

and ∂2

∂θ2 (θ + F(θ,e)
f (θ,e)

) both go to zero
when F(θ, e) converges to a uniform distribution. Hence the sign of Xθ(θ) is the sign of
−φq(q(θ)) (since qθ (θ) < 0). Since sign(φq(q)) = sign(ρq(q)), it follows that ρq(q) < 0 im-
plies We(e) > 0 and ρq(q) > 0 implies that We(e) < 0. �
Proof of Lemma 1. Suppose the cost function is changed to ĝ(e) = g(e) + αg(e) where α is
a parameter that takes values in the interval [−α,α], and where α < 1. Notice that the function
ĝ(e) is an Inada cost function for any such α, and an interior solution is guaranteed. The marginal
cost to the agent of exerting effort e is now ĝe(e) = ge(e) + αge(e). The multiplier μ is equal to
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the change in the principal’s utility due to a change in αge(e). Since e is a constant, I can define
c(α) ≡ αge(e). Let W(c) denote the welfare of the principal as a function of c

W(c) = max
q(θ)

θ̄∫
θ

(
V

(
q∗(θ)

) −
(

θ + F(θ, e)

f (θ, e)

)
q∗(θ)

)
f (θ, e)dθ

+ μ

( θ̄∫
θ

Fe(θ, e)q∗(θ)dθ − ge(e) − c

)

and let q∗(θ) denote the optimal quantity schedule for c = 0. Finally, let W(0) denote the value
of welfare for c = 0 (that is, α = 0). From the envelope theorem, I have

Wc(c) = −μ.

I now provide bounds on the multiplier. I distinguish two cases, a) α > 0 and b) α < 0. Since
c(α) ≷ 0 iff α ≷ 0 I directly state my results in terms of c.

Case a): If c > 0, then the principal must do at least as well as when he offers a contract with
production schedule

q̂(θ) =
{

q∗(θ) + ε
Fe(θ,e)
f (θ,e)

for θ � θ̃ ,

q∗(θ) for θ > θ̃.

From the agent’s first-order conditions with respect to e, for c = 0 and for c > 0, respectively, I
have

θ̄∫
θ

Fe(θ, e)q∗(θ)dθ = ge(e) and

θ̄∫
θ

Fe(θ, e)q̂(θ)dθ = ge(e) + c.

Hence, ε and c are related by the condition

ε = c∫ θ̃

θ
Fe(θ, e)

Fe(θ,e)
f (θ,e)

dθ

.

Define

Y+ ≡
θ̃∫

θ

Fe(θ, e)
Fe(θ, e)

f (θ, e)
dθ.

Notice that

Y+ = F
(
θ̃ , e

) θ̃∫
θ

(
Fe(θ, e)

f (θ, e)

)2
f (θ, e)

F (θ̃ , e)
dθ

= F
(
θ̃ , e

)(
Var

(
Fe(θ, e) ∣∣ θ � θ̃

)
+

(
EΘ

[
Fe(θ, e)

∣∣∣∣ θ � θ̃

])2)
,
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where the second equality follows from completing the square by EΘ [Fe(θ,e)
f (θ,e)

| θ � θ̃ ] −
EΘ [Fe(θ,e)

f (θ,e)
| θ � θ̃ ]. For the welfare of the principal, I have

W(c) �
θ∫

θ

(
V

(
q∗(θ) + 1θ�θ̃ ε

Fe(θ,e)
f (θ,e)

) − (
θ + F(θ,e)

f (θ,e)

)(
q∗(θ) + 1θ�θ̃ ε

Fe(θ,e)
f (θ,e)

))
f (θ, e)dθ

�
θ∫

θ

(
V

(
q∗(θ)

) −
(

θ + F(θ, e)

f (θ, e)

)(
q∗(θ) + 1θ�θ̃ ε

Fe(θ, e)

f (θ, e)

))
f (θ, e)dθ

= W(0) − ε

θ̃∫
θ

(
θ + F(θ, e)

f (θ, e)

)
Fe(θ, e)

f (θ, e)
f (θ, e)dθ,

where the first inequality follows from the definition of W(c) and the second uses the fact that
ε

Fe(θ,e)
f (θ,e)

� 0 for all θ � θ̃ , so that the principal must do at least as well as by simply not consuming
the extra quantity that is produced. Define

Z+ ≡
θ̃∫

θ

(
θ + F(θ, e)

f (θ, e)

)
Fe(θ, e)

f (θ, e)
f (θ, e)dθ

and notice that, again by completing the square,

Z+ = F
(
θ̃ , e

) θ̃∫
θ

(
θ + F(θ, e)

f (θ, e)

)
Fe(θ, e)

f (θ, e)

f (θ, e)

F (θ̃ , e)
dθ

= F(θ̃, e)

(
Cov(θ + F(θ,e)

f (θ,e)
,

Fe(θ,e)
f (θ,e)

| θ � θ̃ )

+ EΘ [θ + F(θ,e)
f (θ,e)

| θ � θ̃ ]EΘ [Fe(θ,e)
f (θ,e)

| θ � θ̃ ]

)
.

Combining these results, I can write

W(c) − W(0) � −c
Z+

Y+ .

Dividing by c > 0 and taking limits as c → 0 I obtain

lim
c→0

W(c) − W(0)

c
= −μ � −Z+

Y+ ,

or

μ � Z+

Y+ .

Substituting for Y+ and Z+, I have

Z+

Y+ = Cov
(
θ + F(θ,e)

f (θ,e)
,

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
)

Var
(

Fe(θ,e)
∣∣ θ � θ̃

) + (
EΘ

[
Fe(θ,e)

∣∣ θ � θ̃
])2
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.01.012

f (θ,e) f (θ,e)



ARTICLE IN PRESS YGAME:1496
JID:YGAME AID:1496 /FLA [m1+; v 1.91; Prn:11/04/2008; 11:21] P.33 (1-40)

D. Szalay / Games and Economic Behavior ••• (••••) •••–••• 33
+ EΘ

[
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
]
EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
]

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
) + (

EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
])2

�

√
Var

(
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
)√

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
)

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
) + (

EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
])2

+ EΘ

[
θ + F(θ,e)

f (θ,e)
| θ � θ̃

]
EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
]

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
) + (

EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
])2

�

√
Var

(
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
)√

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
)

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
)

+ EΘ

[
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
]
EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
]

(
EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
])2

=
√

Var
(
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
)

√
Var

(
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
) + EΘ

[
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
]

EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
] ,

where the first inequality follows from the fact that for any two random variables A and B ,
Cov(A,B) �

√
Var(A)

√
Var(B) and the second from the fact that the denominators become

smaller. Hence, I have shown that

μ �

√
Var

(
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
)

√
Var

(
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
) + EΘ

[
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
]

EΘ

[
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
] . (39)

Case b) c < 0. In this case, the principal can do at least as well as by offering the contract

q̂(θ) =
{

q∗(θ) for θ < θ̃,

q∗(θ) + ε
Fe(θ,e)
f (θ,e)

for θ � θ̃ .

ε is again defined by the first-order condition for effort

ε = − c

Y− ,

where

Y− ≡
θ∫

θ̃

Fe(θ, e)
Fe(θ, e)

f (θ, e)
dθ.

Notice that ε < 0. I have

W(c) �
θ∫

θ

(
V

(
q∗(θ) + 1θ�θ̃ ε

Fe(θ,e)
f (θ,e)

) − (
θ + F(θ,e)

f (θ,e)

)(
q∗(θ) + 1θ�θ̃ ε

Fe(θ, e)

f (θ, e)

))
f (θ, e)dθ

�
θ∫ (

V
(
q∗(θ)

) −
(

θ + F(θ, e)

f (θ, e)

)(
q∗(θ) + 1θ�θ̃ ε

Fe(θ, e)

f (θ, e)

))
f (θ, e)dθ
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= W(0) − ε

θ∫
θ̃

(
θ + F(θ, e)

f (θ, e)

)
Fe(θ, e)

f (θ, e)
f (θ, e)dθ,

where the first inequality uses the definition of W(c), the second uses the fact that ε
Fe(θ,e)
f (θ,e)

is

non-negative for θ � θ̃ , so the principal’s utility is at least as high as when he does not consume
the additional quantity at all. Define

Z− ≡
θ∫

θ̃

(
θ + F(θ, e)

f (θ, e)

)
Fe(θ, e)

f (θ, e)
f (θ, e)dθ.

Substituting from the agent’s first-order condition for ε, and taking limits as c goes to zero, I can
write

lim
c→0

W(0) − W(c)

−c
= −μ � Z−

Y− ,

since the left-hand side is the left-side differential of W with respect to c.
Performing the same operations as in part a) I find that

Z−

Y− �
√

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
)√

Var
(
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
) + EΘ

(
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
)
EΘ

(
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
)

Var
(

Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
) + (

EΘ

(
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
))2

�

√
Var

(
θ + F(θ,e)

f (θ,e)

∣∣ θ � θ̃
)

√
Var

(
Fe(θ,e)
f (θ,e)

∣∣ θ � θ̃
) ,

where the first inequality is again based on the observation that for any two random vari-
ables A and B , Cov(A,B) �

√
Var(A)

√
Var(B), and the second inequality uses the fact that

EΘ(
Fe(θ,e)
f (θ,e)

| θ � θ̃ ) < 0. Hence, I have shown that

μ � −
√

Var
(
θ + F(θ,e)

f (θ,e)
| θ � θ̃

)
√

Var
(

Fe(θ,e)
f (θ,e)

| θ � θ̃
) . �

Proof of Result 1. Suppose the principal wishes to implement a level of effort e such that the
agent’s equilibrium type distribution is supported on [θ, θ]. In equilibrium, the effort level e is
implemented by a pair of schedules (q(θ), t (θ)) defined on [θ, θ]. However, since the agent can
deviate to higher effort levels, the message space needs to be extended to the set [θ(e), θ(e)], so
that the agent can still be induced to reveal his true type, regardless of what his effort choice is. To
deal with this issue, I extend the domain of definition of the schedules (q(θ), t (θ)) to [θ(e), θ(e)]
as follows. I let

q̂(θ) ≡
{

q(θ) for θ � θ,

q(θ) for θ � θ � θ,

0 for θ > θ.

t̂(θ) is defined as t̂ (θ) = θq̂(θ) + ∫ θ(e)

θ
q̂(τ )dτ . Notice that the agent participates under the

menu (q̂(θ), t̂(θ)) for all θ , whereas under (q(θ), t (θ)) the agent rejects if θ > θ . Since under
Please cite this article in press as: D. Szalay, Contracts with endogenous information, Games Econ. Behav. (2008),
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(q̂(θ), t̂(θ)) the principal offers the null-contract for θ > θ , the two formulations are equivalent
in the sense that they induce the same expected utilities. Finally, under (q̂(θ), t̂(θ)), the principal
offers contract q(θ), t (θ) to all types with θ � θ . Since the principal wishes to implement a
distribution of types which is supported only on the interval [θ, θ ], any pair of quantity and
payment schedules for θ < θ is optimal as long as it is incentive compatible. Since q̂(θ) is
monotonic (q̂(θ), t̂(θ)) is indeed incentive compatible.

The agent’s ex ante expected utility (gross of costs of information acquisition) can now be
written as

EΘ

[
u(θ)

] =
θ(e)∫

θ(e)

θ(e)∫
θ

q̂(τ )dτ dF(θ, e).

Three cases can arise. In case (i) the agent chooses the equilibrium level of effort in which case
θ(e) = θ and θ(e) = θ . This case corresponds to the case discussed in the main model. In case
(ii) the agent deviates from the equilibrium effort to a higher level, in which case θ(e) > θ and
θ(e) < θ . In case (iii) the agent deviates to a lower level of effort which implies that θ(e) < θ

and θ(e) > θ . I now show that in all three cases, I can write

EΘ

[
u(θ)

] =
θ(e)∫

θ(e)

max

{
0,

θ∫
θ

q̂(τ )dτ

}
dF(θ, e). (40)

In case (i) θ(e) = θ and θ(e) = θ and dF(θ, e) = 0 for θ ∈ [θ(e), θ) or θ ∈ (θ, θ(e)]. Moreover,

q̂(θ) ≡ q(θ) for θ ∈ [θ, θ]. Hence, EΘ [u(θ)] = ∫ θ

θ

∫ θ

θ
q(τ )dτ dF(θ, e), a special case of (40 ). In

case (ii) dF(θ, e) = 0 for θ ∈ [θ(e), θ(e)) or θ ∈ (θ(e), θ(e)]. Moreover, under the pair of sched-

ules (q(θ), t (θ)) the agent rejects in case θ ∈ (θ, θ(e)] and obtains no rent. Since
∫ θ

θ
q̂(τ )dτ < 0

for θ ∈ (θ, θ(e)], max{0,
∫ θ

θ
q̂(τ )dτ } = 0 in this case. So, expected utility can be written as in

(40) again. Finally, in case (iii) dF(θ, e) = 0 for θ ∈ [θ(e), θ(e)) and θ ∈ (θ(e), θ(e)], and more-

over
∫ θ

θ
q̂(τ )dτ � 0 for all θ such that dF(θ, e) > 0. Hence, (40) applies.

I now prove that (40) is equivalent to

EΘ

[
u(θ)

] = q(θ)

θ∫
θ(e)

F (θ, e)dθ +
θ∫

θ

q(θ)F (θ, e)dθ.

The proof is trivial for case (i) since θ(e) = θ in this case, which implies that EΘ [u(θ)] =∫ θ

θ
q(θ)F (θ, e)dθ as in the main model.
Case (ii) In this case, I can write

θ(e)∫
max

{
0,

θ∫
q̂(τ )dτ

}
dF(θ, e) =

θ∫ θ∫
q̂(τ )dτ dF(θ, e) +

θ∫ θ∫
q̂(τ )dτ dF(θ, e),
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since
∫ θ(e)

θ
max{0,

∫ θ

θ
q̂(τ )dτ }dF(θ, e) = 0. Switching from q̂(θ) to q(θ), I can write

θ(e)∫
θ(e)

max

{
0,

θ∫
θ

q̂(τ )dτ

}
dF(θ, e) =

θ∫
θ(e)

(
(θ − θ)q(θ) +

θ∫
θ

q(τ )dτ

)
dF(θ, e)

+
θ∫

θ

θ∫
θ

q(τ )dτ dF(θ, e).

Noting that
∫ θ

θ(e)
dF(θ, e) = F(θ, e), and that

∫ θ

θ(e)
(θ − θ)q(θ)dF(θ, e) = q(θ)

∫ θ

θ(e)
F (θ, e)dθ

by an integration by parts, I can write

θ(e)∫
θ(e)

max

{
0,

θ∫
θ

q̂(τ )dτ

}
dF(θ, e) = F(θ, e)

θ∫
θ

q(τ )dτ + q(θ)

θ∫
θ(e)

F (θ, e)dθ

+
θ∫

θ

θ∫
θ

q(τ )dτ dF(θ, e).

Integrating the last term on the right-hand side of this expression by parts and simplifying, I ob-
tain

F(θ, e)

θ∫
θ

q(τ )dτ + q(θ)

θ∫
θ(e)

F (θ, e)dθ + F
(
θ, e

) θ∫
θ

q(τ )dτ − F(θ, e)

θ∫
θ

q(τ )dτ

+
θ∫

θ

q(θ)F (θ, e)dθ

= q(θ)

θ∫
θ(e)

F (θ, e)dθ +
θ∫

θ

q(θ)F (θ, e)dθ,

which is exactly (40).

(iii) In this case,
∫ θ

θ
q̂(τ )dτ � 0 for all θ(e) � θ � θ(e) and therefore I have

θ(e)∫
max

{
0,

θ∫
q̂(τ )dτ

}
dF(θ, e) =

θ(e)∫ θ∫
q(τ)dτ dF(θ, e). (41)
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Integrating by parts, I obtain

θ(e)∫
θ(e)

θ∫
θ

q(τ )dτ dF(θ, e) =
θ∫

θ(e)

q(θ)dθF
(
θ(e), e

) −
θ∫

θ(e)

q(θ)dθF
(
θ(e), e

)

+
θ(e)∫

θ(e)

q(θ)F (θ, e)dθ. (42)

Since F(θ, e) = 1 for θ ∈ [θ(e), θ ], I can write
∫ θ

θ(e)
q(θ)dθF (θ(e), e) = ∫ θ

θ(e)
q(θ)F (θ, e)dθ .

Since F(θ, e) = 0 for θ ∈ [θ, θ(e)], I have
∫ θ(e)

θ q(θ)F (θ, e)dθ = 0. Hence, I can write (42) as

θ(e)∫
θ(e)

θ∫
θ

q(τ )dτ dF(θ, e) =
θ∫

θ

q(θ)F (θ, e)dθ.

Again because F(θ, e) = 0 for θ ∈ [θ, θ(e)], I have

θ(e)∫
θ

F (θ, e)dθ = −
θ∫

θ(e)

F (θ, e)dθ =
θ∫

θ(e)

F (θ, e)dθ = 0,

so I can write

EΘ

[
u(θ)

] = q(θ)

θ∫
θ(e)

F (θ, e)dθ +
θ∫

θ

q(θ)F (θ, e)dθ. �

Proof of Proposition 8. Since F(θ(e), e) = 0 for all e, I can differentiate totally and have
f (θ(e), e)θe(e) + Fe(θ(e), e) = 0. At θ(e) = θ , I have Fe(θ, e) = −f (θ, e)θe(e) > 0 since
θe(e) < 0. Therefore, for a contract that implements a high effort level (μ > 0), production at
the top is going to be unusually high. A similar argument can be used to show that production at
the bottom is smaller than the Baron–Myerson quantity for the case where μ > 0. �
Proof of Proposition 9. The proof is split into two parts. In part (i) I derive the properties of the
conditional expectation function. In part (ii) I use these properties to derive those of the ex ante
distribution of θ .

Part (i) Properties of the conditional expectation function
From Milgrom (1981) it follows directly that ∂

∂β
hi(β|s,i)
h(β|s,i) > 0 for s ∈ (s̃, s) implies

Hi(β | s, i) < 0 for s ∈ (s̃, s). Likewise, ∂
∂β

hi(β|s,i)
h(β|s,i) < 0 for s ∈ (s, s̃) implies Hi(β | s, i) > 0

for s ∈ (s, s̃). Since

πi(s, i) = −
β∫

β

Hi(β | s, i)dβ
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this proves that

πi(s, i) < 0 for s ∈ (s, s̃) and πi(s, i) > 0 for s ∈ (s̃, s).

Finally, I show that πi(s, i) = 0 for s ∈ {s, s̃, s}. To see this, note that one can write for s ∈
{s, s̃, s}

∂

∂β

hi(β | s, i)
h(β | s, i) H(β | s, i) = 0.

Integrating I have

β∫
β

∂

∂β

hi(β | s, i)
h(β | s, i) H(β | s, i)dβ = 0.

Integrating by parts, I obtain

hi(β | s, i)
h(β | s, i) −

β∫
β

hi(β | s, i)
h(β | s, i) h(β | s, i)dβ = 0.

Since h(β | s, i) is a density for all i, I have
∫ β

β
hi(β | s, i)dβ = 0. It follows that hi(β|s,i)

h(β|s,i) = 0.

From ∂
∂β

hi(β|s,i)
h(β|s,i) = 0, it follows that hi(β|s,i)

h(β|s,i) = 0 for all β . Finally, from the fact that h(β | s, i) >

0 for all β it follows that hi(β | s, i) = 0 for all β . Hence, for s ∈ {s, s̃, s} π(s, i) is independent
of i.

Part (ii) Properties of F(θ, e)

Since l(i, e) has full support for all e, the distribution of θ has a nonmoving support
F(θ, e) = 0 ∀e and F(θ, e) = 1 ∀e. Hence Fe(θ, e) = Fe(θ, e) = 0. By the law of iterated ex-

pectations Eθθ = Eββ for all e. Since
∫ θ

θ
θ dF(θ, e) = θ − ∫ θ

θ
F (θ, e)dθ , this is equivalent to∫ θ

θ
Fe(τ, e)dτ = 0 ∀e.
By an integration by parts

F(θ, e) =
1∫

0

F i(θ, i)dL(i, e)

= F i(θ, i)L(i, e)|10 −
1∫

0

π−1
i (θ, i)L(i, e)di.

Taking derivatives with respect to e, since L(1, e) = 1 ∀e, I have

Fe(θ, e) = −
1∫

0

π−1
i (θ, i)Le(i, e)di.

From part (i), I have

πi(θ, i) � 0 ⇔ θ � θ̃
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and hence

Fe(θ, e) > 0 for θ ∈ (
θ, θ̃

)
,

Fe(θ, e) < 0 for θ ∈ (
θ̃ , θ

)
.

Since Lee(i, e) and Le(i, e) have opposing signs for all i, I have also

Fee(θ, e) < 0 for θ ∈ (
θ, θ̃

)
,

Fee(θ, e) > 0 for θ ∈ (
θ̃ , θ

)
. �
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