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Abstract

We solve a class of two-dimensional screening problems in which one

dimension has the standard features, while the other dimension is impos-

sible to exaggerate and enters the agent�s utility only through the message

but not the true type. Natural applications are procurement and regu-

lation where the producer�s ability to produce quality and his costs of

producing quantity are both unknown; or selling to a budget constrained

buyer. We show that under these assumptions, the orthogonal incen-

tive constraints are necessary and su¢ cient for the full set of incentive

constraints. Provided that types are a¢ liated and all the conditional dis-

tributions of types have monotonic inverse hazard rates, the solution is

fully separating in both dimensions.

1 Introduction

The optimal screening of agents has had many fruitful applications including

optimal taxation, non linear pricing, public utility regulation and procurement

policies. For the most part these studies only consider cases where the agents

di¤er in one unknown characteristic. This restriction is primarily for technical

and not for economic reasons.

Formal analysis of multidimensional screening problems is substantially dif-

ferent from the analysis of one-dimensional problems in part because bunch-

�We thank Paul Beaudry and Benny Moldovanu for helpful conversations. Correspon-
dence can be sent to the authors at the Economics Department, University of Warwick, Gib-
bet Hill Road, Coventry CV4 7AL, United Kingdom, or to c.blackorby@warwick.ac.uk and
dezso.szalay@warwick.ac.uk.
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ing is a common feature of the optimal solution.1 Because of these technical

di¢ culties, most of the research using models of adverse selection are one di-

mensional. There are exceptions. Explicit solution have been found for some

multi-dimensional problems; for example, La¤ont, Maskin, and Rochet [1987],

Lewis and Sappington [1988], McAfee and MacMillan [1988], Matthews and

Moore [1987], and Jehiel et al [1999]. In addition there are two useful surveys

of these multidimensional problems� Armstrong and Rochet [1999] and Ro-

chet and Stole [2003]. The latter propose two di¤erent procedures for reducing

the dimensionality of a problem� aggregation and separability. The aggrega-

tion procedure consists of �nding an aggregator for the unknown characteristics

which may of course depend on other parameters of the problem. They refer to

separability for the case when the solution to the problem depends upon a par-

ticular distribution of types such as in Wilson [1993] and Armstrong [1996]. In

this note we propose an alternative, but not unrelated, procedure for reducing

the dimensionality of such a problem. We present two assumptions that may

hold in many types of models and that imply that the optimum can be found

by analyzing a series of one-dimensional problems.

More speci�cally, we assume that one of the unobserved characteristics is

such that individuals can only imitate in one direction and that the two un-

known characteristics are a¢ liated.2 When these two conditions are met, we

show that solution to each of the one-dimensional problems, conditional on the

values taken by the characteristic that has an upper bound for each individual,

actually yields the solution for the overall problem provided that the two types

are a¢ liated.3 In particular we show that that the large number of incentive

compatibility constraints in this two-dimensional problem can be reduced to two

one-dimensional incentive compatibility conditions� one in each direction.

In Section 2 we present a simple principal-agent procurement model in some

detail. The principal desires a variable quantity of a good of unknown quality.

The agents supply a quantity of the good of a certain quality with unknown

costs. It is assumed that each agent can produce a maximum quality and can

only imitate lower qualities. The principal is assumed to want each agent to

1Bunching refers to the fact that di¤erent types may be treated identically in the optimum.
The most general results to date have been obtained by Armstrong [1996] and Rochet and
Chone [1998].

2Two random variables with density f(�; �) are a¢ liated if for � � �0 and � � �0

f (�; �) f
�
�0; �0

�
� f

�
�0; �

�
f
�
�; �0

�
3To the best of our knowledge, this was �rst proposed and used by Beaudry, Blackorby,

and Szalay [2006] to solve an optimal income tax problem.
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produce the highest quality possible. In this setting we show that the solution

to the one-dimensional unknown cost problem� conditional on the quality�

is, in fact, the solution to the two-dimensional problem provided that the two

unknown characteristics are a¢ liated.

In Section 3 we set up a reasonably standard regulation problem as in Baron

and Myerson [1982], Lewis and Sappington [1988], and Armstrong [1999] allow-

ing for two dimensions of asymmetric information. The regulator maximises

a weighted sum of consumers�plus producers�surplus where again the quality

and the costs are unknown. Given some restrictions on the surplus functions

we show that the solutions to all the one dimensional problems� conditional on

quality� remain the solutions to the overall problem provided that the unknown

characteristics are a¢ liated.

In Section 4 we take the model of Che and Gale [2000]4 of selling to an

budget-constrained buyer. The buyer has private information about his valua-

tion of the good and about how much money he can spend on this good. Thus

the selling procedure may be altered because the buyer cannot spend more

money than he has. Che and Gale solve this problem for two cases, when the

buyer must post a bond and is therefore unable to mimic more wealthy types,

and when the buyer does not have to post a bond. We show that the �rst case

is amenable to the technique proposed in Section 2 and solve this problem by

assuming that the valuation of the commodity and the negative of the wealth

are a¢ liated.

2 The procurement model

A principal wishes to contract with an agent to buy a good where x is the

quantity of the good the principal obtains, q is the quality of the good, and t is

the transfer payment to the agent. . The net utility to the principal is

V (x; q)� t:

The agent�s utility from delivering the good in quantity x and quality q is

t� C (x; q; �; �)

where � and � are parameters that shift the agent�s cost of production. More

speci�cally, we assume that � de�nes the upper bound on the quality q the agent

4See also Che and Gale [1998].
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is capable of producing, in the sense that

C (x; q; �; �) =
(
C (x; q; �) for q � �

1 for q > �:

C (x; q; �) is the cost function �on the relevant range of qualities�.

We assume that V (x; q) satis�es V (0; q) = 0 for all q; Vx (x; q) > 0 and

Vxx (x; q) < 0 for all x and q; limx!0 Vx (x; q) = 1 for all q; and Vq (x; q) > 0

for all x > 0. C (x; q; �) satis�es C (0; q; �) = 0 for all q; �; Cx (x; q; �) > 0;

C� (x; q; �) > 0; and Cq (x; q; �) � 0 for x; q; � such that x > 0; and Cx� (x; q; �) >
0 and Cxx (x; q; �) � 0 for all x; q; �.
These conditions are standard except perhaps for the one which implies that

the principal has a taste for higher quality commodities. In addition we need

one assumption that is imposed jointly on the value function of the principal

and the cost function of the agent: V and C satisfy Vxq (x; q) � Cxq (x; q; �). As
will be seen in Proposition 1, this guarantees that when there is full information

the principal wants to buy the highest quality that is available from the agent.

While the agent knows the parameters �; and �; the principal knows only

their joint distribution. �; � are distributed on a rectangle
�
�; �
�
�
�
�; �
�
where

�; � > 0: We denote f (�; �) the joint density of the distribution and assume it

has full support, so that the conditional densities of � conditional on �, f (� j� ) ;
have full support as well. The parameters � and � are not observable, either ex

ante or ex post. The quality of the good, q; and the quantity of the good, x are

observable through the utility the principal derives from consuming the good,

V (x; q) :

Before we analyze the contacting problem in detail, we discuss the bench-

mark case where the principal has complete information.

2.1 The Full Information Benchmark

The principal�s problem is to choose schedules x (�; �) ; t (�; �) and q (�; �) such

that q (�; �) � � to maximize her surplus subject to the constraint that the

agent is willing to participate. Clearly, the agent�s participation constraint,

t (�; �)� C (x (�; �) ; q (�; �) ; �) � 0;

must be binding for each type, because the principal�s net utility is decreasing in

t: Imposing this condition, we can write the principal�s problem under complete
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information as follows:

max
x(�;�);q(�;�)

�Z
�

�Z
�

(V (x (�; �) ; q (�; �))� C (x (�; �) ; q (�; �) ; �)) f (�; �) d�d�

subject to q (�; �) � �:

Given our assumptions, the integrand is concave in x; so the optimal quantity

schedule, x� (�; �) ; must satisfy the condition

Vx (x
� (�; �) ; q (�; �)) = Cx (x

� (�; �) ; q (�; �) ; �)

The optimal quality choice must satisfy either

Vq (x
� (�; �) ; q� (�; �)) = Cq (x

� (�; �) ; q� (�; �) ; �)

or

q� (�; �) = � and Vq (x� (�; �) ; �)� Cq (x� (�; �) ; �; �) � 0

In the former case the problem admits an interior solution, whereas, in the

latter case it is optimal to produce the highest quality level. We focus on

the second option because the parameter � a¤ects the solution only when the

constraint is binding. When the constraint is not binding this becomes a one-

dimenional problem for which methods of solution are well known. There are

simple su¢ cient conditions that ensure that the solution for q is indeed on

the boundry. When the agent�s cost is independent of q; then the solution is

clearly to produce the highest quality, since the principal bene�ts from higher

quality. Since this case is somewhat trivial, we focus on another set of su¢ cient

conditions.

Proposition 1 Given our regularity conditions, including the assummption that
Vxq (x; q) � Cxq (x; q; �),

q� (�; �) = � for all �; �

Proof. Observe that

Vq (x; q)�Cq (x; q; �) =
xZ
0

(V�q (�; q)� C�q (�; q; �)) d� + (Vq (0; q)� Cq (0; q; �))
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Using V (0; q) = C (0; q; �) = 0 for all q; �, we have

Vq (0; q) = Cq (0; q; �) = 0 for all q; �:

Thus, we can write

Vq (x; q)� Cq (x; q; �) =
xZ
0

(V�q (�; q)� C�q (�; q; �)) d�:

By assumption the integrand is non-negative pointwise, which establishes the

claim.

Higher quality is always desirable because the marginal utility of consuming

x increases faster (or at the same speed) in q than does the marginal cost

of production. Hence, with the full information the principal always chooses

the maximum quality the agent can produce. We now address the principal�s

problem when � and � are not observable to him.

2.2 The Principal�s Contracting Problem

We analyze the principal�s problem as a message game, where the agent is asked

to announce a type
�
�̂; �̂
�
and is given incentives to do so truthfully. Formally,

the principal solves the problem

max
x(�;�);t(�;�);q(�;�)

�Z
�

�Z
�

(V (x (�; �) ; q (�; �))� t (�; �)) f (�; �) d�d� (1)

subject to, for all �; � :

t (�; �)� C (x (�; �) ; q (�; �) ; �) � t
�
�̂; �̂
�
� C

�
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �
�
for all q

�
�̂; �̂
�
� �;

(2)

t (�; �)� C (x (�; �) ; q (�; �) ; �) � 0; and (3)

q (�; �) � �: (4)

While the participation constraint (3) ; and the feasibility constraint (4) are

straightforward to understand, the incentive constraint (2) deserves some expla-

nations. Since the principal cannot verify the agent�s true cost of production,

the agent can announce any �̂: On the other hand, the principal can know the

quality level of the good the agent delivers by her consumption of it. The agent

can only send messages
�
�̂; �̂
�
such that he is able to deliver the quality level
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speci�ed in the contract for these messages, q
�
�̂; �̂
�
� �:

A �rst step toward solving this problem is to show that at the second best

solution, the highest quality is produced for each type. This is true only under

some additional conditions. In particular, we have the following result:

Proposition 2 Suppose that the cost function can be written as

C (x; q; �) = c (x; �) + k (x; q) (5)

Then q� (�; �) = � for all �; �:

Proof. Take any incentive compatible allocation given by the triple of sched-
ules x

�
�̂; �̂
�
; q
�
�̂; �̂
�
; and t

�
�̂; �̂
�
for all �̂; �̂: Suppose for some �̂; �̂; we have

q
�
�̂; �̂
�
< �̂: Let ~� denote the set of

�
�̂; �̂
�
such that q

�
�̂; �̂
�
< �̂: Then, we

can change the allocation to the new triple of schedules ~x
�
�̂; �̂
�
; ~q
�
�̂; �̂
�
; and

~t
�
�̂; �̂
�
for all �̂; �̂ as follows. We set ~x

�
�̂; �̂
�
= x

�
�̂; �̂
�
for all �̂; �̂ and set

~q
�
�̂; �̂
�
= �̂ for all

�
�̂; �̂
�
: For all

�
�̂; �̂
�
2 ~� we adjust the transfers from the

initial transfers t
�
�̂; �̂
�
; to the new transfers

~t
�
�̂; �̂
�
= t
�
�̂; �̂
�
+ C

 
x
�
�̂; �̂
�
; �̂; �̂

!
� C

 
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �̂

!
:

We �rst show that the new allocation with the new transfers is incentive com-

patible. Then, we show that the surplus to the principal has increased under

the new allocation.

Incentive compatibility of the new system is given if and only if

t (�; �) + C

 
x (�; �) ; �; �

!
� C

 
x (�; �) ; q (�; �) ; �

!
� C

 
x (�; �) ; �; �

!
(6)

� t
�
�̂; �̂
�
+ C

 
x
�
�̂; �̂
�
; �̂; �̂

!
� C

 
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �̂

!
� C

 
x
�
�̂; �̂
�
; �̂; �

!
(7)

From incentive compatibility of x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; and t

�
�̂; �̂
�
for all �̂; �̂ we
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have

t (�; �)� C
 
x (�; �) ; q (�; �) ; �

!
� t
�
�̂; �̂
�
� C

 
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �

!
(8)

Adding and substracting C

 
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �

!
on the right hand side of (6) ;

we see that, given (8) ; (6) is satis�ed if

0 � C
 
x
�
�̂; �̂
�
; �̂; �̂

!
�C
 
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �̂

!
�
 
C

 
x
�
�̂; �̂
�
; �̂; �

!
� C

 
x
�
�̂; �̂
�
; q
�
�̂; �̂
�
; �

!!
:

Using C (x; q; �) = c (x; �) + k (x; q) ; we can write this as

0 � k
�
x
�
�̂; �̂
�
; �̂
�
�k
�
x
�
�̂; �̂
�
; q
�
�̂; �̂
��
�
�
k
�
x
�
�̂; �̂
�
; �̂
�
� k

�
x
�
�̂; �̂
�
; q
�
�̂; �̂
���

= 0

so we have established incentive compatibility of ~x
�
�̂; �̂
�
; ~q
�
�̂; �̂
�
; and ~t

�
�̂; �̂
�

for all �̂; �̂:

Consider now the surplus. The agent�s equilibrium payo¤s are unchanged,

as

t (�; �)� C (x (�; �) ; q (�; �) ; �)
= t (�; �) + C (x (�; �) ; �; �)� C (x (�; �) ; q (�; �) ; �)� C (x (�; �) ; �; �) :

In other words, the agent is just compensated for the increase in his cost of

production, and the entire additional surplus goes to the principal. But in this

case Proposition 1 shows that higher quality is desirable.

Additive separability of the cost function is crucial for this result. If the cost

function is not additively separable in � and q, then changing the allocation

will change the agent�s incentive to mimic other types. In this case a proof

as simple as ours would not establish the desirability of higher quality in the

second best; alternative assumptions and techniques of proof would be required.

Without mentioning them further, the original regularity conditions plus addi-

tive separability of the cost function in � and q are maintained throughout the

paper.

Consider next the incentive constraint (2) : The number of potential devi-

ations to consider is very large� a crucial di¢ culty that problems of multidi-

mensional screening face. However, this problem has properties that permit a

substantial reduction in dimensionality.
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Proposition 3 The incentive constraints (2)are satis�ed if and only if the con-
straints

t (�; �)� C (x (�; �) ; �; �) � t
�
�̂; �
�
� C

�
x
�
�̂; �
�
; �; �

�
for all �̂ (9)

and

t (�; �)� C (x (�; �) ; �; �) � t (�; �̂)� C (x (�; �̂) ; �̂; �) for all �̂ � � (10)

are satis�ed.

Proof. It is easy to see that the two one dimensional constraints are nec-

essary for incentive compatibility. We now show they are also su¢ cient for

incentive compatibility. If a type (�; �) mimics type
�
�̂; �̂
�
; he obtains utility

t
�
�̂; �̂
�
�C

�
x
�
�̂; �̂
�
; �̂; �

�
: But by incentive compatibility of type (�; �̂) in the

� dimension, type (�; �) could obtain more by mimicking type (�; �̂) ; since

t (�; �̂)� C (x (�; �̂) ; �̂; �) � t
�
�̂; �̂
�
� C

�
x
�
�̂; �̂
�
; �̂; �

�
But then, by incentive compatibility of type (�; �) in the � dimension, we have

t (�; �)� C (x (�; �) ; �; �) � t (�; �̂)� C (x (�; �̂) ; �̂; �) for all �̂ � �

showing that there cannot be a pro�table deviation.

The essential feature that drives this result is that the agent�s payo¤ only

depends on his announced ability to produce quality, �̂; but not on � itself.

Therefore, if a type (�; �) mimics a type (�; �̂) with �̂ � �; he obtains exactly

the same utility that type (�; �̂) would obtain. This is a crucial di¤erence to the

general case of multidimensional screening and greatly simpli�es the analysis.

Instead of solving the problem, (1) subject to (2) and (3) ; one can solve the

problem (1) subject to (3), (9) ; and (10) in which only the one dimensional

incentive constraints are relevant. However, this problem is still not easy to

solve, because there are still substantially more constraints than in the usual

one-dimensional screening problem. Our strategy to solve this problem is to

build further on the result that only one-dimensional deviations have to be

ruled out. In particular, we show that the principal�s problem can be solved

by screening the � types conditional on �: The reason is, that under reasonable

conditions on the joint distribution of types, the constraint (10) is not binding

at the optimum. For this purpose, it is useful to �rst �nd a solution to the

problem when only � is unobservable and � is common knowledge.
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2.3 The Case of Observable Quality Bounds

In this case, the buyer can condition on �: We let x (�; �) and t (�; �) for all �

denote the quantity and payment schedule conditional on �: The buyer solves,

for each given �, the following problem

max
x(�;�);t(�;�)

�Z
�

(V (x (�; �) ; �)� t (�; �)) f (�j �) d� (11)

subject to, for all �; � :

t (�; �)� C (x (�; �) ; �; �) � t
�
�̂; �
�
� C

�
x
�
�̂; �
�
; �; �

�
for all �̂ and (12)

t (�; �)� C (x (�; �) ; �; �) � 0: (13)

This is a standard problem and is normally solved by reformulating the incen-

tive and participation constraints. We state a more tractable version of these

constraints in the following lemma. We call a pair of quantity schedule x (�; �)

and payment schedule t (�; �) implementable if they satisfy constraints (12) and

(13) :

Lemma 1 The pair of quantity schedule x (�; �) and payment schedule t (�; �)
is implementable if and only if

t (�; �) = C (x (�; �) ; �; �) +

�Z
�

Cy (x (y; �) ; �; y) dy (14)

and x (�; �) is non-increasing in �:

Proof. Let u (�; �) = max�̂ t
�
�̂; �
�
�C

�
x
�
�̂; �
�
; �; �

�
: Then, by the envelope

theorem,

u� (�; �) = �C� (x (�; �) ; �; �)

Since u� (�; �) < 0; the participation constraint must be binding for type �; so

u
�
�; �
�
= 0 Thus, we can write

u (�; �) =

�Z
�

Cy (x (y; �) ; �; y) dy
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Since u (�; �) = t (�; �)� C (x (�; �) ; �; �) ; we can write

t (�; �) = C (x (�; �) ; �; �) +

�Z
�

Cy (x (y; �) ; �; y) dy:

It is then standard to show that this pair of quantity and payment schedules

satis�es global incentive compatibility if x (�; �) is non-increasing in �: This is

omitted.

Substituting the transfers into the principal�s objective function and inte-

grating by parts, we can write the principal�s problem as

max
x(�;�)

�Z
�

�
V (x (�; �) ; �)� C (x (�; �) ; �; �)� C� (x (�; �) ; �; �)

F (�j �)
f (�j �)

�
f (�j �) d�

subject to x (�; �) being non-increasing in �:

It is customary to solve this problem imposing a regularity condition on the

distribution of types that ensures that the constraint is never binding at the

solution to this problem as well as additional assumptions on the cost function.

Proposition 4 Assume that Cxx�(x; �; �) � 0, Cx��(x; �; �) � 0; and F ( �j�)
f( �j�) is

non-decreasing in �: Then, the optimal quantity schedule satis�es the �rst-order

condition

Vx (x (�; �) ; �) = Cx (x (�; �) ; �; �) + Cx� (x (�; �) ; �; �)
F (�j �)
f (�j �) : (15)

Proof. Di¤erentiating totally, we have

dx

d�
=

�
Cx� (x (�; �) ; �; �) + Cx�� (x (�; �) ; �; �)

F ( �j�)
f( �j�) + Cx� (x (�; �) ; �; �)

@
@�

F ( �j�)
f( �j�)

�
�
Vxx (x (�; �) ; �)� Cxx (x (�; �) ; �; �)� Cxx� (x (�; �) ; �; �) F ( �j�)f( �j�)

�
The denominator is a second-order condition to the principal�s problem, and

the assumption Cxx� (x; �; �) � 0 ensures that it is satis�ed. The numerator is
non-negative by our assumptions on the cost function and the monotonicity of

the inverse hazard function, thus guaranteeing that x (�; �) is non decreasing in

�.

Since both the procedure to solve this one-dimensional problem and the

solution that emerges from it are well known (see, e.g., Fudenberg and Tirole

(1991)) we do not dwell on the details. However, for our further results it is

11



useful to review the economics behind the distortions inherent in (15) : We can

write the �rst-order condition as�
Vx (x (�; �) ; �)� Cx (x (�; �) ; �; �)

�
f (�j �) = Cx� (x (�; �) ; �; �)F (�j �)

On the left side we have the principal�s desire to implement an e¢ cient solution,

which would require that the marginal bene�t of consumption to the principal

is equal to the marginal cost of production to the agent. The weight given to

this motive is f (�j �) ; the likelihood of type �j �. On the right side appears the
principal�s desire to limit the agent�s rents. An increase in x (�; �) increases the

rents that have to be given to all types that are more e¢ cient at producing than

type �j �: Since there is a mass F (�j �) of these people, the weight attached to
this motive is F (�j �) :
Next, we show that, remarkably, the solution to this problem is also a solu-

tion to the overall problem, provided that the trade-o¤ between e¢ ciency and

rent extraction is a¤ected in the �right way�by changes in �: We address this

problem in the next subsection.

2.4 The Case of Unknown abilities and costs

We now show that, given certain restrictions on the joint distribution of char-

acteristics, the agent has no incentive to mimic another type who produces a

lower quality level. Formally, we have the following result:

Proposition 5 If, in addition to the assumptions of Proposition 4, � and � are
a¢ liated, then unobservability of � does not a¤ect the solution to the principal�s

problem. Formally, the solution is still given by the quantity schedule (15) and

the payment schedule (14) :

Proof. Suppose the principal o¤ers quantity schedule (15) and payment sched-
ule (14) : Thus, we identify the schedules x (�; �) � x (�; �) and t (�; �) � t (�; �)
for all �: If the agent announces his true quality �; then his indirect utility is

u (�; �) =

�Z
�

Cy (x (y; �) ; �; y) dy

If he under reports �̂; then he obtains indirect utility

u (�; �̂) =

�Z
�

Cy (x (y; �̂) ; �̂; y) dy

12



So, we need to show that u (�; �) is non-decreasing in �: This will be the case

when the integrand is non-decreasing in � for each y and �: Di¤erentiating under

the integral, we obtain

C�x (x (�; �) ; �; �)
dx

d�
+ C�� (x (�; �) ; �; �)

From our speci�cation of additive separability, we have C�� (x (�; �) ; �; �) = 0:

So, we only need to show that dxd� � 0: Di¤erentiating (15) again totally around
the stationary point, (and using again that Cx�� (x (�; �) ; �; �) = 0) we have

dx

d�
=

�
�Vx� (x (�; �) ; �) + Cx� (x (�; �) ; �; �) + Cx� (x (�; �) ; �; �) @

@�
F ( �j�)
f( �j�)

�
�
Vxx (x (�; �) ; �)� Cxx (x (�; �) ; �; �)� Cxx� (x (�; �) ; �; �) F ( �j�)f( �j�)

� :

By assumption we have Vx� (x (�; �) ; �)�Cx� (x (�; �) ; �; �) � 0: Thus, to com-
plete the proof, we show that a¢ liation implies that @

@�
F ( �j�)
f( �j�) � 0:

Recall that two random variables are a¢ liated if for � � �0 and � � �0

f (�; �) f
�
�0; �0

�
� f

�
�0; �

�
f (�; �0) :

Dividing on both sides by g (�) g (�0) ; where g (�) =
R �
�
f (�; �) d� and g (�0) =R �

�
f (�; �0) d� are the marginal densities, we can write

f (� j� ) f
�
�0 j�0

�
� f

�
�0 j�

�
f (� j�0 ) :

Integrating over �0 between � and � we �nd

f (� j� )F (� j�0 ) � F (� j� ) f (� j�0 ) :

Rearranging, we have
F (� j�0 )
f (� j�0 ) �

F (� j� )
f (� j� )

which is, if F (�j� )f(�j� ) is di¤erentiable in �; equivalent to
@
@�

�
F (�j� )
f(�j� )

�
� 0:

The intuition behind this result is straightforward. Recall that the indirect

utility of a type � j� is given by u (�; �) =
R �
�
Cy (x (y; �) ; �; y) dy: The rent of

this type is determined by the production schedule o¤ered to all types who are

less e¢ cient than this type. So, type � j� has no incentive to mimic a type of a
lower quality �̂ < � if less able types produce smaller quantities. We can now

understand why this will indeed be the case provided that types are a¢ liated.

13



The higher is � the higher is f(�j� )
F (�j� ) ; so the greater is the weight given to the

principal�s e¢ ciency motive as opposed to the motive to limit the agent�s rents.

Put another way, it is relatively less likely that the agent is a low cost producer

when he produces a high level of quality. Therefore, the rent given to any given

type � j� is higher the higher is �; and this type has no incentive to report a
lower value of his quality parameter �:

3 Regulation

The regulation problem was �rst studied by Baron and Myerson [1982] when the

�rm�s costs are unknown to the regulator. Lewis and Sappington [1988] have

extended their analysis when in addition to cost, demand conditions - more

precisely the intercept of a linear demand function - are unobservable to the

regulator.5 We provide a variant on this two-dimensional screening problem

where the level of demand is a¤ected by a quality choice made by the �rm

and the regulator can observe the quality choice but not the upper bound on

the quality the producer is able to provide. We show that this two-dimensional

screening problem can be solved using the same techniques as in the procurement

problem in Section 2.

Consumers� valuations for a quantity x of a good whose quality is q are

described by the downward sloping inverse demand function P (x; q) : De�ne

the gross consumer surplus of a consumer who buys x units of a good of quality

q at a constant marginal price as

V (x; q) �
xZ
0

P (z; q) dz:

As in Section 2, the good is produced by a �rm with a cost of production of

C (x; q; �) for q � � and in�nity otherwise.
The regulator maximizes a weighted sum of net consumer surplus and pro-

ducer surplus under incentive constraints. The regulator�s instruments are a

constant payment t; a marginal price p; and a choice of quality q. Under a

5See Armstrong [1999] for an analysis of some technical problems in Lewis and Sappington.
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truthful mechanism, the joint surplus for a given tuple (�; �) is equal to

V

�
X
�
p (�; �) ; q (�; �)

��
� p (�; �)X

�
p (�; �) ; q (�; �)

�
� t (�; �)

+�

�
t (�; �) + p (�; �)X

�
p (�; �) ; q (�; �)

�
� C

�
X
�
p (�; �) ; q (�; �)

�
; q (�; �) ; �

��
where X (p; q) is the direct demand function for the good which, is assumed to

be downward sloping, Xp (p; q) < 0.

It is easy to see that Propositions 1, 2 and 3 apply to this model. The

idea is to hold the pro�t of the �rm constant by compensating the �rm ex-

actly for increases in costs due to an increase in the quality the �rm pro-

duces. That means that the change in t (�; �) due to a slight increase in q

is just equal to Cq (x (�; �) ; q (�; �) ; �) ; the increase in gross consumer surplus

is Vq (x (�; �) ; q (�; �)) : Hence, under our assumptions it is optimal to produce

the highest quality, so q (�; �) = � for all �; �:

Proceeding the same way as in the procurement model, we solve the screen-

ing problems conditional on � and prove the incentive compatibility of these

problems�solutions using the solutions themselves. Let

� (�; �) = max
�̂

n
t
�
�̂; �
�
+ p

�
�̂; �
�
X
�
p
�
�̂; �
�
; �
�
� C

�
X
�
p
�
�̂; �
�
; �
�
; �; �

�o
:

where we use again the notation (�; �) to indicate that we condition on �:

Lemma 2 The price and payment schedules, p(�; �) and t(�; �), are imple-
mentable if and only if

� (�; �) =

�Z
�

Cz (X (p (z; �) ; �) ; �; z) dz (16)

and p (�; �) is non-decreasing in �:

Proof. The proof of (16) proceeds just as in the proof of Lemma 1. We now
show that the price schedule must be non-decreasing.

Incentive compatibility requires that type (�; �) has no incentive to mimic

type
�
�̂; �
�

t (�; �) + p (�; �)X (p (�; �) ; �)� C (X (p (�; �) ; �) ; �; �)

� t
�
�̂; �
�
+ p

�
�̂; �
�
X
�
p
�
�̂; �
�
; �
�
� C

�
X
�
p
�
�̂; �
�
; �
�
; �; �

�
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and that type
�
�̂; �
�
has no incentive to mimic type (�; �)

t
�
�̂; �
�
+ p

�
�̂; �
�
X
�
p
�
�̂; �
�
; �
�
� C

�
X
�
p
�
�̂; �
�
; �
�
; �; �̂

�
� t (�; �) + p (�; �)X (p (�; �) ; �)� C

�
X (p (�; �) ; �) ; �; �̂

�
:

Summing these inequalities gives

C
�
X
�
p
�
�̂; �
�
; �
�
; �; �

�
� C

�
X
�
p
�
�̂; �
�
; �
�
; �; �̂

�
� C (X (p (�; �) ; �) ; �; �)� C

�
X (p (�; �) ; �) ; �; �̂

�
:

Writing as integrals, we have

�Z
�̂

Cz

�
X
�
p
�
�̂; �
�
; �
�
; �; z

�
dz �

�Z
�̂

Cz (X (p (�; �) ; �) ; �; z) dz:

Given that Cx� � 0 this requires for � > �̂ that X
�
p
�
�̂; �
�
; �
�
� X (p (�; �) ; �)

or p
�
�̂; �
�
� p (�; �) : Hence, prices must be non-decreasing in �:

Substituting � (�; �) into the objective function, and integrating by parts,

we can write the regulator�s problem as

�Z
�

h
V (X (p (�; �) ; �) ; �)� C (X (p (�; �) ; �) ; �; �)

i
f (� j� ) d�

�
�Z
�

h
(1� �)C� (X (p (�; �) ; �) ; �; �)

F (� j� )
f (� j� )

i
f (� j� ) d�

subject to p (�; �) being non-decreasing in �.

Proposition 6 The optimum satis�es the �rst-order condition�
p (�; �)� Cx (X (p (�; �) ; �) ; �; �)� (1� �)Cx� (X (p (�; �) ; �) ; �; �)

F (� j� )
f (� j� )

�
Xp (p (�; �)) = 0:

Proof. Recalling that the cost function can be written as

C(c; q; �) = c(x; �) + k(x; q);
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the �rst-order condition simpli�es to

p (�; �)� cx (X (p (�; �)) ; �)� (1� �) cx� (X (p (�; �)) ; �)
F (� j� )
f (� j� ) = 0:

Di¤erentiating totally with respect to � and p we have

dp

d�
=�

�cx� (X (p (�; �)) ; �)� (1� �) cx�� (X (p (�; �)) ; �) F (�j� )f(�j� ) � (1� �) cx� (X (p (�; �)) ; �)
@
@�

F (�j� )
f(�j� )

�
�
�
1�

�
cxx (X (p (�; �)) ; �) + (1� �) cxx� (X (p (�; �)) ; �) F (�j� )f(�j� )

�
Xp (p (�; �))

� :

The denominator of this expression is negative by the second-order condition

of the regulator�s maximization problem. Using our assumption that cx� � 0,

cx�� � 0; and @
@�

F (�j� )
f(�j� ) � 0; we observe that dp

d� � 0 as required for incentive

compatibility.

Next, we show that the solution remains incentive compatible when � is no

longer observable.

Proposition 7 Given the regularity conditions of Propositions 4 and 5, the
unobservability of � does not a¤ect the solution to the principal�s problem.

Proof. Again, we identify the schedules p (�; �) � p (�; �) and � (�; �) � � (�; �)
for all �: Using the additive separability of the cost function and di¤erentiating

the pro�t of the �rm with respect to � we have

�� (�; �) =

�Z
�

�
czx (X (p (z; �)) ; z)Xp (p (z; �))

dp (z; �)

d�

�
dz:

A su¢ cient condition for incentive compatibility is dp(z;�)
d� � 0. Di¤erentiating

the �rst-order condition totally with respect to � and p we have

dp

d�
=

�
� (1� �) cx� (X (p (�; �)) ; �) @

@�
F (�j� )
f(�j� )

�
�
�
1�

�
cxx (X (p (�; �)) ; �) + (1� �) cxx� (X (p (�; �)) ; �) F (�j� )f(�j� )

�
Xp (p (�; �))

� :
Since the denominator is negative, dp(z;�)d� � 0 if @

@�
F (�j� )
f(�j� ) � 0: This is exactly

what a¢ liation implies.

Thus, we have shown that all the results of Section 2 apply to the regulation

application as well as to the procurement problem discussed there.
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4 Selling to a budget constrained buyer

Che and Gale (2000) investigate the problem of selling to a buyer who has

private information about his valuation of a good and about how much he can

spend on the good. In other words, the buyer faces a budget constraint and

the seller�s choice of selling procedure may be constrained by the fact that the

buyer cannot spend more than he has. Che and Gale distinguish between the

case where the seller is able to demand that the buyer place a bond and the case

where the seller is not able to do so. If the seller can demand the placement

of such a bond, then, the buyer is e¤ectively only able to mimic types with

a lower budget, but not types with a higher budget, because in that case the

buyer would be unable to pay. We treat the case where the seller can require the

buyer to place a bond because it is readily amenable to the approach proposed

in Section 2.

A buyer�s type is a tuple �; � (v; w in Che and Gale�s notation) where � is

the valuation of a buyer for a good o¤ered by the seller and � is the buyer�s

spending limit. The seller has one unit of a good on sale. We let x (�; �) denote

the probability of delivery of the good to the buyer of type (�; �) : Equivalently,

we may think of x (�; �) as the fraction of the good delivered to the buyer, in

case the good is actually divisible. We let t (�; �) denote the payment made

by the buyer with type (�; �) : The budget constraint of the buyer has the fol-

lowing implications. First, any equilibrium payment must satisfy the feasibility

constraint

t (�; �) � �:

Second, the budget constraint limits the buyer�s ability to mimic other types.

Given the feasibility constraint, and the placement of the bond that rules out

exaggerating the budget �; the incentive constraint of a type (�; �) takes the

form that for all (�; �)

�x (�; �)� t (�; �) � �x
�
�̂; �̂
�
� t
�
�̂; �̂
�
for all �̂; �̂ � �: (17)

Finally, all types must be willing to particpate, that is

�x (�; �)� t (�; �) � 0:6 (18)

6The actual utility of the agent is �+�x (�; �)�t (�; �) so that the participation constraint is
written as �+�x (�; �)�t (�; �) � � and similarly for the incentive constraints (17). Because of
the additivity in �, solving the problem in the net utility from participation, �x (�; �)�t (�; �),
is su¢ cient.
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The seller maximizes
�Z
�

�Z
�

t (�; �) f (�; �) d�d�

subject to constraints (17) and (18).

We solve this problem as before. We begin with the problem where the seller

knows � and conditions the contracts on �: Then, we show that no buyer has

an incentive to mimic any type with a lower budget.

If the seller knows that the buyer has a budget of �; then she solves the

following problem:

max
x(�;�);t(�;�)

�Z
�

(t (�; �)) f (�j �) d�

such that for all �

�x (�; �)� t (�; �) � �x
�
�̂; �
�
� t
�
�̂; �
�
for all �̂;

�x (�; �)� t (�; �) � 0; and

t (�; �) � �:

Letting the net indirect utility gain of type (�; �) be

u (�; �) = max
�̂

�
�̂; �
�
� t
�
�̂; �
�

we know from the argument in Section 2 that it can be written as

u (�; �) = u (�; �) +

�Z
�

x (z; �) dz:

Clearly it is optimal to extract all the rents from the type with the lowest

valuation, so u (�; �) = 0: Using the fact that

u (�; �) = �x (�; �)� t (�; �)

we can substitute

t (�; �) = �x (�; �)�
�Z
�

x (z; �) dz (19)

into the seller�s objective function. After an integration by parts, it can be
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written

max
x(�;�)

�Z
�

�
� � 1� F (�j �)

f (�j �)

�
x (�; �) f (�j �) d�

subject to

x (�; �) non-decreasing in �; and

�x (�; �)�
�Z
�

x (z; �) dz � �:

Given the following assumptions on the joint distribution of characteristics,

our pointwise procedure applies: assume that for each � the distribution of �

conditional on � satis�es
@

@�

1� F (�j �)
f (�j �) � 0 (20)

and that the random variables (�;��) are a¢ liated, implying that

@

@�

1� F (�j �)
f (�j �) � 0: (21)

Let �� (�) solve the equation

�� (�) =
1� F (�� (�)j �)
f (�� (�)j �) : (22)

By (20), there is at most one such value. Assuming, in addition, that � � 1
f( �j�) ;

implies there is exactly one value �� (�). The objective is increasing in x (�; �)

for � < �� (�), and decreasing in x (�; �) for � > �� (�) : The solution depends

on whether �� (�) � � or �� (�) > �:
In the former case, when �� (�) � �; the budget constraint of the buyer is

slack when the seller implements the optimal selling mechanism. To see this,

suppose that the the budget constraint is indeed slack. Then, the solution

involves x� (�; �) = 0 for � < �� (�) and x� (�; �) = 1 for � � �� (�) : The

payment then takes the form of

t (�; �) =

(
0 for � < �� (�)

�� (�) for � � �� (�) :

Clearly, this payment schedule satis�es the budget constraint for all buyers only

if �� (�) � �:
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Suppose, on the other hand, that �� (�) > �: Then, the budget constraint

must be binding for some types and the presence of the term
R �
�
x (z; �) dz in the

budget constraint forces us to use control techniques. Let y (�; �) �
R �
�
x (z; �) dz

and consider the optimal control problem with

H (�; �) =

�
� � 1� F (�j �)

f (�j �)

�
f (�j �)x (�; �)

subject to

y� (�; �) = x (�; �)

and

�x (�; �)� y (�; �) � �:

The Lagrangian for this problem is

L =

�
� � 1� F (�j �)

f (�j �)

�
x (�; �) f (�j �)+� (�)x (�; �)+� (�) (� � �x (�; �) + y (�; �)) :

From the maximum principle, the optimal value of the control variable, x� (�; �) ;

satis�es

x� (�; �) = arg max
x(�;�)

��
� � 1� F (�j �)

f (�j �)

�
f (�j �) + � (�)� � (�) �

�
x (�; �) ;

� (�) � 0; � � �x (�; �) + y (�; �) � 0, and

� (�) (� � �x (�; �) + y (�; �)) = 0:

Moreover, the optimal path of the costate variable, � (�) ; satis�es the conditions

�� (�) = �
@L

@y (�; �)
= �� (�) ;

and

�
�
�
�
= 0

where the latter condition is a transversality condition we impose on our problem

with given initial value y (�; �) = 0 and free endpoint y
�
�; �
�
:

The solution to this problem is of the form that x� (�; �) = 0 for � < �� (�)

and x� (�; �) = x (�) for � � �� (�) where x (�) solves

�� (�)x (�) = �:

21



The associated payment schedule is t (�; �) = 0 for � < �� (�) and t (�; �) = �

for � � �� (�) :
To see this, note �rst that for � < �� (�) ; L is decreasing in x (�; �) because

the term
�
� � 1�F ( �j�)

f( �j�)

�
x (�; �) f (�j �) is decreasing in x (�; �) : Hence the seller

does not want to sell to these types, which implies that � (�) = 0 for � <

�� (�) : Since the state variable y (�; �) enters the problem exclusively through

the binding budget constraint, the sellers objective function for � < �� (�) is

independent of the value of y (�; �) so that � (�) = 0 for � < �� (�) :

For � � �� (�) ; the term
�
� � 1�F ( �j�)

f( �j�)

�
x (�; �) f (�j �) is increasing in

x (�; �) : Hence, if the budget constraint of the buyer is non-binding, then the

seller would like to set x (�; �) = 1 for � � �� (�) : For the sake of the argument,
suppose the seller already sets x (�; �) = 1 for � = �� (�) : But then the payment

made by type �� (�) would have to satisfy �� (�) � y (�� (�) ; �) � �: But since
y (�� (�) ; �) = 0 and �� (�) > �; this condition is violated.

Finally, it remains to be shown that the budget constraint must be binding

for all types larger than �� (�) : The reason is that incentive compatibility implies

that the payment is non-decreasing in �: Di¤erentiating (19) with respect to �

we obtain

t� (�; �) = �x� (�; �) + x (�; �)� x (�; �) = �x� (�; �) � 0

In fact the binding budget constraint directly implies that x� (�; �) = 0; if the

budget constraint is binding over an interval then the change of expenditure,

t� (�; �) ; must equal the change of the budget, 0; over that interval. Hence,

x� (�; �) = 0 over the entire interval
�
�� (�) ; �

�
: Hence x (�; �) is equal to a

constant, x (�) for all � 2
�
�� (�) ; �

�
:

Next we show that the solution satis�es incentive compatibility in the �

dimension. To accomplish this, we have to show that x (�; �) is non-decreasing

in �:

First, we show that the value of �� (�) is non-increasing in �. Totally di¤er-

entiating (22) yields�
1� @

@��
1� F (�� (�)j �)
f (�� (�)j �)

�
d�� =

@

@�

1� F (�� (�)j �)
f (�� (�)j �) d�

so that
d��

d�
=

@
@�

1�F ( ��(�)j�)
f( ��(�)j�)�

1� @
@��

1�F ( ��(�)j�)
f( ��(�)j�)

� :
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Note that (20) and (21) imply that d�
�

d� � 0.
Second, we show that x (�) = �

��(�) is increasing in �: Di¤erentiating with

respect to � we obtain

x� (�) =
�� (�)� ��� (�) �

(�� (�))
2 > 0:

In other words, higher � consumers consume higher amounts of the good, and

are therefore less constrained than lower � consumers.

Finally, we take these two results together to show that the net indirect

utility gain of type (�; �) is higher than the net indirect utility gain of type

(�; �̂) for �̂ < �: Recall that

u (�; �) =

�Z
�

x� (z; �) dz:

Steps one and two have established that x� (�; �) � x� (�; �̂) for �̂ < �; where

the inequality is strict for some � if consumers with budget �̂ are constrained.

It follows that u (�; �) � u (�; �̂) for �̂ < �: Thus, we have shown the following:

Proposition 8 Suppose that @
@�

1�F ( �j�)
f( �j�) � 0 and that (��; �) are a¢ liated and

de�ne �� (�) as the unique solution to

�� (�) =
1� F (�� (�)j �)
f (�� (�)j �) :

Then, the optimal selling procedure when both � and � are the buyer�s private

information is

x (�; �) =

(
0 for � < �� (�)

x (�) = min
n

�
��(�) ; 1

o
for � � �� (�)

with an associated payment schedule

t (�; �) =

(
0 for � < �� (�)

�� (�)x (�) for � � �� (�)

The intuition is quite simple. If the seller can force the buyer to place a

bond, then exaggerating one�s budget is not a feasible deviation for the buyers

and only downward deviations have to be ruled out. The pointwise optimal

policy (that is, the optimal policy for each �) is a take-it-or-leave-it o¤er at a

23



price �� (�) : So, it must not be the case that the buyer can obtain a better price

by claiming his budget was lower. Hence, �� (�) must be non-increasing in �:

Setting a policy with that property is indeed optimal if the standard monopoly

trade-o¤between raising revenue per unit sold and decreasing units sold changes

the right way as � is increased. When (�;��) are a¢ liated then the conditional
distribution of � given � has more and more mass towards the lower realizations

of � when � is increased. Hence it becomes optimal to lower the price when �

increases. Since low budget types cannot mimic high budget types, the seller�s

policy of selling is in fact also incentive compatible.

5 Concluding Remarks

For screening problems with two unknown characteristics we have demonstrated

a procedure that makes a particular subset of these problems readily solvable.

The restrictions are twofold. One of the characteristics can only be mimicked in

one direction and the bound on this characteristic must be part of the optimum.

Secondly, the two characteristics must satisfy an a¢ liation property which can

vary from problem to problem.

We demonstrate the e¤ectiveness of this procedure in solving in some detail

a procurement model where quantity and quality of a commodity are unknown

but where agents can only mimic agent only capable of producing a lower qual-

ity. In addition, the upper bound on each agent�s quality must be desired at

the optimum. The procedure lets us �rst solve the one-dimensional screening

problems conditional on the quality variable and then demonstrates that no

one wishes to mimic a lower quality so that the solutions to the all of the one-

dimenional problems are in fact the solutions to the overall problem. We then

show brie�y that a standard regulation problem and a problem proposed by Che

and Gale [2000] where the seller faces possibly budget-constrained buys can be

solved using this procedure.

Our approach extends to any problem that exhibits the two features we

mentioned above, and indeed the logic of the argument goes beyond that.

Malakhov and Vohra [2005a,2005b] and Iyengar and Kumar [2006] have studied

auction problems where bidders�valuations and capacities for consumption are

unknown. They show that the solution to the problem when only valuations are

private information remains incentive compatible when the second dimension

of private information is added. Moreover, as ours does, their result extends

to any problem with similar features, that is, any problem where the principal

has two choice variables, and one of them - the quantity allocated to an agent
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- interacts non-trivially with the agent�s types. In contrast, our results apply

to problems where the principal has three choices to make and two of them -

the quantity and the quality allocated to the agent - interact non-trivially with

the agent�s types. Taken together, these results demonstrate the usefulness of

the model structures to obtain insights into the problem of multi-dimensional

screening.
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