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Abstract

A decision-maker needs to reach a decision and relies on an expert to acquire in-

formation. Ideal actions of expert and decision-maker are partially aligned and the

expert chooses what to learn about each. The decision-maker can either get advice

from the expert or delegate decision-making to him. Under delegation, the expert

learns his privately optimal action and chooses it. Under communication, advice based

on such information is discounted, resulting in losses from strategic communication.

We characterize the communication problems that make the expert acquire informa-

tion of equal use to expert and decision-maker. In these problems, communication

outperforms delegation.
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1 Introduction

Good decision-making requires good information. Except perhaps for routine decisions,

such information is not readily available but must be actively acquired. Pressed for time,

decision-makers often have to delegate this job to others. We take this situation of delegated

expertise1 as our starting point and wonder what mechanism of decision-making should ide-

ally complement it? Should the decision-maker delegate decision-making to the expert as

well, or should she keep authority over decision-making and have the expert report back

to her? This paper makes a case for communication as a complement to delegated exper-

tise, providing conditions under which communication unambiguously dominates delegated

decision-making.

We envision a decision-problem that involves a change of policy away from some known

status quo, e.g., adapting a design to new market conditions, adjusting a portfolio in response

to new information, choosing a new project, adapting a business plan in response to changes

in the environment of the firm, and so on. Naturally, the status quo is the optimal action

based on the information currently available, but additional information will likely lead to

a revision of plans. The decision-maker can consult an expert for advice or help. The

contractual options for the decision-maker are incomplete (Grossman and Hart (1986) and

Hart and Moore (1990)): as in Aghion and Tirole (1997), the decision-maker can only choose

the allocation of authority. That is, she can either simply ask for advice or entrust the expert

with decision-making altogether. In contrast to their approach, the decision-maker has no

time or means to become informed herself. However, she can communicate with the expert

and infer her preferred action indirectly, at least to some extent.2

We construct a novel model with linear Bayesian updating rules in which the decision-

maker’s inferred optimal action is a compromise between the expert’s preferred action and

the status quo. The expert observes noisy signals about the optimal actions from his and

the decision-maker’s perspective; he is free to choose the precision of each of the signals.

We think of a transparent environment where the expert’s information acquisition is overt,

1Demski and Sappington (1987) have coined this term. An expert is an agent endowed with a technology

to acquire information.
2In Aghion and Tirole (1997), an uninformed individual would stick to the status quo, because there exist

disastrous projects. We drop this assumption.
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as is the case, e.g., for inhouse consulting. While the precision levels of the signals are

observable, the actual realizations are privately observed by the expert. We abstract from

real costs of information acquisition and focus on the strategic costs of different information

acquisition strategies instead. The extent to which the decision-maker follows the expert’s

advice depends crucially on what type of information the expert acquires. Moreover, when

allocating authority the decision-maker takes into account that the expert’s information

acquisition will depend on her choice of institution.

Our main findings are as follows. If the decision-maker transfers formal authority to the

expert, then the expert acquires perfect information about his preferred action and takes it.

The decision-maker benefits from this policy, but only to some extent. The advantage is that

the expert’s action policy is highly sensitive to his information, the disadvantage is that the

policy is optimal from the expert’s perspective, not the decision-maker’s. Imagine now that

the decision-maker keeps formal authority so that the expert has to report back to her. If

the expert followed the same information acquisition strategy, then the decision-maker would

discount the expert’s advice, resulting in losses from strategic communication. Moreover, if

the losses from strategic communication are sufficiently sensitive to the expert’s bias, then

the expert has incentives to avoid this situation and to eliminate the bias. The optimal

information acquisition strategy has the following features in this case. The expert acquires

perfect information about the preferred action from the decision-maker’s perspective. More-

over, he acquires only a noisy signal about the optimal action from his perspective. That

is, he remains partially ignorant about his own preferred choice, to signal credibly to the

decision-maker that his advice is useful to her. The expert benefits only to some extent from

the resulting action policy. However, this is still better than perfectly knowing the ideal

action but not getting the decision-maker to follow his advice.

Put differently, an expert who wishes to have a pronounced impact on the decision-

maker’s choices needs to acquire information of primary concern to the decision-maker and

needs to reassure the decision-maker of his unbiasedness. Our analysis reveals that biased

advice is less effective if extreme disagreement between expert and decision-maker is likely.

The reason is that communication based on expert-optimal information has very little impact

on the decision-maker’s choice and hence does not work well. The shadow of such ineffective

communication makes the expert avoid these kind of situations and gives him incentives to
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acquire receiver relevant information.

We draw upon and contribute to several literatures. Our first contribution is to introduce

a rich model of information and strategic information transmission à la Crawford and Sobel

(1982) into a problem of adapting to new information. The defining feature of the problem is

that there is no conflict of interest with respect to the status quo; conflicts arise only ex post

depending on the information that is acquired. In contrast to known models, conflicts are

endogenous here and intertwined with information. We develop a new set of linear models

that allow for closed form expressions of the value of information. The technique to compute

these closed forms is new to the literature.3 Likewise is the statistical model, that allows

for linear updating in a more tractable way than the multivariate Normal case allows.4 The

model is rich enough to allow us to quantify the effectiveness of strategic communication, a

measure of the amount of information transmitted through strategic communication. Making

this kind of comparative statics analysis feasible is perhaps the major contribution of this

paper.

Adapting to news is a natural application, but our approach is not confined to such

problems; different scenarios give rise to the same abstract incentive problems. For example,

think of a situation where incentive contracts have been used to align incentives with respect

to everything that is known already. Information arriving after this contracting stage still

creates conflicts, e.g., when a project- or division-manager’s pay depends on the division’s

profit to a greater extent than overall profits do. Likewise, in the financial industry, even

if regulation makes every effort to eliminate known conflicts of interests, requesting perfect

foresight is probably asking too much. Similarly, differences in the lengths of time horizons

may create wedges of the sort envisioned here. For example, a consultant will care relatively

more about the short-term impact of his advice than the advised firm does.5 Plain and

3In particular, our approach differs from Goltsman et al. (2009) and Alonso and Rantakari (2013) where

payoffs arising from mediated talk are used to determine upper bounds on the value of communication.
4The idea is to construct the multivariate distribution from marginals with linear inference rules based

on truncations to the tails – linear tail conditional expectations. In addition, the classical linear conditional

expectations rules apply. Our leading case is the joint Laplace distribution (Kotz et al. (2001)). However,

we describe the entire class with these features. See Section 8 for details.
5See Antic and Persico (2017), among other results, for an analysis of conflicts due to differences in time

horizons.
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simple, our analysis predicts that communication serves to align incentives in these contexts,

when news likely induces pronounced revisions of plans. For example, in financial decision-

making this is the case if return distributions have fat tails; in corporate decisions, this is the

case if the firm is likely to expand substantially into the new market or retreat completely

from it.

Our paper adds to the comparison of institutions. Dessein (2002) investigates the opti-

mal allocation of authority in a decision-problem à la Crawford and Sobel (1982) in which

the informed party is uniformly biased in one direction. Delegation entails a loss of control,

communication a loss from strategic information transmission. Delegation outperforms com-

munication if the bias is small. We look at the optimal allocation of authority in problems

of acquiring and adapting to new information, or more generally in problems where a pri-

ori known biases have been eliminated. We characterize the environments with endogenous

biases in which communication always outperforms delegation.6

The comparison of institutions has implications for the organization of hierarchies. The

literature has studied the interplay between adaptation and coordination problems (see

Alonso et al. (2008) and Rantakari (2008)). In particular, it is shown that decentralized

decision-making is better than centralized decision-making for small conflicts of interests

and the reverse is true for larger conflicts. Our present approach abstracts from the coordi-

nation motive and shows that information acquisition may tilt the dice in favor of commu-

nication. Our results have parallels in richer hierarchies. In companion work, (Deimen and

Szalay (2018)), we allow for information provision in an organization with division of labor

and show that the optimal information provision by headquarters aligns incentives. Thus,

the informational policy of the organization may serve as a substitute for the allocation of

authority.

We contribute to the literature on information acquisition in communication problems.7

6Communication in adaptation problems with similar (linear) reduced forms have been studied, e.g., by

Melumad and Shibano (1991) and Stein (1989). The most general analysis is due to Gordon (2010). Our

contribution is the rich informational model. For tractability, we assume quadratic loss functions, which is

more structure than Dessein (2002) imposes.
7See Austen-Smith (1994) for an early and Pei (2015) for a recent contribution. The effects of better

information are studied in Moscarini (2007) and Ottaviani and Sørensen (2006). Blume et al. (2007) study

noise in communication.
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Most closely related in terms of conclusions is Argenziano et al. (2016), which allows for

endogenous information acquisition in the Crawford and Sobel (1982) model. Similar to our

findings they show that communication creates better incentives for information acquisition

than delegation. Roughly speaking, both papers use the threat of bad communication off the

equilibrium path to discipline the sender’s information acquisition. Argenziano et al. (2016)

show that this threat implies a higher marginal value of information under communication

than under delegation so that the sender acquires more information under communication.

Intuitively, if the receiver does not listen in case the sender does not acquire the right

amount of information, then communication can create very strong incentives for information

acquisition in the overt mode. However, this effect is robust to allowing for different beliefs off

equilibrium path and also holds when information acquisition is covert, albeit for a different

reason.8 In the present paper, we study overt information acquisition and argue that the

threat of bad communication serves to discipline the sender to acquire the right pieces of

information. When biased communication is sufficiently ineffective the sender prefers to

avoid having a bias by acquiring information that correlates better with the decision-maker’s

preferred choice. While both papers emphasize a virtue of communication, our argument is

based on fundamentally different forces. We face a different decision-problem with conflicts

that arise endogenously ex post – as a function of the information that is acquired – but

are absent ex ante. Moreover, we require a multi-dimensional approach: a two-dimensional

state and signal space to understand the sender’s incentives to learn about one or the other

dimension of the state space. Finally, to make this problem tractable, we develop a general

theory of location experiments with linear posteriors which is new to the literature.9

Clearly, our analysis has its limitations. In the incomplete contracting approach, actions

are not contractible. If they were, then much more complicated institutions, in particular

8Under covert information acquisition, the set of actions that the sender can induce is determined by

how much information acquisition the receiver expects. This can make the life of a sender who shirks on

information acquisition particularly unpleasant. See Eső and Szalay (2017) for an argument showing that

the nuancedness of language reduces the incentive to become informed for related reasons.
9For multi-dimensional models, see Battaglini (2002), Chakraborty and Harbaugh (2007), and Levy and

Razin (2007). Our aggregation model, with a two-dimensional state and a one-dimensional action space has

not yet been studied. Our approach differs also from the one taken in random bias models, such as Li and

Madarász (2008), Dimitrakas and Sarafidis (2005), and Morgan and Stocken (2003), which typically look at

independent biases.
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optimally constrained delegation, would become feasible.10 In the context of information

acquisition, a problem of this sort is analyzed in Szalay (2005). The optimal way to deal

with a problem of moral hazard in information acquisition is to prohibit actions that are

optimal given prior information. Allowing for costs and contractible actions is an extension

worth pursuing. We stick to the case of overt and costless information acquisition here, as in

Kamenica and Gentzkow (2011). This is a reasonable description of an inhouse consultant

who is to combine his knowledge with the data owned by the firm. It is very easy to monitor

which files the consultant requests and which not. The crucial assumption is that the expert

can somehow generate this kind of transparency. With covert information acquisition the

expert would have no incentive to adjust his information acquisition and communication

would perform badly. Thus, if he can, the expert wants to choose the overt mode.11

The paper is structured as follows. In Section 2, we introduce the model. In Section

3, we prove an essential reduction that serves to simplify the analysis dramatically and

explain the convenient linearity features of our environment. We characterize equilibria

at the communication stage in Section 4 and derive the value of information arising from

communication in Section 5. Proceeding backwards along the timeline, we study the expert’s

incentives to acquire information in Section 6 and then draw the implications for the choice

of institutions in Section 7. To this point, our analysis is confined to our leading case,

the joint Laplace distribution. In Section 8, we generalize our findings to a rich class of

informational models with linear updating rules, all ordered by a single parameter that

captures the effectiveness of biased communication. Section 9 looks at a variation in timing.

Section 10 discusses a number of extensions and concludes our investigation. All longer

proofs are gathered in appendices, proofs of theorems are discussed in the text.

10For an analysis of such institutions, see Holmstrom (1982), Alonso and Matouschek (2008), and Amador

and Bagwell (2013).
11We thank Steve Matthews for pointing this out to us.
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2 The Model

2.1 The decision-problem

A decision-maker, henceforth the receiver, needs to reach a decision y ∈ R. The ideal decision

from her point of view depends on the realization ω of a random variable ω̃. More precisely,

the payoff of the receiver is

ur (y, ω) = − (y − ω)2 .

Unfortunately, the receiver does not know ω. However, before taking the action, she can

consult an expert, henceforth referred to as the sender. The sender’s preferences over actions

are given by the function

us (y, η) = − (y − η)2 ,

where η is the realization of a random variable η̃. We denote (ω, η) the state of the world. We

assume that the random variables ω̃ and η̃ each have a mean of zero, so that the sender and

the receiver agree that the status quo action, y = 0, is optimal absent additional information.

Moreover, ω̃ and η̃ have identical variances σ2 and are positively correlated with coefficient of

correlation ρ = σωη
σ2 ∈ (0, 1).12 The sender does not know the state either, but he can observe

signals sω = ω + εω and sη = η + εη that reveal the state with noise. We assume that the

noise terms are uncorrelated with each other and with the state. We write τ ≡ (ω, η, εω, εη)

with typical element τ and let Σ denote the covariance matrix.13

We introduce a class of distributions that is particularly suited to study updating com-

bined with strategic communication. Our leading case is the joint Laplace distribution, with

well known marginal density fτ (τ) = 1
2
λe−λ|τ | for λ =

√
2

στ
on support R and characteristic

function Φ (t) = 1
1+ 1

2
t2σ2

τ
. Following e.g. Kotz et al. (2001), the joint Laplace distribution

is defined by the same characteristic function, Φ (t) = 1
1+ 1

2
t′Σt

. It belongs to the class of

12Our analysis easily extends to not too asymmetric prior variances. The model is interesting only if ρ > 0,

because no meaningful communication is possible for ρ ≤ 0.
13Formally, we assume

Σ =


σ2 σωη 0 0

σωη σ2 0 0

0 0 σ2
εω 0

0 0 0 σ2
εη

 .
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elliptical distributions.14 We explain in detail in Section 3 why this environment is useful

and generalize our analysis beyond the Laplace case in Section 8.

2.2 Timing

Timeline:

receiver
chooses

institution

delegation

communication

sender
observes

institution

sender
chooses

information
structure

receiver
observes

information
structure

sender
observes

signal

realizations

sender
chooses
action

sender
sends

message

receiver
observes
message

receiver
chooses
action

The strategic interaction unfolds as indicated in the timeline.15 Firstly, the receiver

commits to an institution of decision-making, d ∈ D = {delegation, communication}. If she

chooses delegation, then she delegates both information acquisition and decision-making to

the sender. If she chooses communication, then she retains the right to choose the action

herself and only delegates information acquisition to the sender. Note that the receiver is

always forced to delegate information acquisition to the sender, because she has no time to

acquire information herself. Secondly, after observing the receiver’s choice of institution, the

sender chooses what information to acquire. Formally, the sender chooses the variances of

the noise terms in the signals, σ2
εω and σ2

εη . We call the joint distribution of signals and states

an information structure. The choice of the information structure is observed by the receiver.

However, the realizations of the signals are privately observed by the sender. Finally, actions

are chosen according to the selected institution of decision-making. Under delegation, the

sender picks his preferred action policy. Under communication, the sender communicates

14Elliptical distributions owe their name to the fact that the level curves of their densities are elliptical.

The construction via the same characteristic function, independently of the dimension, is standard (see, e.g.,

Fang et al. (1990)). See Mailath and Nöldeke (2008) for a model using elliptically contoured distributions in

information economics.
15See Section 9 for a discussion of a variation with an alternative timing.
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with the receiver – formally, he sends a message to the receiver – and the receiver selects

her preferred action, given the information that she has received. The receiver is unable to

commit to an action policy before she receives the information.

The sender’s choice of information structure is observable but not contractible. The

sender therefore chooses the information structure with a view to using the information to

his advantage in the selected institution of decision-making. The analysis of the resulting

trade-offs are the subject of the present paper. All information structures are equally costly

in our analysis. This allows us to focus on the purely strategic reasons to select different

information structures.

2.3 Strategies, beliefs, and equilibria

A sender strategy consists of two parts. Firstly, for a given institution of decision-making,

d ∈ D, the sender chooses a feasible information structure; formally, he chooses the variances

(σ2
εω , σ

2
εη) in the covariance matrix Σ. Secondly, given d = communication, given the infor-

mation structure Σ, and given a signal realization (sω, sη) ∈ R2, the sender chooses what

message m ∈ M to send. Formally, a pure sender strategy is a pair of functions D → R2
+,

d 7→ (σ2
εω , σ

2
εη) and M : R2 × R2

+ → M, (sω, sη, σ
2
εω , σ

2
εη) 7→ m. A mixed sender strategy is a

probability distribution over the pure strategies. The message space is sufficiently rich; we

do not impose any restrictions on M. Given d = delegation, the latter part of the sender’s

strategy is replaced by an optimal action policy for each given information structure and

signal realization, Y : R2 × R2
+ → R, (sω, sη, σ

2
εω , σ

2
εη) 7→ y.

A receiver strategy consists of the choice of institution, d ∈ D, and, for d = communication,

a mapping from information structures and messages into actions, Y : M × R2
+ → R,

(m,σ2
εω , σ

2
εη) 7→ y. As is well known, the receiver never mixes over actions, due to the strict

concavity of her payoff function in y.

There is commitment to D and Σ, but no commitment in the communication game. A

Bayesian equilibrium of our game corresponds to the standard notion. For each observed

information structure and each message, the receiver forms a belief over sender types who

might have sent the message. The belief is derived from the prior and the sender’s strategy.

The receiver’s equilibrium strategy maximizes her payoff given her belief and the sender’s

equilibrium strategy. Likewise, the sender’s choice of information structure and his message
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strategy maximize his payoff given the receiver’s strategy.

When analyzing the game we focus on the most informative equilibria for all possible

information structures, that is, on and off equilibrium path. In particular, this implies that

we do not allow for strategies where the receiver can threaten not to listen to the sender

if the latter does not choose the receiver’s preferred information structure. We find this

assumption reasonable in situations where the receiver has to justify her actions ex post to

some third party. For example, a CEO may have to explain to the members of the board

of directors why she took certain actions and what information she had when she made

decisions.16

3 The Informational Environment

The purpose of this section is twofold. Firstly, we simplify our problem by showing that it is

sufficient to focus on communication about the sender’s posterior optimal action. Secondly,

we explain the linearity properties of our environment and discuss how information choices

shape biases in decision making.

3.1 A useful reduction

Suppose the sender has observed the signal realizations (sω, sη) . Due to quadratic losses, the

ideal policy from his perspective is to match the action to his posterior mean conditional on

the observed signal realizations. Let θ be the level of the sender’s posterior mean,

θ ≡ E [η̃|s̃ω = sω, s̃η = sη] ,

and let θ̃ be the ex ante random level of the posterior mean. Sender types with distinct

signal realizations that aggregate to the same posterior mean share the same ideal action

and, more generally, share exactly the same preferences over any pair of actions. This makes

16Argenziano et al. (2016) allow for the case where the receiver can threaten with babbling and find that

driven by this threat the sender will overinvest in information acquisition. We rule out such threats here.

With a slight variation of our model – decomposing information further into public and private components

– we could account for any kind of off-path threats. In this case, communication with appropriate off path

threats would always dominate delegation.
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it essentially impossible – that is, except on measure zero sets – to elicit the underlying

signals from the sender.

Lemma 1 Any equilibrium under communication is essentially equivalent to one where the

sender’s message strategy is a function of θ only and all sender types (sω, sη) such that

E [η̃|s̃ω = sω, s̃η = sη] = θ induce the same action. Moreover, any equilibrium can either be

characterized by an interval partition of the support of θ̃ or is fully revealing about θ.

The lemma is intuitive. As usual, we can think of communication as of recommending

actions. The value of his posterior mean is all the sender needs to know to compute his

ideal action. The receiver would appreciate to know the individual signal realizations to

compute her ideal action. However, the sender is almost surely not kind enough to reveal

them. Lemma 1 allows us to eliminate the signals from the analysis and to focus on the

sender’s posterior mean, θ.

3.2 Information and biases

Due to the elliptical joint distribution, the sender’s posterior mean is a linear function of the

realized signals, E [η̃|s̃ω = sω, s̃η = sη] = γωsω + γηsη, with weights γω, γη that are indepen-

dent of the signal realizations and moreover, (ω̃, η̃, θ̃) follows the same joint distribution as

τ̃ . The exact weights are provided in the proof of the following Lemma 2.

Everything is as if the sender observed the realization θ of an aggregated signal that

contains information of use to the sender as well as to the receiver. The covariances of the

aggregated signal, θ, with the underlying state, (ω, η), naturally measure the informational

content of the aggregated signal. The exact expressions of the covariances are17

σηθ = σ2
θ = σ2

σ2
εω

σ2 +
σ2
εη

σ2 ρ
2 + 1− ρ2(

1 +
σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

, (1)

and

σωθ = ρσ2

σ2
εω

σ2 +
σ2
εη

σ2 + 1− ρ2(
1 +

σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

. (2)

17The equality σηθ = σ2
θ follows from the linearity of the updating rules.
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Intuitively, a higher precision of any signal increases both covariances and hence corresponds

to a higher informational content. The set of all second moments that can be generated

by some combination of noise variances is denoted by Γ and depicted in the left panel of

Figure 1. The extreme points of the feasible set are easy to understand. If the sender’s

underlying signals are infinitely noisy, then both covariances are zero (the origin in the left

panel of Figure 1). If the signal s̃ω is perfectly precise and the signal s̃η is infinitely noisy,

the covariance with ω̃ is maximal, reaching a level σωη, and the covariance with η̃ takes value

ρ2σ2 (the top left corner of Γ). If the sender observes η perfectly, then both covariances are

maximal, σ2
θ = σ2 and σωθ = σωη (the top right corner of Γ).

σωθ = c · σ2
θ

σωη = ρσ2

σ2ρ2σ2

σωθ

σηθ = σ2
θ

0

ys(θ) = θ

yr(θ) = c · θ

bias {

y

θ

Figure 1: Left panel: the set Γ of feasible second moments of the joint distribution of(
ω̃, η̃, θ̃

)
. Right panel: ideal choices as a function of the underlying information for a

particular choice of information structure (dot in the left panel).

For convenience of the reader, we summarize these insights in the following lemma.

Lemma 2 For any given
(
σ2
εω , σ

2
εη

)
∈ R2

+, the vector of random variables
(
ω̃, η̃, θ̃

)
follows

a joint Laplace distribution with first moments E [ω̃] = E [η̃] = E[θ̃] = 0 and second moments

given by (1) and (2) . Moreover, a joint distribution of
(
ω̃, η̃, θ̃

)
can be generated through

Bayesian updating from signals (sω, sη) if and only if σωθ ∈ [0, σωη] and for any given σωθ =

C, σ2
θ ∈

[
ρC, 1

ρ
C
]
.

Consider next how information θ shapes ideal decisions if it is directly observable. By

construction, the sender’s ideal policy is ys (θ) = θ. Again due to elliptical distributions, the
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receiver’s ideal decision conditional on θ is yr (θ) = E
[
ω̃| θ̃ = θ

]
= c · θ, where

c ≡ σωθ
σ2
θ

=
ρ
(
σ2
εω + σ2

εη + σ2 (1− ρ2)
)

σ2
εω + σ2

εηρ
2 + σ2 (1− ρ2)

. (3)

The coefficient c ∈
[
ρ, 1

ρ

]
is decreasing in the amount of noise contained in s̃ω and increasing

in the amount of noise in s̃η. The Blackwell-best information structure from each player’s

perspective maximizes the variance of his/her ideal decision rule. The sender’s Blackwell-

best signal maximizes σ2
θ and hence corresponds to the top right corner in Γ. The receiver’s

preferred signal combination maximizes V ar (c · θ) =
σ2
ωθ

σ2
θ
, corresponding to the top left

corner in Γ.

Since θ is privately observed by the sender, the relative informativeness of information

structures determines the way the sender is inclined to misrepresent his information. Define

the bias b (θ) ≡ (1− c) · θ. If c < 1, then b (θ) > (<) 0 for θ > (<) 0 and the sender has an

incentive to exaggerate positive realizations (downplay negative realizations). In contrast,

if c > 1, then the argument is reversed. Finally, for c = 1, there is no bias with respect to

using the aggregated signal θ. Thus, the bias is endogenous in our model. Depending on

what pieces of information the sender acquires, he has different incentives to lie about what

he observed ex post. We illustrate the bias resulting from a particular choice of information

structure (the dot in the left panel) in the right panel of Figure 1.

Due to the possibly partitional structure of equilibria in the communication game shown

in Lemma 1, we also need to know how the receiver updates about ω if she learns an interval

around the sender’s posterior mean only. Conveniently, the linear updating rules extend to

truncations on intervals:

E
[
ω̃| θ̃ ∈

[
θ, θ
]]

= c · E
[
θ̃
∣∣∣ θ̃ ∈ [θ, θ]] ∀θ ≤ θ, (4)

where c is defined in (3).

Consider now the marginal distribution of θ. It is again a Laplace distribution, because

all elliptical distributions are closed under linear combinations. More generally, all properties

shown so far hold for the entire class of joint elliptical distributions (hence also for, e.g., the

joint Normal distribution). The reason to assume the Laplace distribution is that it satisfies
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– in contrast to the Normal – the following condition (5). The updating rule for θ̃ conditional

on truncations to the tails of the distribution is linear in the truncation point.

E
[
θ̃
∣∣∣ θ̃ ≥ θ̄

]
= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
+ α · θ̄ ∀θ̄ ≥ 0. (5)

The Laplace satisfies (5) with α = 1. We embed the Laplace in the generalized subclass of

elliptical distributions that satisfy (5) in Section 8. These combined linearity features enable

us to provide a closed form solution for the value of communication.

Lemma 3 i) The joint distribution of
(
ω̃, η̃, θ̃

)
features linear conditional expectations,

E
[
ω̃| θ̃ = θ

]
= c · θ with c defined in (3) .

ii) The linear updating rules extend to conditioning on truncations, (4) .

iii) The marginal distribution of θ̃ is a one-dimensional Laplace distribution, and the tail

conditional expectation of θ̃ satisfies (5) for α = 1.

We are now equipped to study strategic communication.

4 Equilibria in the Communication Game

We now investigate equilibria in the communication game for a given information structure

that the sender has chosen. Due to Lemma 1, any equilibrium is essentially equivalent to an

interval partition on R for c 6= 1, inducing a countable number of distinct receiver actions.

For c = 1, there is also an equilibrium inducing an uncountably infinite number of receiver

actions (for details see the discussion after Theorem 2). Our results are in line with the

literature (Gordon (2010)). However, since we assume an unbounded state space, we have to

prove everything from scratch. We state only our main results here and refer to Appendix

B for details. As is standard, partitional equilibria are characterized by indifferent sender

types ani ≡ ai(n) with n relating to the number of induced receiver actions. We let an1 denote

the first marginal type above zero.

Proposition 1 Suppose that c ≤ 1.

i) For all n, there exists a unique equilibrium, which is symmetric and induces 2 (n+ 1)

actions (Class I) and a unique equilibrium, which is symmetric and induces 2n + 1 actions
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(Class II).

ii) For n → ∞, the limits of the finite Class I and Class II equilibria exist and correspond

to infinite equilibria of the communication game.

iii) Within any of the two classes of equilibria, the sequence of first thresholds above zero

(an1 )n satisfies limn→∞ a
n
1 = 0.

c ≤ 1: 0

. . . . . .−ani ani−ani−1 ani−1

Figure 2: Intervals around the agreement point θ = 0 get arbitrarily small as n→∞.

For future reference, we denote the limits of the finite equilibria as limit equilibria.

Proposition 2 Suppose that c > 1. Then, in any equilibrium, the first threshold below or the

first threshold above zero is bounded away from zero and at most a finite number of receiver

actions is induced in equilibrium.

The important insight to take away is that communication is arbitrarily precise around

the agreement point, θ = 0, in case c ≤ 1, and coarse in case c > 1.

5 The Value of Communication

The sender acquires information with a view to using it in the chosen institution. While

it is straightforward to compute expected payoffs under delegation, assessing the value of

communication requires some work. To fix ideas, suppose first that the sender would näıvely

transmit information θ honestly to the receiver and the receiver would follow the optimal pol-

icy to choose y (θ) = c·θ. In this case, the receiver’s expected utility would be E[−(cθ̃−ω̃)2] =

c2σ2
θ − σ2, while the sender’s expected utility would be E[−(cθ̃ − η̃)2] = c (2− c)σ2

θ − σ2.

However, honest communication is not necessarily an equilibrium. In a partitional equi-

librium, the sender reveals only that θ belongs to some interval. Let an0 = 0 and define
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µni ≡ E
[
θ̃
∣∣∣ θ̃ ∈ [ani−1, a

n
i

)]
for i = 1, . . . , n and µnn+1 ≡ E

[
θ̃
∣∣∣ θ̃ ≥ ann

]
. By the linearity of

conditional expectations (Lemma 3), the support of the receiver’s actions in a Class I equi-

librium is c ·
{
µn−(n+1), µ

n
−n, . . . , µ

n
−1, µ

n
1 , . . . , µ

n
n, µ

n
n+1

}
. With a minor modification, a similar

description holds for a Class II equilibrium (see Appendix B for details). Before knowing

which interval θ belongs to, the receiver’s posterior expectation of θ̃ is a random variable, µ̃.

Likewise, let ṽ2 denote the random variable that describes the receiver’s posterior variance,

conditional on the interval that the sender reveals. The distributions of these random vari-

ables are derived from the marginal distribution of θ̃. The following lemma states that the

functional forms of the expected utilities under näıve and strategic communication are the

same.

Lemma 4 The receiver’s expected equilibrium utility is

Eur (cµ̃, ω̃) = c2E
[
µ̃2
]
− σ2. (6)

The sender’s expected equilibrium utility is

Eus (cµ̃, η̃) = c (2− c)E
[
µ̃2
]
− σ2. (7)

Intuitively, the amount of information under strategic communication is E
[
µ̃2
]
, instead of

σ2
θ under näıve communication. To see this, note that by a standard variance decomposition,

E
[
µ̃2
]

= σ2
θ −E [ṽ2]. We can understand the receiver’s and the sender’s expected utilities as

an intrinsic value of information net of a loss equal to the residual variance after strategic

communication, E [ṽ2].

The difficulty at this point is that the equilibrium cannot be solved for in closed form.

However, the convenient property of distributions with linear tail conditional expectations

is that this is not necessary to obtain the value of communication in a limit equilibrium. Let

µ+ ≡ E
[
θ̃
∣∣∣ θ̃ ≥ 0

]
.

Proposition 3 The equilibrium variability of the receiver’s posterior mean in a Class I

equilibrium inducing 2 (n+ 1) distinct receiver actions is given by

E
[
µ̃2
]

=
2

2− c
µ2

+ −
c

2− c
(µn1 )2 . (8)
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In a Class II equilibrium inducing 2n+ 1 distinct receiver actions, the equilibrium variability

is

E
[
µ̃2
]

=

(
1− Pr

[
θ̃ ∈

[
−cµ

n
2

2
,
cµn2
2

)])
·
(

2

2− c
µ2

+ +
c

2− c
µn2µ+

)
. (9)

In a limit equilibrium, which exists if and only if c ≤ 1,

E
[
µ̃2
]

=
2

2− c
µ2

+. (10)

For the Laplace distribution, 2µ2
+ = σ2

θ and moreover, for any c ≤ 1, E
[
µ̃2
]

is maximal in a

limit equilibrium.

The proof uses a “dynamic programming” idea, where the sender’s indifference conditions

replace the usual “optimality conditions”. We first compute the expected variability over the

last two intervals in the tail of the distribution, conditional on θ̃ ≥ ann−1. The value depends

on µ+, µ
n
n, and on the truncation point ann−1; µnn+1 can be eliminated using the linearity of

the tail conditional expectations (5). Next, we treat the resulting value as a continuation

value and use the indifference condition of the marginal type ann−1 to compute the expected

variability conditional on truncation to θ̃ ≥ ann−2. The functional form of the continuation

values remains the same. By an induction argument, we show that this property holds for

an arbitrary number of steps. Expressions (8) and (9) provide the resulting values for finite

equilibria. In limit equilibria, µn1 and µn2 , respectively, go to zero and we obtain the closed

form representation (10) .

The amount of information transmitted in a limit equilibrium, which exists if and only

if c ≤ 1, is simply a constant fraction 1
2−c of the total amount, σ2

θ. The fraction depends on

the information chosen by the sender through its impact on the conflict between the sender

and the receiver. The fraction is increasing in c and maximal if there is no conflict, c = 1.

Since both c = σωθ
σ2
θ

and σ2
θ are endogenous, the sender faces a trade-off between intrinsically

more useful information structures (high σ2
θ) and transmittable information structures (high

σωθ
σ2
θ

). We next analyze this trade-off.

6 Information Acquisition

We now turn to the sender’s choice of the information structure. We assume that sender and

receiver coordinate on an equilibrium that gives them the highest possible expected utility
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in the set of all equilibria. Clearly, selecting the most efficient equilibria is exactly in the

tradition of the communication literature following Crawford and Sobel (1982).18

A simple argument shows that we can restrict attention to information structures such

that c = σωθ
σ2
θ
≤ 1. In this case a limit equilibrium exists and gives maximal utility. In

particular, note that the information structure with the highest σ2
θ in the subset of Γ such

that c ≥ 1 satisfies σ2
θ = σωθ = σωη, hence c = 1. From (7) , the utility gain from this

information structure is higher than for any information structure with c > 1. Formally,

c (2− c)E
[
µ̃2
]
≤ c (2− c)σ2

θ < σ2
θ < σωη for c > 1. The first inequality is due to the

informational loss due to strategic communication. The second inequality follows from the

fact that the sender would prefer to take decisions himself. Finally, the most informative

information structure for the sender within the feasible set for c ≥ 1 is given by σ2
θ = σωη.

Intuitively, information structures where the receiver would overreact (c > 1), have strategic

disadvantages and are intrinsically suboptimal from the sender’s point of view.19

Substituting E
[
µ̃2
]

from (3) into (7) , we obtain the sender’s maximization problem

max
σωθ,σ

2
θ

s.t. σωθ,σ
2
θ∈Γ, c≤1

c (2− c) 1

2− c
σ2
θ − σ2. (11)

The solution to problem (11) shows that the sender cannot gain from acquiring information

that is intrinsically more useful to him but that cannot be transmitted without loss.

Theorem 1 The set of optimal information structures from the sender’s perspective is given

by σωθ = σωη and σ2
θ ∈ [σωη, σ

2] .

Based on the previous propositions, the proof is obvious. There are three channels of

influence. Firstly, the sender values information structures that carry a higher informational

18See also Chen et al. (2008) for a more recent result in this tradition.
19This insight hinges on the selection of the most informative equilibrium on and off path. If we allowed for

selecting a babbling equilibrium off path, we could sustain any choice of information structure in equilibrium,

including the receiver’s most preferred one. However, since there exists no limit equilibrium in this case,

the analysis becomes intractable and it is not clear whether the receiver prefers this at all. As alluded to in

Footnote 16, we could deal with this case by decomposing the optimal actions of sender and receiver into a

common component and a private component, and allow the sender to observe each of the components with

noise. All feasible information structures would satisfy c ≤ 1. The receiver optimal information structure

would then coincide with the one we get in Theorem 2 below.
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content to him (higher σ2
θ). It is immediate that for a fixed value of c, the highest feasible

variance maximizes the sender’s problem. Secondly, the information structure impacts the

way the receiver discounts the sender’s advice through the term c (2− c). Thirdly, due to

strategic communication, only a fraction 1
2−c of the total amount of information from the

sender’s perspective can be transmitted in equilibrium. For future reference, the fraction 1
2−c

measures the effectiveness of biased communication.

The combination of these effects results in a maximum expected utility for the sender

given by

Eus (cµ̃, η̃) = σωη − σ2.

Since this is independent of σ2
θ the sender is indifferent between all the information structures

in the theorem. For an illustration see the solid line in Figure 3. This indifference is a special

feature of the Laplace distribution. The robust insight that we exploit in what follows is

that the sender cannot gain from acquiring information that he would individually prefer,

because the added value of such information would be lost in transmission. As shown in

Section 8, the sender strictly loses from acquiring intrinsically more useful information if

the fraction he can transmit is smaller than in the Laplace case, or, as we term it, biased

communication is less effective than in the Laplace case.

Consider now the receiver’s payoff as a function of the information structure that the

sender chooses. For σωθ = σωη and any σ2
θ ≥ σωη, the receiver’s payoff in a limit equilibrium

is

Eur (cµ̃, ω̃) = c2 1

2− c
σ2
θ − σ2 =

σ2
ωη

2σ2
θ − σωη

− σ2,

a decreasing function of σ2
θ. Clearly, the receiver suffers if the sender chooses an information

structure with a higher σ2
θ; at the same time, the sender derives no benefit from such behavior.

Theorem 2 The set of sender optimal information structures contains a uniquely Pareto

efficient element, σ2
θ
∗

= σ∗ωθ = σωη. The ensuing communication continuation game following

the Pareto efficient information selection has an equilibrium in which the sender communi-

cates θ truthfully to the receiver, who follows the sender’s proposal one-for-one.

For convenience, we depict the theorem and the discussion preceding it graphically in

Figure 3. At the Pareto optimal information structure within the set of sender-optimal ones,
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σωη

σ2ρ2σ2

σωθ = σ2
θσωθ

σ2
θ

Figure 3: The solid line represents the sender-optimal information structures; the dot rep-

resents the Pareto optimum in this set.

we have c = 1 and the bias with respect to communicating θ is eliminated. Hence, it is an

equilibrium for the sender to follow the message strategy m (θ) = θ for all θ, and for the

receiver to follow the action strategy y (m) =
σ∗ωθ
σ2∗
θ
· m = m for all m, because the receiver

correctly identifies m with θ in her belief. We call this a smooth communication equilibrium,

because the equilibrium involves differentiable strategies in the communication game. Note

that expected utilities in the smooth communication equilibrium are the same as in the

equilibrium with countably infinitely many induced actions for c = 1.20 In terms of the

underlying noise, the sender is perfectly informed about the receiver’s ideal action, σ2
εω = 0.

However, he remains partially ignorant about his preferred choice, σ2
εη = 1−ρ2

ρ
σ2, to convince

the receiver of his unbiasedness. There is no harm if the sender knows the ideal action of the

receiver. By contrast, if the sender knew his ideal action, then the receiver would discount

his advice and information would be lost.

We next turn to the receiver’s choice of institution of decision-making. We assume that

the sender chooses the Pareto efficient information structure out of the ones that are optimal

from his perspective. Since this stacks the deck in favor of communication, we give reasons

beyond Pareto efficiency why our equilibrium selection is compelling after presenting our

main result.

20The smooth communication equilibrium is also optimal with respect to maximization of joint surplus of

sender and receiver, as shown in Deimen and Szalay (2018).
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7 Delegation versus Communication

Depending on the receiver’s choice of institution, the sender acquires different pieces of

information. Under communication he cannot gain from choosing his privately preferred

information structure and he is happy to choose information that is equally useful to himself

and the receiver. Hence, the sender’s proposal also reflects the receiver’s ideal action instead

of just the sender’s. The receiver’s expected payoff in the smooth communication equilibrium

is

Eur
(
θ̃, ω̃
)

= σωη − σ2. (12)

If the sender has the right to choose the action directly (delegation), then he will follow the

action policy ys (θ) = θ for all θ. This results in an expected utility for the sender of

Eus
(
θ̃, η̃
)

= −E
(
θ̃ − η̃

)2

= σ2
θ − σ2,

where we have used the fact that σηθ = σ2
θ by construction of θ (see Section 3). Obviously, the

sender just acquires information that is privately optimal for him, i.e. he learns η perfectly,

so that the variance of his posterior expectation is maximal in the feasible set. Formally, he

chooses σ̂ωθ = σωη and σ̂2
θ = σ2 = 1

ρ
σωη. The receiver’s expected utility under delegation is

Eur
(
θ̃, ω̃
)

= −σ̂2
θ + 2σ̂ωθ − σ2 =

(
2− 1

ρ

)
σωη − σ2. (13)

Direct comparison of equations (12) and (13) reveals that communication is the preferred

mode of decision-making, because 2− 1
ρ
< 1 for any ρ ∈ (0, 1) . Formally:

Theorem 3 Suppose the sender selects privately optimal information structures for both

choices of institution and in case there are several optimal ones, he picks the receiver’s pre-

ferred information structure among them. Then – for any underlying correlation of interests

– the receiver strictly prefers communication over delegation.

The surprising insight is that this result holds for any underlying correlation of interests.

The driving force behind our result is that the receiver’s choice of institution – delegation

versus communication – results in the sender acquiring different pieces of information. An-

ticipating that he will have to talk to the receiver, the sender understands that he rather
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pays attention to the receiver’s interests. If he paid too much attention to his own interests,

the receiver would simply discount his advice, neutralizing any potential gain to the sender.

By contrast, under delegation the receiver gives away any influence and the sender has no

reason to pay attention to what the receiver’s cares about. As a result, the receiver prefers

communication over delegation.

The novelty is that the nature of the acquired information matters, under communica-

tion the receiver can punish the sender for acquiring the wrong pieces of information. This

explains why our result differs from what is known for the case of exogenously given in-

formation structures and biases.21 Indeed, if we assume an exogenously given information

structure that coincides with the one chosen under delegation, σ̂ωθ = σωη and σ̂2
θ = 1

ρ
σωη,

our results are qualitatively in line with the literature: communication is strictly preferred

to delegation for ρ ∈
(
0, 2

3

)
and delegation is strictly preferred for ρ ∈

(
2
3
, 1
)
. This is due

to the familiar trade-off: while communication entails a loss of information due to strategic

communication, delegation results in a choice of action that is not ideal from the receiver’s

point of view.22

Our model provides support for communication as an institution. However, as our discus-

sion shows, the strength of this support depends on which information structure is selected

among the optimal ones from the sender’s perspective. The advantage of the Laplace model

is that it is simple. However, it does not produce a unique sender-optimal information

structure, a point that we address next.

8 The Effectiveness of Biased Communication

We now characterize environments where the sender strictly loses under communication

when acquiring information that he individually prefers. This is the case if the fraction

21In particular, Alonso et al. (2008) show that decentralized decision-making is better than centralized

decision-making for small conflicts of interests whereas the reverse is true for larger conflicts. Dessein (2002)

shows that delegation outperforms communication whenever meaningful communication is possible.
22These two scenarios correspond to the most and the least pronounced effect of institution-choice on

information acquisition. For cases in between the extremes, qualitatively similar results hold. In particular,

for ρ < 2
3 , communication dominates delegation, regardlessly of which information structure the sender picks.

For ρ ≥ 2
3 , the comparison depends on which information structure is selected under communication.
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of the information he can pass on is strictly smaller than for the Laplace, or as we term

it, biased strategic communication is strictly less effective than in the Laplace case. The

reason is that the effectiveness of biased communication is more sensitive to conflicts in

these environments, and as a result, the sender has incentives to acquire information that

eliminates the bias. Hence the choice of institution impacts the sender’s choice of information

and communication trumps delegation.

8.1 Generalized informational environment

To formalize these thoughts, we introduce a parameter α ∈ (0, 2) that captures the infor-

mational content in strategic communication in our model. We assume that the marginal

distributions of τ̃ have densities of the form,

fτ (τ ;α) =
1

2στ

√
2α2

(2− α)

(
1−

√
2

2− α
(1− α)

|τ |
στ

) 2α−1
1−α

(14)

on support T.23 The density (14) nests the Laplace case with α = 1. The support for all α ≥ 1

is T = R. For α < 1, the support is the symmetric interval around zero such that the term

in brackets is non-negative. An example with interval support is the uniform distribution

with α = 1
2
. The joint distribution is elliptical and constructed in the same way as the

joint Laplace case via the characteristic function of the marginal distribution (14). As we

explain in more detail below all linear conditioning rules of Section 3 apply (see Lemma 5).

We hence call our class of distributions joint elliptical distributions with linear marginal tail

conditional expectations.24

23The density can be derived for arbitrary, positive α. However, in general it cannot be expressed in terms

of the variance, which only exists for α < 2. Since expected utilities are only defined for finite variance in a

quadratic loss model, we restrict attention to these cases.
24By symmetry, the characteristic function is a function of t2σ2

x only, Φα (t) = φα
(
t2σ2

x

)
. We define

the characteristic function of the multivariate distribution as Φα (t) = φα (t′Σt) , that is, we take the

characteristic function as invariant with respect to changes of the dimension. While the construction via

characteristic functions is standard for elliptical distributions (see, e.g., Fang et al. (1990)), we are not aware

of any contribution in the literature that describes the subclass of elliptical distributions with linear marginal

tail conditional expectations.

24



We illustrate the density (14) for different values of α and variances equal to one in

Figure 4. Relative to the Laplace distribution, densities with α > 1 have a higher variability

in the one-sided distributions, that is, more mass around zero and in the tails. Intuitively,

more mass in the tails means that events with extreme disagreement between the sender and

the receiver become more likely. Naturally, this drives the value of biased communication

down. More variability in the one-sided distributions renders the effectiveness of strategic

communication more sensitive to conflicts, as we explain in detail in Subsection 8.3 below.

fτ (τ ;α)

τ−1 1

1

Figure 4: The density (14) depicted for α = 1.5 (dashed); α = 1 (solid) Laplace; α = 0.5

(dotted) uniform. Note that the solid and the dashed line intersect again farther out in the

support.

8.2 Communication trumps delegation

Our main result generalizes as follows:

Theorem 4 Suppose that a symmetric equilibrium is played in the communication stage.

Then, for α ∈ (1, 2) the optimal information structure is unique and given by σ2
θ
∗

= σ∗ωθ =

σωη. The ensuing communication continuation game has a smooth communication equilibrium

and the receiver strictly prefers to communicate rather than to delegate decision-making to

the sender.
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The intuition for this result is extremely simple: deviating to an intrinsically sender pre-

ferred information structure hurts the sender because he can transmit less of his information.

Moreover, relative to the Laplace case, transmitting all the information becomes more im-

portant to the sender. We now develop the formal details behind this argument carefully.

The key insight is in the construction of our class of distributions.

Lemma 5 If the distribution of τ̃ follows a joint elliptical distribution with linear marginal

tail conditional expectations, then
(
ω̃, η̃, θ̃

)
follows a distribution in the same class and the

linear updating rules of Section 3 all apply. The density of θ̃ is given by equation (14) with

α ∈ (0, 2) . The variance of θ̃ is finite and related to µ+ via σ2
θ =

2µ2+
2−α .

The defining feature of our class of distributions is the linearity of their tail conditional

expectations, E
[
θ̃
∣∣∣ θ̃ ≥ θ̄

]
= µ++α·θ̄, ∀θ̄ ≥ 0. This condition can be restated as a differential

equation that can be solved for the distribution as a function of µ+ and α. Substituting for

µ+ from the variance σ2
θ =

2µ2+
2−α results in the density (14) . Our value characterization

(Proposition 3) extends to all distributions with these linear updating rules. With this at

hand, our analysis generalizes almost effortlessly.

Proposition 4 Suppose the joint distribution of τ̃ is elliptical with linear marginal tail

conditional expectations and α ∈ (0, 2) . Then, in any Class I (II) equilibrium E
[
µ̃2
]

satisfies

equation (8) ((9)), with c replaced by αc. Moreover, in any such equilibrium

E
[
µ̃2
]
≤ 2− α

2− αc
σ2
θ.

If there exists a limit equilibrium in which the sequence of thresholds (an1 )n satisfies limn→∞ a
n
1 =

0, then the upper bound on E
[
µ̃2
]

is attained.

The linear conditioning rules allow us to get closed form solutions for the equilibrium

value of communication for any problem in which equilibrium communication gets arbitrarily

fine around the agreement point. The reason is that the value in a limit equilibrium depends

only on the product αc, E
[
µ̃2
]
≤ 2

2−αcµ
2
+. Using the connection between the variance and

µ2
+ in Lemma 5 gives the upper bound in the proposition. Exactly as in the Laplace case,

the sender can transmit at most a fraction of the total amount of information σ2
θ,

2− α
2− αc

. (15)

26



We define the effectiveness of biased communication as the fraction (15). For c < 1 (15) is

decreasing in α. Hence the sender can transmit less information in an infinite equilibrium if

α is higher.

It is now straightforward to address the sender’s incentives to acquire information. We

know that the upper bound on the equilibrium variability of choices is attained if the sender

acquires information of equal use to the receiver and himself, so that c = 1. To prove the

theorem, it suffices to show that the sender strictly loses from acquiring any information

that is intrinsically relatively more useful to himself, hence featuring c < 1 for any α > 1.

Using the upper bound on payoffs, we know that the sender obtains at most a payoff of

Eus (cµ̃, η̃) = max
σ2
θ,σωθ

s.t.σ2
θ≥σωθ

c (2− c) 2− α
2− αc

σ2
θ − σ2, (16)

where everything is as in the Laplace case except for the fraction of information that can

be transmitted. To determine the upper bound we proceed sequentially. First, we solve

for the optimal covariance for a given variance. For α > 1, the sender’s expected payoff is

increasing in σωθ over the set of information structures featuring c ≤ 1. Hence, within this

set, σ∗ωθ = σωη. To achieve this, the sender becomes perfectly informed about the receiver’s

ideal action, ω. Second, we optimize over the variance given the optimal covariance. The

objective at this stage is (
2− σωη

σ2
θ

)
2− α

2− ασωη
σ2
θ

σωη − σ2.

The first term is increasing in σ2
θ. All else equal, the sender prefers intrinsically more useful

information structures. The second term is decreasing in σ2
θ, so information that is more

useful to the sender is harder to transmit. For α > 1 the second effect strictly dominates

the first one. Hence the sender abstains from acquiring perfect information about η. As a

result, equilibrium communication about θ is conflict free.

In other words, if biased communication would perform badly, the sender has incentives

to be unbiased. As a consequence, the receiver prefers communication over delegation when

biased communication would be less effective than in the Laplace world. This proves the

theorem, since information structures featuring c > 1 remain unattractive by the same

arguments as used in our leading case.25

25Note that, in contrast to the Laplace case, the theorem makes a statement about symmetric equilibria
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8.3 Comparing environments

Communication trumps delegation in all environments where the effectiveness of biased com-

munication is more sensitive to conflicts than in the Laplace case. In these environments

(with α > 1), communication is notoriously difficult. To illustrate this, we plot the share of

the sender’s information, σ2
θ, that reaches the receiver if the sender acquires perfect informa-

tion about his ideal choice η, 2−α
2−αρ , for ρ ∈ (0, 1) .

2−α
2−αρ

ρ
0 1

1

0.5

0.75

0.25

Figure 5: The effectiveness of biased communication in a limit equilibrium for α = 1.5

(dashed), α = 1 (solid) Laplace, and α = 0.5 (dotted) uniform distribution.

We do so for the three cases illustrated in Figure 4.26 In all three cases, information

transmission about the sender’s posterior mean becomes perfect as ρ tends to one. Even

though there is a countable infinity of induced actions, expected utilities approach the level

they reach if θ is communicated truthfully. At the other extreme, as ρ approaches zero, the

amount of information transmitted in an infinite equilibrium tends to the amount that can

be transmitted with only two messages, indicating whether θ is positive or negative.

only. The reason is that densities with α > 1 are not logconcave, a property of the Laplace that we exploit

to prove uniqueness of equilibria inducing a given number of receiver actions.
26For the Laplace case and the uniform case the value corresponds to the actual value of communication in

a limit equilibrium. We have established existence of a limit equilibrium for the Laplace case, Alonso et al.

(2008) have demonstrated the existence of such an equilbrium in the uniform case. For the case α = 1.5, we

do not claim that a limit equilibrium exists. Our argument is that such an information choice is not part of

an equilibrium even if an equilibrium attaining this value exists.
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To verify, a simple variance decomposition delivers the informational content of the binary

equilibrium. By symmetry, µ2
+ + v2

+ = σ2
θ. The first term captures the meaning conveyed by

the messages, the second one the residual variance after communication. Using the variance

expression in Lemma 5, we find that the informational content of binary communication is

given by
µ2

+

σ2
θ

=
2− α

2
,

reproducing the intercepts in the figure as claimed: two messaged eliminate 75% of the

underlying uncertainty in the uniform case, 50% in the Laplace case, and only 25% for

α = 1.5. The informational content of binary communication is an exact measure of the

sensitivity of the effectiveness of biased communication to conflicts in our model. Since

perfect information transmission is possible for c = 1 in all environments, environments are

more sensitive to conflicts if and only if the effectiveness of biased communication tends to

a lower value as ρ tends to zero.

It is now easy to understand when the shadow of communication has a disciplining effect

on the sender’s information acquisition and when not. In the uniform case, the sender is

assured to convey at least 75% of his information to the receiver, no matter what information

he acquires. Vice versa, paying attention to the receiver’s interest can raise the amount that

is transmitted at most by the remaining 25%. It is thus natural that the sender simply

acquires information about what he is interested in, η, and just lives with the consequences.

In contrast, eliminating conflicts raises the amount transmitted by a substantial amount for

α > 1. It is thus the environments where conveying meaning is statistically difficult where

the sender can be creadibly punished for acquiring the wrong pieces of information. In these

environments, the receiver prefers to communicate, because delegation entails no possibility

to punish the sender.

9 Reversed timing

In our baseline model, the receiver chooses between the institutions of decision-making before

the sender acquires information. Suppose now the receiver can choose between delegation

and communication after observing what information the sender has acquired.
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Adopting again the Laplace specification, we find that delegation is always the optimal

outcome if interests are well aligned to begin with. The threat of forcing the sender to

communicate thus has no bite. If interests are less well aligned, then the receiver would find

it optimal to communicate with the sender if the latter acquired information about his own

ideal action only. The sender dislikes communication and acquires information about both

ideal actions, to the point where the receiver becomes indifferent between communication

and delegation.

Theorem 5 Suppose the receiver chooses between communication and delegation only after

the sender selects an information structure. Then, the shadow of communication partly aligns

interests: for ρ < 2
3
, the equilibrium responsiveness of the receiver increases from c = ρ to

c = 2
3
.

For ρ > 2
3
, delegation outperforms communication for any choice of information structure.

Hence, in equilibrium the sender chooses his preferred information structure and the receiver

delegates. For ρ ≤ 2
3
, the receiver delegates only if the information structure satisfies c ≥ 2

3

and communicates otherwise. The sender has a strict preference to choose the maximally

informative information structure with c = 2
3

and select his preferred choice rather than

choose any information structure with c < 2
3

and communicate.

In equilibrium, no communication occurs. However, the shadow of communication is still

helpful. The sender would face losses from communication and dislikes this. The receiver

dislikes these losses as well. However, her expected utility is affected in a different way,

so she can credibly threaten not to delegate if the sender acquires the wrong information

structures. As in the baseline model, the threat of having to communicate with the receiver

makes the sender redirect his information acquisition towards information that he would

otherwise neglect, and makes him look less into things that he would otherwise look into

exclusively.

10 Extensions and Conclusions

We compare two mechanisms of decision-making, delegation and communication, in a situa-

tion of delegated expertise. The expert and the decision-maker agree on the status quo but
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favor different actions if new information arrives. The expert chooses the precision of signals

about each of the favored actions. His choice does not only impact the intrinsic usefulness

of the information but also the conflicts that arise in communicating his advice. We derive

a new communication model that features these endogenous state-dependent biases. More-

over, we develop a method to compute closed form expressions for the equilibrium value of

information despite the fact that equilibria cannot be computed in closed form. We describe

a general class of distributions for which our procedure applies. Our environment allows us

to measure the amount of information that can be transmitted in equilibrium, the effective-

ness of biased communication. We find that in environments where biased communication

is ineffective, the expert chooses his information in a way that eliminates any bias in com-

munication. Put differently, an expert who wants to be heard by the decision-maker will

pay attention to things the decision-maker is interested in. This effect steers the decision-

maker’s choice of mechanism towards communication. The reason is that under delegation

the decision-maker has no control over the expert; an expert who can choose the information

and in addition can take the action will solely focus on his own interests.

Our model lends itself to many extensions, e.g. costs of information acquisition, oppor-

tunity costs of time, limited attention, simultaneous information acquisition by sender and

receiver, endogenous roles of sender and receiver, and many more. We pursue some of these

questions in ongoing work. We believe that the closed form expressions for the value of com-

munication that we have obtained should prove useful in a variety of settings, for example,

to study strategic communication in financial markets.

Appendix A

Proof of Lemma 1. For quadratic utilities, players’ optimal actions are given by the

conditional means, E [ ω̃| s̃ω = sω, s̃η = sη] and E [ η̃| s̃ω = sω, s̃η = sη] , respectively. We de-

note θ ≡ E [ η̃| s̃ω = sω, s̃η = sη] . For the sender E [−(y − η̃)2|s̃ω = sω, s̃η = sη] = −y2 +

2yE [η̃|s̃ω = sω, s̃η = sη] − E
[
η̃2|s̃ω = sω, s̃η = sη

]
, hence the sender’s preferences satisfy the

single crossing condition in y and θ.

We now argue that any equilibrium is either fully separating in θ or involves partial

pooling in θ everywhere. Partial pooling everywhere follows straightforwardly from single
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crossing. Suppose there exists an equilibrium where the receiver is fully responsive to θ on

some interval
[
θ, θ
]

and involves pooling around the interval. This implies E
[
ω̃| θ̃ = θ

]
= θ

on
[
θ, θ
]
. Now take some type θ̂ = θ + δ for some δ > 0 that induces the pooling action

yrp strictly above yr(θ) = θ. For δ sufficiently small θ̂ − yr(θ) < yrp − θ̂, implying that

Eus(yr(θ)) > Eus(yrp). Hence sender types close to θ have an incentive to deviate, so the

receiver’s choice of actions does not constitute an equilibrium. Since the same argument

holds for θ, the receiver cannot be fully responsive to θ on a bounded interval. Hence, an

equilibrium that involves separation in θ somewhere must involve separation in θ everywhere.

Clearly, these two classes of equilibria can be characterized by communication about

θ only. Consider now an equilibrium where some sender types with the same conditional

expectation play different strategies. By the single crossing property, types with the same

θ are indifferent between at most two distinct actions. It follows immediately from single

crossing that this corresponds to the second class of equilibria considered above, where

the strategies are changed on measure zero sets. Since this does not change the receiver’s

equilibrium actions, we can characterize such equilibria – up to the strategies of sender types

on measure zero sets – by communication about θ only.

Proof of Lemma 2. i) The random vector τ̃ = (ω̃, η̃, ε̃ω, ε̃η) follows a joint Laplace

distribution. Since the Laplace distribution is a member of the class of elliptically contoured

distributions, the following well-known properties apply:

The sender’s conditional mean θ can be calculated as E [ η̃| s̃ω = sω, s̃η = sη] = γωsω+γηsη

with γω =
σ2
εηρσ

2

(σ2+σ2
εω

)(σ2+σ2
εη

)−ρ2σ4 , and γη =
σ2σ2

εω
−σ4(1−ρ2)

(σ2+σ2
εω

)(σ2+σ2
εη

)−ρ2σ4 ; the weights γω and γη are

constants, independent of the realized signals. The equation follows from the fact that

conditional expectations are linear functions for elliptically contoured distributions (see,

e.g., Fang et al. (1990) Theorem 2.18).

The random vector
(
ω̃, η̃, θ̃

)
is Laplace, since affine transformations of random vectors

that follows an elliptical distribution with a given characteristic generator follow a distribu-

tion with the same characteristic generator (see, e.g., Fang et al. (1990) Theorem 2.16).

The first moment of θ̃ is zero, because the mean of τ̃ is the zero vector. Plugging in the
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weights γω and γη, the second moments of
(
ω̃, η̃, θ̃

)
can straightforwardly be calculated:

σ2
θ = γ2

ωV ar (s̃ω) + γ2
ηV ar (s̃η) + 2γωγηCov (s̃ω, s̃η)

= γ2
ω

(
σ2 + σ2

εω

)
+ γ2

η

(
σ2 + σ2

εη

)
+ 2γωγησωη = σ2

σ2
εω

σ2 +
σ2
εη

σ2 ρ
2 + 1− ρ2(

1 +
σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

= σηθ,

and

σωθ = γωσ
2 + γησωη = ρσ2

σ2
εω

σ2 +
σ2
εη

σ2 + 1− ρ2(
1 +

σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

.

ii) Letting a ≡ σ2
εω

σ2 and b ≡ σ2
εη

σ2 , we can rewrite σωθ and σ2
θ as

σωθ = ρσ2 a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
,

and

σ2
θ = σ2 a+ bρ2 + 1− ρ2

(1 + a) (1 + b)− ρ2
.

Consider first the set of feasible levels of σωθ = C. Note that for a = 0 or b = 0, the

covariance is constant and equal to ρσ2 = σωη. Moreover, the covariance is decreasing in a

for given b and decreasing in b for given a. By l’Hôpital’s rule, we have

lim
b→∞

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
=

1

1 + a
,

and

lim
a→∞

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
=

1

1 + b
.

So, letting both a and b (in whatever order) go to infinity results in a covariance of zero. By

continuity, any C ∈ (0, σωη] can be generated by finite levels a, b. Including the case where

no signal is observed at all, we can generate all C ∈ [0, σωη] .

Consider next the set of feasible σ2
θ for any given level σωθ = C. Distinguish two cases, i)

C = σωη and ii) C ∈ [0, σωη) .
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Case i) requires that a = 0 or b = 0. If b = 0, then a+bρ2+1−ρ2
(1+a)(1+b)−ρ2 = 1 and thus σ2

θ = σ2 for

all a. If a = 0, then

σ2
θ = σ2

η

bρ2 + 1− ρ2

(1 + b)− ρ2

is decreasing in b and attains value σ2
θ = σ2 for b = 0. Moreover,

lim
b→∞

bρ2 + 1− ρ2

(1 + b)− ρ2
= ρ2.

Hence, for C = σωη, σ
2
θ ∈ [ρ2σ2, σ2]; the lower limit is included because we allow for the case

where only one signal is observed.

Case ii) C ∈ [0, σωη) requires that a > 0 and b > 0. Let δ ≡ C
σωη
∈ [0, 1) . The

combinations of a and b that generate C satisfy

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
= δ.

Solving for a as a function of b, we obtain

a (b; δ) =
(1− δ) (1 + b− ρ2)

δb− (1− δ)
=

(1 + b− ρ2)
δ

1−δ b− 1
.

The function a (b; δ) is decreasing in b and has the limit

lim
b→∞

1 + b− ρ2

δ
1−δ b− 1

=
1− δ
δ

.

In the limit as b → 1−δ
δ
, we obtain a → ∞. Hence, C can be generated for b > 1−δ

δ
and

a =
(1+b−ρ2)

δ
1−δ b−1

. Substituting for
(1+b−ρ2)

δ
1−δ b−1

into σ2
θ, we obtain

σ2
θ (b, a (b; δ) , δ) = σ2

(1+b−ρ2)
δ

1−δ b−1
+ bρ2 + 1− ρ2(

1 + (1+b−ρ2)
δ

1−δ b−1

)
(1 + b)− ρ2

= σ2 bδρ
2 + 1− ρ2

1 + b− ρ2
.

The derivative of this expression in b is
(δρ2−1)(1−ρ2)

(1+b−ρ2)2
< 0, so V ar

(
θ̃; b, a (b; δ) , δ

)
is contin-

uous and monotone decreasing in b. In the limit as b tends to infinity, we obtain

lim
b→∞

σ2 bδρ
2 + 1− ρ2

1 + b− ρ2
= σ2δρ2 = σ2 C

σωη
ρ2 = ρC.
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In the limit as b→ 1−δ
δ
, we obtain

lim
b→ 1−δ

δ

σ2 bδρ
2 + 1− ρ2

1 + b− ρ2
= σ2

1−δ
δ
δρ2 + 1− ρ2

1 + 1−δ
δ
− ρ2

= δσ2 =
1

ρ
C.

Hence, we have shown that for any given C ∈ [0, σωη) , σ
2
θ ∈

[
ρC, 1

ρ
C
]
. We include the lower

limit, because the case where b→∞ is equivalent to the case with one signal only.

Lemma A1 For the Laplace distribution, for 0 ≤ θ < θ we can write

E
[
θ̃
∣∣∣ θ̃ ∈ [θ, θ]] = E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
+ θ − g

(
θ − θ

)
, (17)

where g (q) = q
1−exp(−λq) and 1

λ
= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
. The function g (q) satisfies limq→0 g (q) =

1
λ

and has limits limq→∞ g (q) = ∞, and limq→∞ (q − g (q)) = 0. Moreover, the function

is increasing and convex, with a slope satisfying limq→0 g
′ (q) = 1

2
and attaining the limit

limq→∞ g
′ (q) = 1.

Proof of Lemma A1. Recall that the marginal density of the Laplace distribution is

fθ (θ) = λe−λ|θ|. For the Laplace distribution for 0 ≤ θ < θ, an integration by parts gives

E
[
θ̃
∣∣∣ θ̃ ∈ [θ, θ]] =

θ∫
θ

θλ
exp−λθ

exp−λθ− exp−λθ
dθ = − θ exp−λθ

exp−λθ− exp−λθ

∣∣∣∣θ
θ

+

θ∫
θ

exp−λθ

exp−λθ− exp−λθ
dθ.

= θ −
(
θ − θ

)
1− exp−λ(θ−θ)

− 1

λ

exp−λθ

exp−λθ− exp−λθ

∣∣∣∣θ
θ

=
1

λ
+ θ −

(
θ − θ

)
1− exp−λ(θ−θ)

.

By l’Hôpital’s rule, limq→0 g (q) = 1
λ
. The limit limq→∞ 1 − exp (−λq) = 1 implies that

limq→∞ g (q) = ∞. Using q − g (q) = − q exp(−λq)
1−exp(−λq) and limq→∞ q exp (−λq) = 0, we have

limq→∞(q − g (q)) = 0.

The slope of the function is

g′ (q) =

(
1− (1 + λq) e−qλ

)
(1− e−qλ)2 ≥ 0.
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The inequality is strict for q > 0 since limq→0 (1 + λq) e−qλ = 1 and ∂
∂q

(1− (1 + λq) e−qλ) =

λ2qe−qλ > 0 for q > 0. Applying l’Hôpital’s rule twice, one finds that limq→0 g
′ (q) = 1

2
,

and since limq→∞ λqe
−qλ = 0, we have limq→∞ g

′(q) = 1.

Differentiating g (q) twice, we obtain

g′′ (q) = λ
e−qλ

(1− e−qλ)3

(
2e−qλ + qλ+ qλe−qλ − 2

)
.

The sign of the second derivative is equal to the sign of the expression in brackets. At q = 0,

the expression is zero. The change of the expression is given by

∂

∂q

(
2e−qλ + qλ+ qλe−qλ − 2

)
= λ

(
1− (1 + λq) e−qλ

)
≥ 0,

by the same argument as given above. Hence, g (q) is convex.

Proof of Lemma 3. i) Equation (3) follows immediately from applying again Fang et al.

(1990) Theorem 2.18.

ii) By the law of iterated expectations,

E
[
ω̃| θ̃ ∈

[
θ, θ
]]

= E
[
E
[
ω̃|θ̃ = θ

]∣∣∣ θ̃ ∈ [θ, θ]] = E
[
σωθ
σ2
θ

θ̃

∣∣∣∣ θ̃ ∈ [θ, θ]] =
σωθ
σ2
θ

·E
[
θ̃
∣∣∣ θ̃ ∈ [θ, θ]] .

iii) The marginal distribution of θ̃ is a classical Laplace distribution with density of the

form fθ (θ) = λe−λ|θ| by the same argument as given in Lemma 2 i). Since by Lemma A1

E
[
θ̃
∣∣∣ θ ∈ [θ, θ]] = 1

λ
+θ− (θ−θ)

1−exp−λ(θ−θ) = 1
λ
+ θ

1−exp−λ(θ−θ)−
exp−λ(θ−θ) θ

1−exp−λ(θ−θ) and limθ→∞ exp−λ(θ−θ) θ =

0, we have

lim
θ→∞

E
[
θ̃
∣∣∣ θ̃ ∈ [θ, θ]] = E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
+ θ.

For a discussion of the parameter α see the proof of Proposition 3.

Appendix B

Characterization of partitional equilibria

Partitional equilibria are completely characterized by a sequence of marginal types, ai,

who are indifferent between pooling with types slightly below and with types slightly above
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them. In our description here, we focus on symmetric equilibria. This is without loss, since

for the case c ≤ 1 symmetric equilibria are the only ones that exist. We do prove their

existence, and for logconcave densities, equilibria are unique (see Szalay (2012)). For the

case c > 1, we prove our results also allowing for asymmetric equilibria.

Class I: 0

an0
. . . . . . ann−an1 an1

−cµn2 cµn2−cµn1 cµn1 cµnn+1

Class II: cµn1

0. . . . . . ann−an1 an1

−cµn2 cµn2 cµnn+1

Figure 6: Class I equilibrium and Class II equilibrium.

Symmetric equilibria come in two classes; see Figure 6 for an illustration. Class I has

zero as a threshold, an0 = 0, and in addition n ≥ 0 thresholds an1 , . . . , a
n
n above the prior

mean. By symmetry, types −ann, . . . ,−an1 are the threshold types below the prior mean.

Such an equilibrium induces 2 (n+ 1) actions; superscript n captures the dependence of the

equilibrium threshold types on the number of induced actions. Class II has zero as an action

taken by the receiver instead of a threshold. In this case, we eliminate an0 altogether. Such

an equilibrium induces 2n+ 1 actions. Consider Class I equilibria first.

For n ≥ 1, let

µni ≡ E
[
θ̃
∣∣∣ θ̃ ∈ [ani−1, a

n
i

)]
for i = 1, . . . , n (18)

and µnn+1 ≡ E
[
θ̃
∣∣∣ θ̃ ≥ ann

]
. By convention, we take all intervals as closed from below and open

from above. Clearly, given quadratic loss functions and Part ii) of Lemma 3, the receiver’s

best reply if sender types in the interval
[
ani−1, a

n
i

)
pool is to choose

y
(
ani−1, a

n
i

)
= c · µni for i = 1, . . . , n (19)

and y (ann,∞) = c · µnn+1 if sender types with θ ≥ ann pool. Hence, a Class I equilibrium

that induces 2 (n+ 1) actions by the receiver is completely characterized by the indifference

conditions of the marginal types an1 , . . . , a
n
n :

ani − c · µni = c · µni+1 − ani , for i = 1, . . . , n. (20)

37



By symmetry, this system of equations also characterizes the marginal types below the prior

mean.

A Class II equilibrium is characterized by the same set of indifference conditions, (20) .

However, in this case conditions (18) and (19) apply only for i = 2, . . . , n, while we let

µn1 ≡ E
[
θ̃
∣∣∣ θ̃ ∈ [an−1, a

n
1

)]
= 0 and y

(
an−1, a

n
1

)
= c · µn1 = 0.

Equation (20) defines a nonlinear difference equation for any given n. The qualitative

features of the equilibrium set - in particular, the maximum number n such that a solution

to (20) exists - depend crucially on the magnitude of the regression coefficient, c.

For c ≤ 1, there is no bound on the number of induced actions (see Proposition 1).

One way to understand an equilibrium is as a combination of a “forward solution” and a

“closure condition”. A forward solution starting at zero takes the length of the first interval

as given, say x, and computes the “next” threshold, a2 (x) , as a function of the preceding

two, and likewise for the following thresholds. The closure condition for an equilibrium with

n positive thresholds requires that x is such that type ann (x) is exactly indifferent between

pooling downwards and upwards. Using this construction, we prove the existence of an

equilibrium for arbitrary n and show that the limit as n goes to infinity is an equilibrium.

As more and more distinct receiver actions are induced, the length of the interval(s) that

are closest to the agreement point, θ = 0, must go to zero. The reason is that the length

of all intervals is increasing in the distance from the agreement point to the first threshold.

Moreover, the level of the last threshold is bounded from above.

The case c > 1 is different in very essential ways, as shown in Proposition 2. Again,

any equilibrium must feature intervals that increase in length the farther they are located

from the agreement point. This is intuitive, since the extent of disagreement increases in

|θ| . However, the forward solution only has this feature if the length of the first interval is

bounded away from zero and n is bounded.

Proof of Proposition 1. Before proving Parts i) to iii) of the proposition by a sequence

of claims, we make the equilibrium conditions for the Laplace in Claim 0) explicit. Recall

the definition of the g function from Lemma A1.

Claim 0) A Class I equilibrium is a set of marginal types that satisfies the conditions

cg
(
ani − ani−1

)
= 2

c

λ
+ c
(
ani+1 − ani

)
− cg

(
ani+1 − ani

)
+ 2 (c− 1) ani . (21)
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for i = 1, . . . , n− 1 and

cg
(
ann − ann−1

)
= 2

c

λ
+ 2 (c− 1) ann, (22)

where an0 = 0. A Class II equilibrium satisfies

an1 =
c

λ
+ c (an2 − an1 )− cg (an2 − an1 )− (1− c) an1 , (23)

and in addition (21) for i = 2, . . . , n− 1, and (22) .

Proof: Recall the proof of Lemma A1; we write the conditional mean for the Laplace

µi+1 = E
[
θ̃
∣∣∣ θ̃ ∈ [θi, θi+1]

]
= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
+ θi+1 − g (θi+1 − θi), where 0 ≤ θi < θi+1, g (q) =

q
1−exp(−λq) , and 1

λ
= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
. In combination with the sender’s indifference conditions

(20), ani − c · µni = c · µni+1 − ani , this implies the claim.

Part i) We use the combination of forward solution and condition (22) to show equi-

librium existence. Formally, for an initial value x a forward solution a2(x) is defined as the

value of a2 that solves

cg (x)− c

λ
+ cg (a2 − x)− c (a2 − x)− c

λ
− 2 (c− 1)x = 0.

The forward solution for ai(x) for i ≥ 3 is defined recursively by

cg (ai−1 (x)− ai−2 (x))− c

λ
− c

λ
− c (ai − ai−1 (x)) + cg (ai − ai−1 (x))− 2 (c− 1) ai−1 (x) = 0.

We prove existence of Class I equilibria first. The argument is structured as follows. In

Claims i.1) to i.3), we investigate the forward solution, addressing first properties of solutions

(Claims i.1) and i.2)) and then existence (Claim i.3)). In Claim i.4), we address existence

and uniqueness of a fixed point. Finally, in Claim i.5) the extension to the case of Class II

equilibria is presented.

Claim i.1) The forward solution features increasing intervals,

ani+1 − ani > ani − ani−1.

Proof: Consider

∆ (a2 − x, x) ≡ cg (x)− c

λ
+ cg (a2 − x)− c (a2 − x)− c

λ
− 2 (c− 1)x.
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The forward solution for a2 given x is the value of a2 that solves ∆ (a2 − x, x) = 0. Take

a2 − x = x, then

∆ (x, x) = 2
(
cg (x)− c

λ

)
− cx− 2 (c− 1)x.

Since limx→0 g(x) = limx→0
x

1−e−λx = 1
λ
, we have limx→0 ∆ (x, x) = 0. Moreover,

∂

∂x
∆ (x, x) = 2cg′ (x)− c− 2 (c− 1) ,

∂2

∂x2
∆ (x, x) = 2cg′′ (x) > 0.

Observe that

lim
x→0

∂

∂x
∆ (x, x) = c− c− 2 (c− 1) = −2 (c− 1) ≥ 0

with a strict inequality if c < 1. It follows that ∆ (x, x) > 0 for all x > 0. Since for all finite

a2
∂

∂a2

∆ (a2 − x, x) = cg′ (a2 − x)− c < 0,

the forward solution for a2 given x, satisfies a2 − x > x.

Consider the forward solution for ai

cg (ai−1 (x)− ai−2 (x))− c

λ
− c

λ
− c (ai − ai−1 (x)) + cg (ai − ai−1 (x))− 2 (c− 1) ai−1 (x) = 0.

Let z = ai (x)− ai−1 (x) = ai−1 (x)− ai−2 (x) . Define

∆ (z, z; ai−1) ≡ 2
(
cg (z)− c

λ

)
− cz − 2 (c− 1) ai−1 (x) .

Then

lim
z→0

∆ (z, z; ai−1) = −2 (c− 1) ai−1 (x) > 0

for any ai−1 (x) > 0. Since 2cg′ (z) − c ≥ 0 with strict inequality for z > 0, we have

∆ (z, z; ai−1) > 0 for all z > 0. Since the left-hand side of the equation defining the forward

solution is decreasing in ai, for any ai−2 (x) , ai−1 (x) > 0 the solution of the forward equation

must satisfy ai (x)− ai−1 (x) > ai−1 (x)− ai−2 (x) .

Claim i.2) The forward solution a2 (x) satisfies limx→0 (a2 (x)− x) = 0 and da2
dx

> 1,

implying that a2 (x)− x is increasing in x. Moreover, the forward solutions ai (x)− ai−1 (x)
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for i = 3, . . . , n all satisfy limx→0 (ai (x)− ai−1 (x)) = 0 and dai+1(x)
dx

> dai(x)
dx

, implying that

ai (x)− ai−1 (x) is increasing in x.

Proof: Consider the equation determining the forward solution for a2 (x), that is condition

(21) for i = 1, a0 = 0, and a1 = x; formally, a2 (x) is the value of a2 that solves

cg (x)− c

λ
=
c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x.

In the limit as x → 0, we obtain limx→0 a2 (x) = 0 from the fact that limq→0 g (q) = 1
λ

(Lemma A1). Totally differentiating, we obtain

(cg′ (x) + c (1− g′ (a2 (x)− x))− 2 (c− 1)) dx− c (1− g′ (a2 (x)− x)) da2 = 0,

so that
da2

dx
=

(cg′ (x) + c (1− g′ (a2 (x)− x))− 2 (c− 1))

c (1− g′ (a2 (x)− x))
> 0.

Moreover, da2
dx

> 1 by the fact that cg′ (x) − 2 (c− 1) > 0 for c ≤ 1. Hence, we have that

limx→0 (a2 (x)− x) = 0 and d
dx

(a2 (x)− x) > 0.

For i = 2, consider the forward equation for a3 (x) . Formally, a3 (x) is the value of a3

that solves

cg (a2 (x)− x)− c

λ
=
c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 2 (c− 1) a2 (x) .

Since limx→0 a2 (x) = 0 and limx→0 (a2 (x)− x) = 0, we also have limx→0 a3 (x) = 0 and

limx→0 (a3 (x)− a2 (x)) = 0. Totally differentiating, we obtain

da3 (x)

da2 (x)
=
cg′ (a2 (x)− x)

(
da2(x)
dx
− 1
)

+ (c (1− g′ (a3 (x)− a2 (x)))− 2 (c− 1)) da2(x)
dx

c (1− g′ (a3 (x)− a2 (x))) da2(x)
dx

.

Since da2(x)
dx

> 1, we have da3(x)
da2(x)

> 0, and moreover da3(x)
da2(x)

> 1. Finally,

da3 (x)

dx
=
da3 (x)

da2 (x)

da2 (x)

dx
>
da2 (x)

dx
.

Hence, we have that limx→0 (a3 (x)− a2 (x)) = 0 and d
dx

(a3 (x)− a2 (x)) > 0.
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Suppose as an inductive hypothesis that the forward solutions up to and including ai (x)

have the properties that limx→0(ai (x)− ai−1 (x)) = 0, limx→0 ai (x) = 0, and dai(x)
dai−1(x)

> 1, so

that ai (x)− ai−1 (x) increasing in x. Consider the equation for ai+1 with solution ai+1(x),

cg (ai (x)− ai−1 (x))− c

λ
=
c

λ
+ c (ai+1 − ai (x))− cg (ai+1 − ai (x)) + 2 (c− 1) ai (x) .

The inductive assumptions for ai (x) and ai−1 (x) imply that limx→0(ai+1 (x) − ai (x)) = 0,

so that limx→0 ai+1 (x) = 0. Totally differentiating, we obtain

dai+1 (x)

dai (x)

=
cg′ (ai (x)− ai−1 (x))

(
dai(x)
dai−1(x)

− 1
)

+ (c (1− g′ (ai+1 (x)− ai (x)))− 2 (c− 1)) dai(x)
dai−1(x)

c (1− g′ (ai+1(x)− ai (x))) dai(x)
dai−1(x)

.

The assumption dai(x)
dai−1(x)

> 1 implies that dai+1(x)
dai(x)

> 1. We can conclude that, ai+1 (x)−ai (x)

is increasing in x for all i = 1, . . . , n.

Claim i.3) For each i = 2, . . . , n, there is x∗i such that a unique, finite forward solution

for ai (x) exists for all x ∈ [0, x∗i ) . In the limit as x→ x∗i , limx→x∗i ai (x) =∞. Furthermore,

x∗i+1 < x∗i .

Proof: The forward solution a2 (x) solves

cg (x)− c

λ
=
c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x.

The left-hand side satisfies limx→0 cg (x)− c
λ

= 0 and increases in x. The right-hand side

satisfies

lim
a2→x

{ c
λ

+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x
}

= 2 (c− 1)x ≤ 0,

where the inequality is strict for c < 1 and x > 0. Moreover, the right-hand side is increasing

and concave in a2 with limiting value

lim
a2→∞

{ c
λ

+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x
}

=
c

λ
+ 2 (c− 1)x.

Hence, there exists a finite forward solution a2 (x) if and only if

cg (x)− c

λ
<
c

λ
+ 2 (c− 1)x. (24)
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Since cg (x)− c
λ

is nonnegative and increasing in x and c
λ

+2 (c− 1)x is positive for x = 0 and

nonincreasing in x, there exists a unique value x∗2 such that (24) is satisfied with equality.

Hence, a finite forward solution a2 (x) exists for all x ∈ [0, x∗2) . In the limit as x → x∗2, we

have limx→x∗2 a2 (x) =∞.
Consider now the forward solution for ai (x) for i = 3, . . . , n. The forward solution ai

solves

cg (ai−1 (x)− ai−2 (x))− c

λ
=
c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) .

The left-hand side satisfies limx→0 cg (ai−1 (x)− ai−2 (x))− c
λ

= 0 and is increasing in x. The

right-hand side satisfies

lim
ai→ai−1(x)

c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) = 2 (c− 1) ai−1 (x) ≤ 0,

with strict inequality for x > 0 and c < 1. Moreover, the right-hand side is increasing and

concave in ai−1 with limiting value

lim
ai→∞

c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) =

c

λ
+ 2 (c− 1) ai−1 (x) .

Therefore, a unique solution for ai exists if and only if

cg (ai−1 (x)− ai−2 (x))− c

λ
<
c

λ
+ 2 (c− 1) ai−1 (x) . (25)

Given the derived properties of the forward solution, we have that cg (ai−1 (x)− ai−2 (x))−
c
λ

is nonnegative and increasing in x and c
λ

+ 2 (c− 1) ai−1 (x) is positive for x = 0 and

nonincreasing in x. Therefore, there exists a unique value x = x∗i such that (25) is satisfied

with equality. Hence a finite forward solution ai (x) exists for all x ∈ [0, x∗i ) . In the limit as

x→ x∗i , we have limx→x∗i ai (x) =∞.
Define

Ai (x) ≡ cg (ai−1 (x)− ai−2 (x))− c

λ
−
( c
λ

+ 2 (c− 1) ai−1 (x)
)
,

and analogously Ai+1 (x). Since ai (x) − ai−1 (x) > ai−1 (x) − ai−2 (x) and ai (x) > ai−1 (x)

for all x, we have Ai+1 (x) > Ai (x) . Moreover, both Ai+1 (x) and Ai (x) are increasing in x.

Letting x∗i and x∗i+1 denote the values of x such that Ai (x
∗
i ) = 0 and Ai+1

(
x∗i+1

)
= 0, we

have x∗i+1 < x∗i .
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Claim i.4) For any n there exists a unique value of x̃n such that condition (22) holds

for an−1 and an defined as solutions to the forward equation.

Proof: Take the forward solution for ai (x) for i = 2, . . . , n and consider the difference

between the left-hand and the right-hand side of the condition (22), which we define as

∆n (x) ≡ cg (an (x)− an−1 (x))− c

λ
− c

λ
− 2 (c− 1) an (x) .

Differentiating ∆n (x) with respect to x we get

d∆n (x)

dx
= cg′ (an (x)− an−1 (x))

(
dan (x)

dx
− dan−1 (x)

dx

)
− 2 (c− 1)

dan (x)

dx

= cg′ (an (x)− an−1 (x))

(
dan (x)

dan−1 (x)
− 1

)
dan−1 (x)

dx
− 2 (c− 1)

dan (x)

dx
.

Since dan(x)
dan−1(x)

> 1, ∆n (x) is strictly monotonic in x. This implies that there is at most one

value of x that solves the fixed point equation

∆n (x) = 0.

Let x̃n denote the value of x that satisfies ∆n (x̃n) = 0 for given n, if it exists. To show that

a fixed point exists, we need to show that x̃n is such that the forward solution for an (x̃n)

exists. To see this is true, note simply that ∆n (x̃n) = 0 for x̃n = x∗n+1. That is, x̃n is the

value of x, such that forward solutions for ai (x) for i = 2, . . . , n + 1 exist and are finite for

all x ∈ [0, x̃n) . Since x∗n+1 < x∗n, the forward solutions for i = 2, . . . , n exist and are finite at

x = x̃n. Hence, this completes the proof that there exists exactly one fixed point, x̃n. So in

equilibrium an1 = x̃n.

Claim i.5) For all n, there exists a unique Class II equilibrium.

Proof: A Class II equilibrium is characterized by

a1 =
c

λ
+ c (a2 − a1)− cg (a2 − a1)− (1− c) a1

in addition to condition (21) for i = 2, . . . , n− 1 and condition (22) .

To construct a forward solution, take an arbitrary initial value x for the first threshold

as given and compute a2 (x) as the solution to

x =
c

λ
+ c (a2 (x)− x)− cg (a2 (x)− x)− (1− c)x.
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We have lima2→x
(
c
λ

+ c (a2 − x)− cg (a2 − x)− (1− c)x
)

= − (1− c)x and

lima2→∞
(
c
λ

+ c (a2 − x)− cg (a2 − x)− (1− c)x
)

= c
λ
− (1− c)x. Hence, there is a unique

finite forward solution a2 (x) if and only if x < c
λ
− (1− c)x, or equivalently (2− c)x < c

λ
.

Since c ≤ 1, this is equivalent to x < c
λ(2−c) . We have limx→ c

λ(2−c)
a2 (x) = ∞. Likewise, for

x = 0 we have a2 (x)|x=0 = 0.

Differentiating totally, we find

0 = (c (1− g′ (a2 (x)− x))) da2 − (c (1− g′ (a2 (x)− x)) + (2− c)) dx,

and so
da2

dx
=

(c (1− g′ (a2 (x)− x)) + (2− c))
(c (1− g′ (a2 (x)− x)))

> 1.

Since the forward equations for ai (x) for i = 3, . . . , n as well as the fixed point condition

(22) are unchanged, all the remaining arguments are unchanged.

Part ii) Before analyzing the limits of equilibrium thresholds as n → ∞ in Claims

ii.2) and ii.3), claim ii.1) establishes some important monotonicity properties of equilibrium

thresholds.

Claim ii.1) The sequence (an1 )n is monotone decreasing, while the sequence (ann)n is

monotone increasing. Moreover, equilibrium thresholds are nested,

an+1
1 < an1 < an+1

2 < · · · an+1
n < ann < an+1

n+1 ∀n. (26)

Proof: Using the notation from Part i), since an1 = x̃n = x∗n+1 and an+1
1 = x̃n+1 = x∗n+2 it

follows immediately from Part i) that an+1
i < ani for i = 1, . . . , n. In particular, the argument

follows from the fact that the solution of the forward equation is monotonic in the initial

condition, x. Hence, it suffices to prove that an+1
i+1 > ani for i = 1, . . . , n.

We start with two preliminary observations. Firstly, the “next” solution of the forward

equation, aki+1 (x) for i = 1, . . . , k− 1, k = n, n+ 1 is monotonic in aki (x) , and the length of

the previous interval, aki (x) − aki−1 (x) . To see this, note that the forward equations for ak2,

ak3, and aki+1, for i = 3, . . . , k − 1 and k = n, n+ 1, satisfy:

cg (x)− c

λ
=
c

λ
+ c
(
ak2 − x

)
− cg

(
ak2 − x

)
+ 2 (c− 1)x,

cg
(
ak2 (x)− x

)
− c

λ
=
c

λ
+ c
(
ak3 − ak2 (x)

)
− cg

(
ak3 − ak2 (x)

)
+ 2 (c− 1) ak2 (x) ,
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and

cg
(
aki (x)− aki−1 (x)

)
− c

λ
=
c

λ
+ c
(
aki+1 − aki (x)

)
− cg

(
aki+1 − aki (x)

)
+ 2 (c− 1) aki (x) .

The conclusion follows from the fact that aki (x) decreases the value of the right-hand side

and increases the value of the left-hand side. Moreover, the left-hand side is increasing in

aki (x)− aki−1 (x) .

Secondly, it is impossible that an+1
n+1 (x̃n+1) < ann (x̃n) and an+1

n+1 (x̃n+1) − an+1
n (x̃n+1) <

ann (x̃n)− ann−1 (x̃n) . If these conditions would hold, then one of the fixed point conditions,

0 = cg
(
ann (x̃n)− ann−1 (x̃n)

)
− c

λ
− c

λ
− 2 (c− 1) ann (x̃n)

and

0 = cg
(
an+1
n+1 (x̃n+1)− an+1

n (x̃n+1)
)
− c

λ
− c

λ
− 2 (c− 1) an+1

n+1 (x̃n+1)

would necessarily be violated.

We now show that an+1
j+1 > anj for all j ≤ n. Suppose that this were not true and let the

property be violated for the first time at j = l.

Suppose an+1
j+1 (x̃n+1) > anj (x̃n) for all j = 1, . . . , l − 1 and an+1

l+1 (x̃n+1) < anl (x̃n) . Taken

together, these inequalities immediately imply that an+1
l+1 (x̃n+1) − an+1

l (x̃n+1) < anl (x̃n) −
anl−1 (x̃n). In turn, the monotonicity property of the next forward solution implies then that

an+1
l+2 (x̃n+1) < anl+1 (x̃n) .

It also follows then that an+1
l+2 (x̃n+1) − an+1

l+1 (x̃n+1) < anl+1 (x̃n) − anl (x̃n) . To see this,

suppose instead that an+1
l+2 (x̃n+1) − an+1

l+1 (x̃n+1) ≥ anl+1 (x̃n) − anl (x̃n) or equivalently that

an+1
l+2 (x̃n+1) ≥ anl+1 (x̃n) +

(
an+1
l+1 (x̃n+1)− anl (x̃n)

)
. However, this is impossible since both

an+1
l+2 (x̃n+1) < anl+1 (x̃n) and an+1

l+1 (x̃n+1) < anl (x̃n) . Hence, the claim follows.

However, if an+1
l+2 (x̃n+1) < anl+1 (x̃n) and an+1

l+2 (x̃n+1) − an+1
l+1 (x̃n+1) < anl+1 (x̃n) − anl (x̃n) ,

then an+1
l+3 (x̃n+1) < anl+2 (x̃n) and so forth. Hence, we would have an+1

j+1 (x̃n+1) < anj (x̃n) and

an+1
j+1 (x̃n+1) − an+1

j (x̃n+1) < anj (x̃n) − anj−1 (x̃n) for all j ≥ l and in particular for j = n,

leading to a violation of one of the fixed point conditions.

The same argument can be given for a Class II equilibrium. This is omitted.

Claim ii.2) Equilibrium thresholds converge for n→∞.

Proof: We know from Part i) that (an1 )n is monotone decreasing in n. Since the sequence

is bounded by zero it must converge. Similarly, by Claim ii.1) the sequence (ann)n is monotone
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increasing in n. The fixed point condition, (22), implies that it is bounded by c
1−c

1
2λ

, hence

it converges. Since equilibrium thresholds are nested (cf. (26)) all sequences of thresholds

must converge for n→∞.

Claim ii.3) The limit of the sequences of thresholds and actions is an equilibrium.

Proof: The limit is an equilibrium if limn→∞ cµ
n
i ≤ limn→∞ a

n
i ≤ limn→∞ cµ

n
i+1. There-

fore, we have to show that equilibrium thresholds remain ordered in the limit, limn→∞ a
n
i <

limn→∞ a
n
i+1. For all finite n, thresholds are ordered in equilibrium, ani < ani+1, since they are

ordered for any forward equation. By Claim ii.2) equilibrium thresholds converge; denote

the limits by ai = limn→∞ a
n
i for all i. By convergence, for any ε there is a N such that for

all n > N : ani ≥ ai− ε
2

and ani+1 ≤ ai+1 + ε
2
. Suppose for contradiction that ai ≥ ai+1 + δ for

some δ > 0; this implies

ani ≥ ai −
ε

2
≥ ai+1 + δ − ε

2
≥ ani+1 −

ε

2
+ δ − ε

2
> ani+1,

for all ε < δ. Hence thresholds remain ordered in the limit and the limit is an equilibrium.

Part iii) In the limit as n→∞, we have limn→∞ x̃n = 0.

Proof: The fixed point argument in the proof of Part i) implies that the sequence (x̃n)n
is monotone decreasing. Since it is bounded from below by zero it converges. As before, we

use the notation an1 = x̃n = x∗n+1.

Recall that x∗n+1 < x∗n and that the forward solution for an (x) exists for x ≤ x∗n, where

x∗n satisfies

cg (an−1 (x∗n)− an−2 (x∗n))− c

λ
=
c

λ
+ 2 (c− 1) an−1 (x∗n) .

Monotonicity of the forward solutions, ak (x) > ak−1 (x), and increasing length of the inter-

vals, ak (x) − ak−1 (x) > ak−1 (x) − ak−2 (x), imply for c ≤ 1 the following. For any x > 0

there is a k such that

cg (ak−1 (x)− ak−2 (x))− c

λ
≤ c

λ
+ 2 (c− 1) ak−1 (x)

and

cg (ak (x)− ak−1 (x))− c

λ
>
c

λ
+ 2 (c− 1) ak (x) .

Therefore, for a fixed length x of the first interval, the forward equation has a solution only

for a finite number of steps. Hence, in an infinite equilibrium we have limn→∞ x
∗
n = 0,

implying that the length of the first interval goes to zero, limn→∞ x̃n = 0.
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The proof for the case of a Class II equilibrium is virtually the same and hence omitted.

Proof of Proposition 2. Before proving that actions are bounded away from zero

for Class I equilibria in Claim 1) and for Class II equilibria in Claim 2), Claim 0) shows a

monotonicity condition. Finally, Claim 3) proves finiteness of equilibria. Recall the definition

of the g function from Lemma A1.

Claim 0) If a Class I equilibrium exists, it features increasing intervals for all i =

1, . . . , n− 1,

ani+1 − ani > ani − ani−1; (27)

If a Class II equilibrium exists, it always shares this feature for i = 2, . . . , n− 1.

Proof: Consider first Class I equilibria for given n ≥ 2. For n < 2, the question is

meaningless. Define

zni ≡ ani − ani−1 for i = 1, . . . , n.

For c ≥ 2, no equilibrium of the considered kind exists this is shown in Claim 1) below.

Now take c ∈ (1, 2). For n = 2, the indifference condition of type an2 and an1 are, in that

order,

cg (zn2 ) = 2
c

λ
+ 2 (c− 1) (zn1 + zn2 ) ,

and

cg (zn1 ) = 2
c

λ
+ c (zn2 − g (zn2 )) + 2 (c− 1) zn1 .

Substituting the former condition into the latter and simplifying, we have

zn2 =
c

2− c
g (zn1 ) .

Since g (z) > z and c
2−c > 1, we have zn2 > zn1 .

For n ≥ 3, the indifference conditions of types ann and ann−1, respectively, can be written

as

cg (znn) = 2
c

λ
+ 2 (c− 1)

n∑
j=1

znj , and

cg
(
znn−1

)
= 2

c

λ
+ c (znn − g (znn)) + 2 (c− 1)

n−1∑
j=1

znj .

48



Adding −2 c
λ
− 2 (c− 1)

n∑
j=1

znj + cg (znn) = 0 to the indifference condition of type ann−1, we get

cg
(
znn−1

)
= (2− c) znn ,

and hence

znn =
c

2− c
g
(
znn−1

)
.

Since c
2−c > 1 for c > 1 and g (z) > z, this implies that znn > znn−1. By Lemma A1, we

therefore have g (znn)− znn < g
(
znn−1

)
− znn−1. Hence, we also have

cg
(
znn−1

)
= 2

c

λ
+ c (znn − g (znn)) + 2 (c− 1)

n−2∑
j=1

znj + 2 (c− 1) znn−1

> 2
c

λ
+ c
(
znn−1 − g

(
znn−1

))
+ 2 (c− 1)

n−2∑
j=1

znj = cg
(
znn−2

)
,

where the first equality is the indifference condition of type ann−1 and the second equality the

one for type ann−2. Hence, we can conclude that znn−2 < znn−1.

Likewise, suppose as an inductive hypothesis that zni < zni+1. Consider the indifference

conditions of types ani and ani−1, respectively,

cg (zni ) = 2
c

λ
+ c
(
zni+1 − g

(
zni+1

))
+ 2 (c− 1)

i−1∑
j=1

znj + 2 (c− 1) zni

and

cg
(
zni−1

)
= 2

c

λ
+ c (zni − g (zni )) + 2 (c− 1)

i−1∑
j=1

znj .

By Lemma A1, the value of the right-hand side of the former equation exceeds the value of

the right-hand side of the latter equation, and hence we have shown that zni−1 < zni .

Class II equilibria have the same indifference conditions for the marginal types ani for

i = 2, . . . , n− 1. Hence, the same argument applies.

Note that we do not invoke symmetry of the equilibrium in any way. Therefore, except

for notation, the same argument applies also to asymmetric equilibria.

Claim 1) In any Class I equilibrium the receiver’s induced actions are bounded away

from zero.
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Proof: Any equilibrium must be a solution to the forward equation. This requires that

the solution of the forward equation exists and features increasing intervals. This is possible

only if the length of the first interval is bounded away from zero.

The forward equation for a2 is given by

cg (x)− c

λ
=
c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x. (28)

The left-hand side satisfies limx→0 cg (x) − c
λ

= 0 and is increasing and convex in x, with

slope between c
2

and c. The right-hand side satisfies

lim
a2→x

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x = 2 (c− 1)x ≥ 0,

where the inequality is strict for x > 0. Moreover, the right-hand side is increasing and

concave in a2 with limit

lim
a2→∞

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1)x =

c

λ
+ 2 (c− 1)x.

Hence, there exists a forward solution a2 (x) if and only if

2 (c− 1)x < cg (x)− c

λ
<
c

λ
+ 2 (c− 1)x.

There are three cases to distinguish: i) c ∈
(
1, 4

3

]
, ii) c ∈

(
4
3
, 2
)
, and iii) c ≥ 2.

i) For c ∈
(
1, 4

3

]
, there exists a solution a2 (x) for x < x where x is the unique value of

x that satisfies cg (x)− c
λ

= c
λ

+ 2 (c− 1)x. To see this, note that we have 2 (c− 1) ≤ c
2

and

thus 2 (c− 1) ≤ cg′ (x) for all x, since g′ (x) ≥ 1
2

for all x. Therefore, 2 (c− 1)x < cg (x)− c
λ

is satisfied for all x > 0. cg (x)− c
λ
< c

λ
+2 (c− 1)x holds for x small since limx→0 cg (x)− c

λ
=

0 < c
λ
. As x increases, the latter inequality eventually ceases to hold, since c > 2 (c− 1) and

thus cg′ (x) > 2 (c− 1) for x sufficiently large, as g′ (x) tends to one as x→∞.

ii) For c ∈
(

4
3
, 2
)
, there exists a solution a2 (x) for x ∈ (x, x) where x is the uniqe value

of x that satisfies 2 (c− 1)x < cg (x)− c
λ
. Note that for c ∈

(
4
3
, 2
)

we have c
2
< 2 (c− 1) < c.

Since limx→0 g
′ (x) = 1

2
, we have 2 (c− 1)x ≥ cg (x)− c

λ
for x positive and small, so that the

former inequality is violated for x small. Thus, no solution for a2 (x) exists if x is close to

zero.
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iii) For c ≥ 2 we have 2 (c− 1) ≥ c and therefore 2 (c− 1) ≥ cg′ (x) for all x. Hence,

2 (c− 1)x ≥ cg (x) − c
λ

for all x so that no solution exists for a2 (x) . This implies that at

most two actions can be induced in equilibrium.

Hence, it follows immediately that x is bounded away from zero for c > 4
3
. Consider

therefore the case where c ∈
(
1, 4

3

]
. Since equilibrium thresholds have to satisfy the increasing

interval property (27), the solution must satisfy a2 (x)−x > x for any equilibrium. We show

that this condition is violated for small x. Suppose that a2−x = x. We define the difference

between the right-hand side and the left-hand side of condition (28) at a2 − x = x as

D (x) ≡ c

λ
+ cx− cg (x) + 2 (c− 1)x+

c

λ
− cg (x) .

If D (x) is positive (negative), then a2 needs to decrease (increase) to satisfy the forward

equation, since the right-hand side of (28) is increasing in a2. We have limx→0D(x) = 0.

Moreover, the slope of D(x) at x = 0 is D′(x)|x=0 = 2 (c− 1) > 0. Hence, for x small, we

would get a2 (x)−x < x, violating the increasing interval property (27). However, since any

equilibrium needs to have this property, x is bounded away from zero.

Note that this argument extends to any equilibrium with zero as a threshold, not just

symmetric equilibria.

Claim 2) In any Class II equilibrium all but at most one of the receiver’s induced actions

are bounded away from zero.

Proof: Given x, a2 (x) is the value of a2 that solves

cg (a2 − x)− c

λ
= c (a2 − x) + (c− 2)x. (29)

Note first that no solution a2 (x) exists for c ≥ 2. To see this, note that

lim
a2→x

c

λ
+ c (a2 (x)− x)− cg (a2 (x)− x)− (2− c)x = − (2− c)x ≥ 0

for any c ≥ 2 and any x ≥ 0. Therefore, we consider 1 < c < 2 from now on. Equation (29)

has a solution for x < c
λ(2−c) , which satisfies limx→0 a2 (x) = 0 and moreover,

da2

dx
=
c (1− g′ (a2 − x)) + (2− c)

c (1− g′ (a2 − x))
> 1.
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Rearranging (29) we can write

−2
(c− 1)

(c− 2)

(
cg (a2 (x)− x)− c

λ
− c (a2 (x)− x)

)
= −2 (c− 1)x.

Given x and a2 (x) , a3 (x) is the value of a3 that solves

cg (a2 (x)− x)− c

λ
=
c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 2 (c− 1) a2 (x) . (30)

Adding up both equations and rearranging, we can conclude that a3 (x) is the value of a3

that solves

0 =
c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 4

c− 1

2− c
(a2 (x)− x)− c

2− c

(
cg (a2 (x)− x)− c

λ

)
.

(31)

Note that the right-hand side of this equation is increasing in a3 and that a3 (x) is the unique

value that sets the expression equal to zero. We show that the expression is strictly positive

for a3 − a2 (x) = a2 (x) − x, to get a3 (x) − a2 (x) < a2 (x) − x, in contradiction to the

increasing interval property (27).

Note that the right-hand side of (31) depends only on the differences a2 (x) − x and

a3− a2 (x) . Moreover, note that a2 (x)− x goes to zero as x goes to zero. Let z = a2 (x)− x
and evaluate the rhs of (31) at a3 − a2 (x) = z. We obtain

F (z) ≡ cz + 4
c− 1

2− c
z +

2

2− c

( c
λ
− cg (z)

)
.

F (z) is concave in z. In the limit as x and hence z tends to zero, we find

F ′ (z)|z=0 =
5c− c2 − 4

2− c
,

where we use that g′ (z)|z=0 = 1
2
. For c ∈ (1, 2), we have 5c − c2 − 4 > 0 and we know

that F (z) > 0 for z small. Since, the right-hand side of (31) is increasing in a3, to restore

equality with zero, a3 needs to decrease, which would imply that a3 (x)−a2 (x) < a2 (x)−x.
However, this contradicts the the increasing interval property (27) of any equilibrium. This

implies that x must be bounded away from zero.

Consider now an asymmetric interval around zero. Fix an arbitrary point a−1 = −y < 0

and an arbitrary point a1 = x > 0. We have Pr
(
θ̃ ∈ (0, x]

)
= 1

2

(
1− e−λx

)
and Pr

(
θ̃ ∈ (−y, 0]

)
=

52



Pr
(
θ̃ ∈ [0, y)

)
= 1

2

(
1− e−λy

)
. Let δ (x, y) ≡ (1−e−λx)

(1−e−λx)+(1−e−λy)
, then the conditional expec-

tation over the interval [−y, x] is

w (x, y) ≡ δ (x, y)

(
1

λ
+ x− g (x)

)
− (1− δ (x, y))

(
1

λ
+ y − g (y)

)
.

Clearly, w (x, y) T 0 for x T y. The forward solution a2 (x, y) is the value of a2 that solves

−cw (x, y) =
c

λ
+ c (a2 − x)− cg (a2 − x) + (c− 2)x. (32)

Note first that for c ≥ 2 necessarily x < y. However, we need to have y < x to get a solution

for the isomorphic problem on the negative orthant. Hence for c ≥ 2 the forward solution

does not exist in both directions.

Now consider 1 < c < 2. A solution a2 (x, y) exists if and only if

(c− 2)x < −cw (x, y) <
c

λ
+ (c− 2)x.

Note that this is always satisfied for x = y, and hence by continuity also for x close to y.

The condition determining a3 is unchanged,

cg (a2 (x, y)− x)− c

λ
=
c

λ
+ c (a3 − a2 (x, y))− cg (a3 − a2 (x, y)) + 2 (c− 1) a2 (x, y) . (33)

Rearranging (32), we can write

2 (c− 1)

(c− 2)
cw (x, y)− 2 (c− 1)

(c− 2)

(
cg (a2 − x)− c

λ
− c (a2 − x)

)
= −2 (c− 1)x.

Adding up with (33) ,

2 (c− 1)

(c− 2)
cw (x, y)

=
c

λ
+ c (a3 (x, y)− a2 (x, y))− cg (a3 (x, y)− a2 (x, y)) + 4

c− 1

2− c
(a2 (x, y)− x)

− c

2− c

(
cg (a2 (x, y)− x)− c

λ

)
.

For x > y, the left-hand side is strictly negative. On the other hand, the right-hand side is

strictly positive at a3 (x, y)− a2 (x, y) = a2 (x, y)− x = z for z small. Hence, the argument
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extends to this case. Note that by symmetry of the distribution, the case x < y causes the

isomorphic problem on the negative orthant. Hence, the size of the interval around zero

must be bounded away from zero.

To conclude, we have shown that in a Class I equilibrium, µn1 > 0, in a Class II equi-

librium, µn2 > 0 (by definition, we have µn1 = 0). Finally, in any asymmetric equilibrium,

the lengths of the intervals that are adjacent to the interval containing the prior mean are

bounded away from zero.

Claim 3) Only a finite number of distinct receiver actions are induced in equilibrium.

Proof: Consider a Class I equilibrium first. We show that the solution of the forward

equation violates the increasing interval property (27) for n large enough.

Consider the forward equation for an with length x of the first interval,

an−1 (x)−c
(

1

λ
+ an−1 (x)− g (an−1 (x)− an−2 (x))

)
= c

(
1

λ
+ an − g (an − an−1 (x))

)
−an−1 (x) .

There is a unique value an (x) of an that solves this equation. Let an be such that an −
an−1 (x) = an−1 (x) − an−2 (x) ≡ z, for some z > 0. Let D (z;x) denote the difference

between the right-hand side and the left-hand side of the forward equation evaluated at z,

D (z;x) = 2 (c− 1) an−1 (x) + c

(
2

λ
+ z − 2g (z)

)
.

If D (z;x) > 0, then an needs to decrease to satisfy the forward equation. Note that 2
λ

+

z − 2g (z) is strictly negative for z > 0 and 2 (c− 1) an−1 (x) is strictly positive. From the

first part of the proposition, we know that x is bounded away from zero. Moreover, x has to

satisfy the increasing interval property (27) for a2 (x)− x > x. Suppose that the increasing

interval property is satisfied up to the interval an−1 (x)− an−2 (x) . (If not, then we are done

already.) If all intervals up to an−1 (x) − an−2 (x) satisfy the increasing interval property,

then an−1 (x) ≥ (n− 1)x. Note that x does not depend on n. Hence, for any finite z, there

is a n (z, x) such that D (z;x) > 0 for all n ≥ n (z, x) , implying that the increasing interval

property is violated.

For the Class II equilibrium, note that the forward equation for an (for n ≥ 3) is the same

as above. The only difference is the value of an−1 (x) and the lower bound on x. However,

an−1 (x) ≥ x+ (n− 2) (a2 (x)− x) . Note again that x and a2 (x) do not depend on n.
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The same argument can be given for the asymmetric case. Hence, the same conclusions

obtain.

Appendix C

Proof of Lemma 4. We have

Eµ̃ω̃ur (cµ̃, ω̃) = −Eµ̃ω̃
[
(cµ̃− ω̃)2] = −Eµ̃ω̃

[
c2µ̃2 − 2cω̃µ̃− ω̃2

]
= c2Eµ̃ [µ̃]2 − σ2.

The last equality follows from the fact that Eµ̃ω̃ [ω̃µ̃] = cEµ̃
[
µ̃2
]
, which we now demonstrate.

Let j = 1, . . . , J label the partition intervals in the natural order. Let Θj denote a generic

interval, µj the mean over that interval, and define Pr (Θj) ≡ Pr
(
θ̃ ∈ Θj

)
. Moreover, let

fω̃θ̃ (ω, θ) denote the joint density of ω̃ and θ̃. We can write

Eµ̃ω̃ [ω̃µ̃] = Eµ̃
[
E ω̃|µ̃=µ [ ω̃µ̃| µ̃ = µ]

]
=
∑
j

Pr (Θj)
[
E ω̃|µ̃=µj

[
ω̃µ̃| µ̃ = µj

]]
=
∑
j

Pr (Θj)µj

∫
ωf ω̃|Θj

(
ω| θ̃ ∈ Θj

)
dω,

where

f ω̃|Θj

(
ω| θ̃ ∈ Θj

)
=

∫
Θj

fω̃θ̃ (ω, θ)

Pr (Θj)
dθ.

Interchanging the order of integration (Fubini’s theorem) gives us,∑
j

Pr (Θj)µj

∫
ω

∫
Θj

fω̃θ̃ (ω, θ)

Pr (Θj)
dθdω =

∑
j

Pr (Θj)µj

∫
Θj

∫
ω
fω̃θ̃ (ω, θ)

Pr (Θj)
dωdθ.

Dividing and multiplying by f (θ) , recognizing that
fω̃θ̃(ω,θ)

f(θ)
= f ω̃|θ̃=θ

(
ω| θ̃ = θ

)
, and apply-

ing (4) (Lemma 3 ii)), we have∑
j

Pr (Θj)µj

∫
Θj

∫
ω
fω̃θ̃ (ω, θ)

Pr (Θj)
dωdθ =

∑
j

Pr (Θj)µj

∫
Θj

∫
ωfω|θ̃=θ

(
ω̃| θ̃ = θ

)
dω

f (θ)

Pr (Θj)
dθ

=
∑
j

Pr (Θj)µj

∫
Θj

cθ
f (θ)

Pr (Θj)
dθ

= c
∑
j

Pr (Θj)µ
2
j .
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Substituting back and simplifying delivers the result.

Proof of Proposition 3. Preliminaries on Probabilities

Recall that f (θ) and F (θ) denote the pdf and cdf of θ̃. For k = 2, . . . , n, define p̂k−1 as the

probability that θ̃ ∈ [ak−2, ak−1] conditional on θ̃ ≥ ak−2,

p̂k−1 ≡
F (ak−1)− F (ak−2)

1− F (ak−2)
.

Accordingly, 1− p̂k−1 = 1−F (ak−1)

1−F (ak−2)
is the probability that θ̃ ≥ ak−1, conditional on θ̃ ≥ ak−2.

We can write these probabilities as

p̂k−1 =
E
[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− E

[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
E
[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− µk−1

(34)

and

1− p̂k−1 =
E
[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
− µk−1

E
[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− µk−1

.

To see this, note that

(F (ak−1)− F (ak−2))µk−1 =

ak−1∫
ak−2

θf (θ) dθ =

∞∫
ak−2

θf (θ) dθ −
∞∫

ak−1

θf (θ) dθ

= (1− F (ak−2))E
[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
− (1− F (ak−1))E

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
.

Hence

p̂k−1µk−1 = E
[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
− (1− p̂k−1)E

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
.

Solving for p̂k−1 delivers the desired conclusion.

Observe that (1− p̂k−2) · p̂k−1 is the probability of the event θ̃ ∈ [ak−2, ak−1] conditional

on θ̃ ≥ ak−3, and (1− p̂k−2) · (1− p̂k−1) is the probability of the event θ̃ ≥ ak−1 conditional

on θ̃ ≥ ak−3. To see this, note that 1− p̂k−2 = Pr
[
θ̃ ≥ ak−2

∣∣∣ θ̃ ≥ ak−3

]
= 1−F (ak−2)

1−F (ak−3)
and recall

that p̂k−1 = F (ak−1)−F (ak−2)

1−F (ak−2)
.
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Induction

Induction Basis:

Recall that µ+ ≡ E
[
θ̃
∣∣∣ θ̃ ≥ 0

]
. Let the distribution satisfy E

[
θ̃
∣∣∣ θ̃ ≥ θ

]
= µ+ + α · θ for

all θ ≥ 0 and for some constant α. Note that for the Laplace distribution, α = 1. Finally,

define

ĉ ≡ αc.

Assume that ĉ ∈ (0, 2). Let

Xn
n

(
ann−1

)
≡ p̂nn

(
ĉµnn − ĉµ+

)2
+ (1− p̂nn)

(
ĉµnn+1 − ĉµ+

)2
.

Xn
n

(
ann−1

)
is equal to ĉ2 times the expected squared deviation of the truncated means from

µ+, conditional on θ̃ ≥ ann−1. Substituting for p̂nn from (34) , and multiplying and dividing by

ĉ for convenience, we can write

Xn
n

(
ann−1

)
=

ĉµnn+1 − ĉE
[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
ĉµnn+1 − ĉµnn

(
ĉµnn − ĉµ+

)2

+
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
− ĉµnn

ĉµnn+1 − ĉµnn

(
ĉµnn+1 − ĉµ+

)2
.

Expanding the numerators of the probabilities by ±ĉµ+, reorganizing according to common

factors, and simplifying (using lengthy but straightforward computations), we can write

Xn
n

(
ann−1

)
= Ann +Bn

n ,

where

Ann ≡
(
ĉµnn+1 − ĉµ+

) (
ĉµ+ − ĉµnn

)
and

Bn
n ≡

(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
− ĉµ+

) ((
ĉµnn + ĉµnn+1

)
− 2ĉµ+

)
.

We can further simplify the terms Ann and Bn
n , using the indifference condition of the marginal

type ann (multiplied by α), ĉµnn + ĉµnn+1 = 2αann and the linearity of the tail conditional

expectation, αann = µnn+1 − µ+. Substituting the latter condition into the former one, and

solving for µnn+1, we obtain
ĉµnn + 2µ+

2− ĉ
= µnn+1.
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Substituting back into Ann and Bn
n , and simplifying, we have shown that

Xn
n

(
ann−1

)
=

ĉ

2− ĉ
(
ĉµnn + ĉµ+

) (
ĉµ+ − ĉµnn

)
+2
(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
− ĉµ+

)( ĉ

2− ĉ
(
µnn + µ+

)
− ĉµ+

)
.

Induction hypothesis:

Xn
k

(
ank−1

)
=

ĉ

2− ĉ
(
ĉµ+ + ĉµnk

) (
ĉµ+ − ĉµnk

)
+2
(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

)( ĉ

2− ĉ
(
µ+ + µnk

)
− ĉµ+

)
.

Inductive step:

By definition

Xn
k−1

(
ank−2

)
= p̂nk−1

(
ĉµnk−1 − ĉµ+

)2
+
(
1− p̂nk−1

)
Xn
k

(
ank−1

)
.

Substituting for the probability distribution from (34) and using the inductive hypothesis,

we have

Xn
k−1

(
ank−2

)
=

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

(
ĉµnk−1 − ĉµ+

)2

+
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
− ĉµnk−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

(
ĉ

2−ĉ

(
ĉµ+ + ĉµnk

) (
ĉµ+ − ĉµnk

)
+2
(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

) (
ĉ

2−ĉ

(
µ+ + µnk

)
− ĉµ+

) ) .
Expanding the numerators of the probabilities by ±ĉµ+ and reorganizing according to com-

mon factors, we can write

Xn
k−1

(
ank−2

)
= Ank−1 +Bn

k−1

with

Ank−1 ≡
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

(
ĉµnk−1 − ĉµ+

)2
+

ĉµ+ − ĉµnk−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

·
(

ĉ

2− ĉ
(
ĉµ+ + ĉµnk

) (
ĉµ+ − ĉµnk

)
+ 2

(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

)( ĉ

2− ĉ
(
µ+ + µnk

)
− ĉµ+

))

58



and

Bn
k−1 ≡

ĉµ+ − ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

(
ĉµnk−1 − ĉµ+

)2
+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
− ĉµ+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

·
(

ĉ

2− ĉ
(
ĉµ+ + ĉµnk

) (
ĉµ+ − ĉµnk

)
+ 2

(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

)( ĉ

2− ĉ
(
µ+ + µnk

)
− ĉµ+

))
.

We consider each term in sequence. We first show that

Ank−1 =
ĉ

2− ĉ
(
ĉµ− ĉµnk−1

) (
ĉµ+ ĉµnk−1

)
.

The indifference condition of type ank−1,ĉµnk = 2αank−1 − ĉµnk−1, allows us to substitute for

ĉµnk . Hence,

Ank−1 =
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

(
ĉµnk−1 − ĉµ+

)2
+

ĉµ+ − ĉµnk−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

·
(

ĉ

2− ĉ
(
ĉµ+ + 2αank−1 − ĉµnk−1

) (
ĉµ+ −

(
2αank−1 − ĉµnk−1

))
+2
(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− ĉµ+

)( 1

2− ĉ
(
ĉµ+ 2αak−1 − ĉµnk−1

)
− ĉµ+

))
.

Collecting terms with the common factor
ĉE[ θ̃|θ̃≥ank−1]−ĉµ+
ĉE[ θ̃|θ̃≥ank−1]−ĉµnk−1

(
ĉµnk−1 − ĉµ+

)
and simplifying,

we get

Ank−1 =
ĉµ+ − ĉµnk−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

(
ĉ

2− ĉ

((
ĉµ+ − ĉµnk−1

) (
ĉµ+ + ĉµnk−1

)
+
(
−4
(
αank−1

)2
+ 4αank−1ĉµ

n
k−1

))
+
(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

)( ĉ

2− ĉ
(
ĉµnk−1 + ĉµ+

)
+

4

2− ĉ
(
αank−1 − ĉµnk−1

)))
.

It is easy to see that

ĉµ+ − ĉµnk−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

ĉ

2− ĉ
(
ĉµ+ − ĉµnk−1

) (
ĉµ+ + ĉµnk−1

)
+

ĉµ+ − ĉµnk−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµnk−1

(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉµ+

) ĉ

2− ĉ
(
ĉµnk−1 + ĉµ+

)
=

ĉ

2− ĉ
(
ĉµ+ − ĉµnk−1

) (
ĉµ+ + ĉµnk−1

)
.
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Moreover, since ĉE
[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− ĉµ+ = αĉank−1, all the terms involving ank−1 exactly cancel

out. Hence, the desired conclusion follows.

The term Bn
k−1 is simplified using the same essential steps: the indifference condition

of the marginal type to substitute for ĉµnk , collecting terms with common factors and terms

that add up conveniently, and the linear tail conditional expectation. Hence we can conclude

that

Bn
k−1 = 2

(
ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
− ĉµ+

)( ĉ

2− ĉ
(
µ+ + µnk−1

)
− ĉµ+

)
.

This completes the induction.

Building on the characterization, we can compute E
[
µ̃2
]

in any equilibrium.

Finite Class I: In a Class I equilibrium, an0 = 0. Hence,

Xn
1 (an0 ) =

ĉ

2− ĉ
(
ĉµ+ − ĉµn1

) (
ĉµ+ + ĉµn1

)
.

Recalling the definition of Xn
k−1

(
ank−2

)
, we also have

Xn
1 (an0 ) = ĉ2

n+1∑
i=1

p̂ni
(
µni − µ+

)2
= ĉ2

n+1∑
i=1

p̂ni (µni )2 − ĉ2µ2
+,

where the second equality follows from the fact that
n+1∑
i=1

p̂ni
(
µni − µ+

)
= 0. Solving for

n+1∑
i=1

p̂ni (µni )2 between these equations, we get

n+1∑
i=1

p̂ni (µni )2 =
Xn

1 (an0 )

ĉ2
+ µ2

+ =
2

2− ĉ
µ2

+ −
ĉ

2− ĉ
(µn1 )2 .

For the uni-dimensional Laplace distribution with density

f (θ) =
1

2
λe (−λ |θ|) ,

the scale parameter λ determines all the relevant moments of the distribution. In par-

ticular, µ+ = 1
λ

and σ2
θ = 2

λ2
= 2µ2

+. Moreover, α = 1. Hence, we have
n+1∑
i=1

p̂i (µ
n
i )2 =
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1
2−cσ

2
θ − c

2−c (µn1 )2 . By the symmetry of the distribution, Pr
[
θ̃ ≥ 0

]
= Pr

[
θ̃ ≤ 0

]
= 1

2
and

E
[
µ̃2
∣∣ θ̃ ≥ 0

]
= E

[
µ̃2
∣∣ θ̃ ≤ 0

]
, so that

E
[
µ̃2
]

=
E
[
µ̃2
∣∣ θ̃ ≥ 0

]
+ E

[
µ̃2
∣∣ θ̃ ≤ 0

]
2

= E
[
µ̃2
∣∣ θ̃ ≥ 0

]
.

Hence, we have shown that in a Class I equilibrium

E
[
µ̃2
]

=
1

2− c
σ2
θ −

c

2− c
(µn1 )2 .

Finite Class II: In a Class II equilibrium, a0 is eliminated. We have

Xn
2 (an1 ) =

ĉ

2− ĉ
(
ĉµ+ − ĉµn2

) (
ĉµ+ + ĉµn2

)
+ 2

(
ĉE [θ| θ ≥ an1 ]− ĉµ+

)( ĉ

2− ĉ
(
µ+ + µn2

)
− ĉµ+

)
=

ĉ

2− ĉ
(
ĉµ+ − ĉµn2

) (
ĉµ+ + ĉµn2

)
+ 2αĉan1

(
ĉ

2− ĉ
(
µ+ + µn2

)
− ĉµ+

)
.

Using the definition of Xn
2 and then the fact that

n+1∑
i=2

p̂ni µ
n
i = µ+ + αan1 for a distribution

with an linear tail conditional expectation, we get

Xn
2 (an1 )

ĉ2
=

n+1∑
i=2

p̂ni (µni )2 − 2µ+

n+1∑
i=2

p̂ni µ
n
i + µ2

+

=
n+1∑
i=2

p̂ni (µni )2 − µ2
+ − 2αan1µ+.

Hence
n+1∑
i=2

p̂ni (µni )2 =
Xn

2 (an1 )

ĉ2
+ µ2

+ + 2αan1µ+

=
2

2− ĉ
µ2

+ −
ĉ

2− ĉ
(µn2 )2 +

2αan1
2− ĉ

(
µ+ + µn2

)
.

Now, we may write

E
[
µ̃2
]

= Pr
[
θ̃ ≥ an1

]
· E
[
µ̃2
∣∣ θ̃ ≥ an1

]
+ Pr

[
θ̃ ≤ −an1

]
· E
[
µ̃2
∣∣ θ̃ ≤ −an1]

= 2 Pr
[
θ̃ ≥ an1

]
· E
[
µ̃2
∣∣ θ̃ ≥ an1

]
=

(
1− Pr

[
θ̃ ∈ [−an1 , an1 )

])
· E
[
µ̃2
∣∣ θ̃ ≥ an1

]
.
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The first equality uses the fact that µn1 = 0 in a Class II equilibrium, and the other

two equalities use the symmetry of the distribution, which implies that E
[
µ̃2
∣∣ θ̃ ≥ an1

]
=

E
[
µ̃2
∣∣ θ̃ ≤ −an1] and Pr

[
θ̃ ≥ an1

]
= Pr

[
θ̃ ≤ −an1

]
. Hence, we have shown that

E
[
µ̃2
]

=
(

1− Pr
[
θ̃ ∈ [−an1 , an1 )

]) [ 2

2− ĉ
µ2

+ −
ĉ

2− ĉ
(µn2 )2 +

2αan1
2− ĉ

(
µ+ + µn2

)]
.

The indifference condition of the marginal type an1 requires that cµn2 − an1 = an1 . Substituting

for 2an1 = cµn2 , noting that ĉ = αc, and simplifying, we obtain

E
[
µ̃2
]

=

(
1− Pr

[
θ̃ ∈

[
−cµ

n
2

2
,
cµn2
2

)])[
2

2− ĉ
µ2

+ +
ĉ

2− ĉ
µn2µ+

]
,

which coincides with expression (9) for α = 1 and σ2
θ = 2µ2

+, the Laplace case.

Limit: In a limit equilibrium resulting from the limit of a Class I equilibrium, the

sequence (µn1 )n satisfies limn→∞ µ
n
1 = 0. In a limit equilibrium resulting from the limit of a

Class II equilibrium, the sequences (an1 )n and (µn2 )n satisfy limn→∞ a
n
1 = 0 and limn→∞ µ

n
2 =

0. Hence, in the limit

E
[
µ̃2
]

=
2

2− ĉ
µ2

+.

Substituting for the Laplace case, α = 1 and σ2
θ = 2µ2

+, gives expression (10) .

In the limit equilibrium resulting from the limit of finite Class I and Class II equilibria, if

it exists, E
[
µ̃2
]

is maximized. The right-hand side of (10) exceeds the right-hand side of (8)

for all finite n, since µn1 > 0 for finite n. We now show that the right-hand side of (10) also

exceeds the right-hand side of (9) for all finite n. Noting that
(

1− Pr
[
θ̃ ∈

[
− cµn2

2
,
cµn2

2

)])
=

exp
(
−λ cµ

n
2

2

)
= exp

(
− cµn2

2µ+

)
,

2

2− ĉ
µ2

+ >

(
1− Pr

[
θ̃ ∈

[
−cµ

n
2

2
,
cµn2
2

)])[
2

2− ĉ
µ2

+ +
ĉ

2− ĉ
µn2µ+

]
is equivalent to

1− exp

(
− cµ

n
2

2µ+

)
> exp

(
− cµ

n
2

2µ+

)
cµn2
2µ+

.

This is true for all µn2 > 0 since the function exp (−x) (1 + x) satisfies exp (−x) (1 + x) < 1

for all x > 0.
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Proof of Lemma 5. We derive here the density of the marginal distribution of θ̃. Let

f̂ (θ;α) and F̂ (θ;α) denote the density and cdf of the distribution, conditional on θ̃ ≥ 0.

After an integration by parts, (5) is equivalent to

µ+ + αθ = θ +

θ∫
θ

(
1− F̂ (t;α)

)
dt

1− F̂ (θ;α)
. (35)

Define q (θ) =
θ∫
θ

(
1− F̂ (t;α)

)
dt and note that q̇ ≡ ∂q(θ)

∂θ
= −

(
1− F̂ (θ;α)

)
. In terms of

these functions, we can write (35) as the ordinary differential equation

q̇

q
=

1

(1− α) θ − µ+

with initial condition q (0) = µ+. The solution is

q (θ) =
(
µ+

)− α
1−α
(
µ+ − θ (1− α)

) 1
1−α .

To satisfy limθ→θ F̂ (θ;α) = 1, we have θ =
µ+

1−α for α < 1. For α ≥ 1, the support is R+.

Differentiating twice, we obtain the density

f̂ (θ;α) = α
(
µ+

)− α
1−α
(
µ+ − θ (1− α)

) 2α−1
1−α . (36)

For future reference, the cdf is

F̂ (θ;α) = 1−
(
µ+

)− α
1−α
(
µ+ − θ (1− α)

) α
1−α .

The density is square integrable since α < 2. Straightforward integration reveals that the

variance v2
+ of the distribution is v2

+ = α
2−αµ

2
+.

Consider now the density on the whole support. By symmetry and the variance decom-

position, σ2
θ = v2

+ + µ2
+, so

σ2
θ =

2

2− α
µ2

+.

Hence, we get expression (14).

Proof of Proposition 4. Note that the first part is a corollary to Proposition 3. So,

we only need to verify the upper bound on E
[
µ̃2
]

in any symmetric equilibrium. For Class
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I equilibria this is obvious, so consider Class II equilibria. Note that Pr
[
θ̃ ∈ [−an1 , an1 )

]
=

F̂ (an1 ;α) . Moreover,

F̂ (θ;α) = 1−
(
µ+

)− α
1−α
(
µ+ − θ (1− α)

) α
1−α .

Hence,
2

2− ĉ
µ2

+ >

(
1− Pr

[
θ̃ ∈

[
−cµ

n
2

2
,
cµn2
2

)])[
2

2− ĉ
µ2

+ +
ĉ

2− ĉ
µn2µ+

]
is equivalent to(

1−
(
µ+

)− α
1−α

(
µ+ −

cµn2
2

(1− α)

) α
1−α
)

2

2− ĉ
µ2

+ >
(
µ+

)− α
1−α

(
µ+ −

cµn2
2

(1− α)

) α
1−α ĉ

2− ĉ
µn2µ+.

Simplifying, we obtain

1 >

(
1− cµn2

2µ+

(1− α)

) α
1−α
(

1 + α
cµn2
2µ+

)
.

To see this is always satisfied, consider the function h (x) ≡ (1− x (1− α))
α

1−α (1 + αx) .

Note that h (0) = 1. Moreover, h′ (x) < 0 for x > 0.
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